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INTRODUCTION

Fischbein, Deri, Nello, and Marino (1985) argue that students’
conceptions of and performance on multiplication and divi-
sion application word problems (hereafter multiplicative
problems) are unconsciously derived from primitive intuitive
models that “correspond to features of human mental behav-
ior that are primary, natural and basic” (p. 15). They suggest
their theory to account for conceptions, such as multiplica-
tion makes bigger and division makes smaller, identified in
previous studies (e.g., Bell, Fischbein, and Greer, 1984;
Vergnaud, 1983; Bell, Swan, and Taylor, 1981). These concep-
tions are in accord with the operations of multiplication and
division in the whole number domain but incongruent to
these operations in the rational number domain; thus, they
block the way to correctly solve many multiplicative prob-
lems whose quantities are decimals or fractions.

In our recent effort to better understand the multiplica-
tive conceptual field, and in particular the transition phase
from the additive structure to the multiplicative structure, we
probed into this question of incongruity. We found that many
questions and concerns are still open and need further inves-
tigation. Among these we addressed the following: (1) the
impact of the number type on the solution of multiplicative
problems; (2) the impact of the textual structure on problem
interpretation; and (3) solution models used by teachers to
solve multiplicative problems. To address some of these
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questions empirically, we developed an instrument that con-
trols a wide range of confounding variables known to be influ-
ential on subjects’ performance on multiplicative problems
and used it with inservice and preservice teachers. In this
chapter we report on an investigation of aspect (1); the inves-
tigations on the other two aspects will be reported separately.

THEORETICAL BACKGROUND

We start with a summary of Fischbein et al.’s models for mul-
tiplication and division and the evidence reported by some
studies for their impact. Then we address, in this order, ques-
tions concerning the instruments used to investigate these
models, a specific constraint these models impose on the
numerical aspect of the quantities representing the multi-
pliers and divisors, and the relative robustness of the intu-
itive rules associated with these intuitive models.
According to Fischbein et al. (1985), the model associ-
ated with multiplication problems is repeated addition. Un-
der this model the roles played by the quantities multiplied
are asymimetrical (Greer, 1985). One of the factor quantities,
called the multiplier, is conceived of as the number of equiva-
lent collections, while the other quantity, called the multipli-
cand, is conceived of as the size of each collection. These
conceptions apparently lead subjects to intuit the rule that
multipliers must be whole numbers, which, in turn, results
in another rule: the product must be larger than the multipli-
cand, or multiplication makes bigger (Bell et al., 1984; Hart,
1984; Bell et al,, 1981). For division, Fischbein et al. sug-
gested two intuitive models, one is associated with equal
sharing, or partitive division problems, the other with mea-
surement, or quotitive division problems. In the partitive di-
vision model, an object or collection of objects is partitioned
into a number of equivalent fragments or subcollections. The
size of the object or the number of objects is represented by
the dividend, the number of the equivalent fragments or sub-
collections is represented by the divisor, and the size of each
equivalent fragment or subcollection is represented by the
quotient. As a result, certain rules are intuited and become
associated with this model: (1) the divisor must be a whole
number, (2) the divisor must be smaller than the dividend,
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TABLE 10.1. INTUITIVE RULES ASSOCIATED WITH FISCHBEIN'S
THREE MODELS

Operation Intuitive rules

Multiplication 1. Multiplier must be a whole number

2. Multiplication makes bigger

1. Divisor must be a whole number

2. Divisor must be smaller than divi-
dend

. Division makes smaller

. Divisor must be smaller than dividend

Partitive division

o

Quotitive division

and (3) the quotient must be smaller than the dividend, or
division makes smaller, which is derived from the previous
two rules. The quotitive division model is associated with
division problems in which it is required to find how many
times a given quantity is contained in another quantity. The
only constraint imposed by this model is that divisors must
be smaller than dividends. Table 10.1 summaries these intu-
itive rules. :

Fischbein et al. (1985) looked for substantiation of their
theory in an investigation with fifth, seventh, and ninth
graders. Other researchers tested this theory with different
populations. For example, Greaber, Tirosh, and Glover (1989)
replicated Fischbein et al.’s study with preservice elementary
teachers and further investigated the similarity between their
conceptions and children’s conceptions of multiplication
and division. Mangan (1986) addressed Fischbein et al.’s the-
ory in a study that systematically controlled the contextual
and the number type variables, with a wide age range of chil-
dren and adults: primary and secondary school students,
continuing education students, university students, and stu-
dent teachers.

In general, these studies and others (see Greer, 1988)
support Fischbein et al.’s theory; that is, they are consistent
with the argument that subjects’s solution of multiplicative
problems is affected by their intuitive models about multi-
plication and division and by the numerical constraints im-
posed by them. The following are some of the main results of
these studies.

The impact of the repeated addition model was substan-
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tiated by the finding that the solution of multiplication word
problems is affected by the type of multiplier. It was showp
that problems with a whole-number multiplier are signifi-
cantly easier than problems with a decimal multiplier larger
than 1; and the latter were easier than those with a (positive)
decimal multiplier smaller than 1 (e.g., Mangan, 1986; De
Corte, Verschaffel, and Van Coillie, 1988). Also, consistent
with the repeated addition model is the finding that no signif-
icant difference in problem difficulty was found whether the
multiplicand was represented as a whole number, a decimal
greater than 1, or a decimal smaller than one (Luke, 1988).

The impact of the division models also was substanti-
ated. For example, Mangan (1986) showed that problem quan-
tities consistent with the partitive constraints (e.g., 25 + 8
and 26.85 -+ 9) yielded the highest level of performance;
quantities that violate the constraint that the divisor must be
a whole number (e.g., 11.44 + 4.51, 32 + 5.69, 5.87 + 0.44,
and 8 + 0.77) resulted in a decrease in the percentage of
correct responses; and quantities that violate the constraint
that the divisor must be smaller than dividend (7 + 23 and
0.38 + 0.89) resulted in the lowest level of performance. Sim-
ilarly, in quotitive division quantities that conform to the
quotitive constraint (26 + 8, 26.85 + 9, 11.44 + 4.51, 32 +
5.69, 5.87 + 0.44, and 8 + 0.77) yielded a higher performance
than those that violate it (7 ~ 23 and 0.38 + 0.89).

In an analysis of these and other studies, we made sev-
eral observations. The first, which has been a concern to
other researchers as well (e.g., Nesher, 1988; Goldin, 1986;
Lester and Kloosterman, 1985), is that the problems used in
these studies controlled only for the number variable, leaving
uncontrolled all or some other important variables such as
context, text, and syntax, which are known to be important
factors in the research on additive word problems. The in-
strument we developed for this study (described in the next
section) was designed to take into consideration this con-
cern.

The second observation from these studies is that it
seems that decimal multipliers greater than 1 are treated by
subjects like whole numbers: Subjects seem to have little
difficulty solving multiplication problems with a non-whole-
number multiplier greater than 1 (compared to the difficulty
they have with problems with a decimal smaller than 1) de-
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spite the fact that such problems violate the same intuitive
rule, that the multiplier must be a whole number. Our ques-
tion was, What is the conceptual basis for this phenomenon?
Fischbein et al. noticed this phenomenon and suggested the
notion of an absorption effect to explain it. They conjectured
that a decimal multiplier whose whole part is clearly larger
than its fractional part may be treated more like a whole
number, as though the whole part “masks” or “absorbs” the
fractional part. To support this conjecture, Fischbein et al.
(1985) compared performance on several multiplication
problems: one with the decimal multiplier 3.25, one with the
decimal multiplier 1.25, and four with the decimal multi-
pliers 0.75 or 0.65. They found that compared to decimals
like 0.75, 0.65, or 1.25, a decimal like 3.25 has a slighter
“counterintuitive” effect when playing the role of multiplier.
This explanation raises several questions: What is the con-
ceptual base for the argument that the whole part 3 in the
decimal multiplier 3.25 better “masks” or “absorbs” the frac-
tional part 0.25 than 1 does in the decimal multiplier 1.25? Is
it merely a matter of the relative size between 3 and 1 or does
a more fundamental factor account for the difference? If this
is a matter of the relative size, would “large” decimals (e.g.,
42.35) be better conceived as multipliers than small decimals
(e.g., 3.25)? Would the “absorption effect” apply to decimal
multipliers between 2 and 3 (e.g., 2.25)? Does the relative size
between the whole part and the decimal part of a decimal
multiplier play a role in the “absorption effect”? In this chap-
ter we address some of these questions. :

The third observation, related to the previous one, is
that the notion of the “absorption effect” has not been inves-
tigated with respect to the intuitive partitive division rule,
that the divisor must be a whole number, even though the
same argument Fischbein et al. (1985) made with the multi-
plier can be made with the divisor. The argument would be
that a non-whole-number divisor whose whole part is clearly
greater than its fractional part should be treated like a whole
number. That is, a partitive division problem with a divisor
such as 2.53 is expected, according to the “absorption effect”
notion, to be easier than a partitive division problem with a
divisor such as 0.67. Therefore an additional question is,
Does the “absorption effect” apply to partitive division as
well?
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TABLE 10.2. DISTRIBUTION OF RESPONSES
TO DIVISION PROBLEMS

Problem Operation % Correct (Grade)
16 5+15 20 (B), 24 (7), 41 (9)
17 5+ 12 14 (5), 30 (7), 40 (9)
20 3.25 + B 73 (56), 71 (7), 84 (9)
21 75 + 5 85 (B), 77 (7), 83 (9)
22 1.25 + 5 66 (5), 74 (7), 70 (9)

The fourth observation is that the intuitive rules do not
seem to be equally robust in problem solutions. Consider, for
example, Table 10.2, which shows the percentage distribu-
tion of responses to problems 16, 17, 20, 21, and 22 from
Fischbein et al. (1985, p. 12). All these problems are of parti-
tive division type and violate the same intuitive rule, that the
divisor must be smaller than the dividend. Despite this uni-
formity, the results are strikingly different: The percentages
of correct responses on Problems 16 and 17 are much lower
than of those on Problems 20, 21, and 22. The explanation to
this given by Fischbein et al. (1985) is that in Problems 16
and 17 the students’ tendency was to reverse the roles of the
numbers as a divisor and dividend. Had they done that in
Problems 20 to 22, however, they would have ended up with a
decimal divisor! It appears that, faced with having to cope
with a violation of the partitive model's rules, the pupils
chose instead not to reverse the numbers (p. 13). From this
result we concluded that different intuitive rules within the
partitive model may not be equally strong in affecting stu-
dents’ solution of partitive division problems: In Problems
20, 21, and 22 the children preferred to cope with the viola-
tion of the rule that the divisor must be smaller than dividend
than with the violation of the rule that the divisor must be a
whole number. Therefore the question of how different rule
violations affect differently the choice of operation for solv-
ing multiplication and division problems needs to be ex-
tended to other intuitive rules.

In the rest of this chapter, we report on the instrument
we developed that controls six confounding variables, used in
this study with preservice and inservice elementary school
teachers. Following this we discuss findings about the con-
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straints imposed by the intuitive rules on the problem
operators—multiplier and divisor—and the relative robust-
ness of these constraints. We conclude with a summary and
questions for further research.

METHOD
Subjects

The subjects who participated in this research were 167 in-
service fourth—sixth grade teachers, 148 senior preservice
teachers enrolled in a methods course for the teaching of
elementary school mathematics (Group S), and 145 junior
preservice teachers enrolled in a required sophomore-level
content course in mathematics designed for preservice ele-
mentary school teachers (Group J). Both groups of students
were declared majors in elementary education. The mathe-
matical prerequisite for the methods course is the sopho-
more content course. For the content course the mathemati-
cal prerequisites are one year each of high school algebra and

geometry.

Instrument

As has been indicated earlier, the instrument we developed
for this study controls a wide range of confounding variables:
number type, text, structure, context, syntax, and rule viola-
tion.

Number Type. This variable concerns the type of num-
bers representing the multipliers, multiplicands, divisors,
and dividends; these were systematically varied across whole
number, decimal greater than 1, and decimal less than 1.

Text. Two types of textual problems were included: map-
ping rule and multiplicative compare (4 la Nesher, 1988).
Mapping-rule problems are those that involve the phrase for
each, such as, “For each child there are five bags of candies,
there are four children, how many bags of candies are there
altogether?"; multiplicative-compare problems are those that
involve the phrase times as many as, such as, “Tom has five
times as many candies as John, John has four candies, how
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many candies does Tom have?” For more on the conceptual
differences between these two types of problems, see Harel,
Post, and Behr (1988).

Structure. The third variable differentiates multiplica-
tive problems according to an interpretation of their seman-
tic structure: multiplication, partitive division, and quotitive
division. Three types of mapping-rule problems were in-
cluded: the multiplication mapping-rule type (e.g., “There
are five shelves in Dan’s room; Dan put eight books on each
shelf; how many books are there in his room?"”) and the two
division mapping-rule problems corresponding to it (e.g.,
“There are forty books in the room, and five shelves; how
many books are there on each shelf if each shelf has the
same number of books on it?” and “There are forty books in
the room; eight books on each shelf; how many shelves are
there?”). Three types of multiplicative-compare problems
were also included: the multiplication multiplicative-
compare problem (e.g., “Dan has twelve marbles; Ruth has six
times as many marbles as Dan has; how many marbles does
Ruth have?”) and the two division multiplicative compare
corresponding to it (e.g.,, “Ruth has seventy-two marbles;
Ruth has six times as many marbles as Dan has; how many
marbles does Dan have?” and “Ruth has seventy-two mar-
bles; Dan has twelve marbles; how many times as many as
Dan does Ruth have?”).

Context. All problems used dealt with the familiar con-
text of consumption; examples include the following prob-
lems: “Each pound of snow peas costs $3.00. Father buys
2.89 pounds of them. How many dollars does Father spend on
snow peas?” and “Each child gets 24 ounces of milk. There
are seven children. How many ounces of milk are needed?”

Syntax. This variable refers to the wording structure of
the problem. More specifically, the syntactical structure of
the problems used was controlled with regard to the number
of the statements in the problem description, the location of
the unknown quantity with respect to the other given quan-
tities, and the coordination of units of measures (for more
details see Harel and Behr, 1989; Harel et al., 1988; Conner,
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Harel, and Behr, 1988). All problems consisted of three state-
ments: The first two were information statements and the
third, a question statement. The coordination of the units of
measures of the quantities involved was fixed across each
one of problem types used.

Rule Violation. We classified multiplicative problems
into eleven categories according to all possible rule viola-
tions described in Table 10.1. The instrument includes prob-
lems from each of these categories. With multiplication,
there are three categories of problems:

» M(0) consists of problems that violate none of the intu-
itive rules in Table 10.1.

* M(1.1) consists of problems that violate only the rule
that the multiplier must be a whole number. The multi-
plier in these problems must be a decimal greater than 1.

» M(1.2, 2) consists of problems that violate the two intu-
itive rules for multiplication: multiplier must be a
whole number and multiplication makes bigger (or
product must be larger than multiplicand); therefore
the multiplier in these problems is necessarily smaller
than 1.

With partitive division there are six categories:

* P(0) consists of problems that conform to all the intu-
itive partitive division rules in Table 10.1.

« P(1.1) consists of problems that violate only one rule:
divisor must be a whole number. In these problems,
therefore, the divisor is necessarily a non-whole num-
ber greater than 1.

* P(2) consists of problems that violate only the rule that
the divisor must be smaller than the dividend.

« P(1.1, 2) consists of problems that violate exactly the
two rules that the divisior must be a whole number and
the divisor must be smaller than the dividend. The di-
visor in these problems is necessarily a non-whole
number greater than 1 (to yet conform to quotient <
dividend) and greater than the dividend; that is, this
category is the intersection of Categories P(1.1) and
P(2).
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« P(1.2, 3) consists of problems that violate only the two
rules that the divisor must be a whole number and that
division makes smaller. Consequently, the divisor in
these problems is necessarily a number smaller than 1
and smaller than the dividend.

« P(1.2, 2, 3) consists of problems that violate the three
partitive rules in Table 10.1. As a result, the divisor in
these problems is a number smaller than 1 and bigger
than the dividend; this category is the intersection of
the Categories P(1.2, 3) and P(2).

With quotitive division there are two categories:

*» Q(0) consists of problems that conform to the intuitive
quotitive division rule in Table 10.1.

* Q(1) consists of problems that violate the only rule for
quotitive division, that the divisor must be greater than
the dividend.

A summary of this classification of problems according to
rule violations is given in Table 10.3.

RESULTS AND DISCUSSION

Let us recall the main findings from studies investigating
Fischbein et al.'s theory:

1. The relative difficulty of multiplication word prob-
lems is affected by the type of the multiplier, and the index
for this relative difficulty is a multiplier represented by the
number 1: Problems with a whole-number multiplier were
easier than problems with a decimal multiplier larger than 1;
and the latter were significantly easier than those with a
(positive) decimal multiplier smaller than 1,

2. The multiplicand has no impact on problem difficulty.

3. The relative difficulty of partitive division word prob-
lems is affected by the type of the divisor and its order rela-
tion by magnitude to the dividend: Problems with a whole-
number divisor smaller than the dividend yielded the highest
level of performance; problems with a divisor greater than the
dividend resulted in a decrease in the percentage of correct
responses; and problems with a nonintegral decimal divisor

p
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smaller than the dividend resulted in an even lower level of
performance.

4. The relative difficulty of quotitive division word prob-
lems is affected by the order relation between the magni-
tudes of the divisor and the dividend: Problems with a divisor
smaller than the dividend yielded a higher performance than
those with a divisor greater than the dividend.

Some of our data are consistent with these findings and
some do not fully agree with it; other data refine and even
extend the observations about the previously documented
cognitive obstacles to the solution of multiplicative prob-
lems. These are discussed in the following.

Multiplication. Table 10.4 shows the percentage distri-
bution of responses to three categories of multiplication
problems by the three samples of subjects who participated
in this study: junior preservice teachers (Group J), senior
preservice teachers (Group S), and inservice teachers. As can
be seen, the percentage of correct responses on problems
with a whole number multiplier (thus, conforming to Fisch-
bein's multiplication model) is very high. On problems whose
multiplier is a decimal greater than 1 (and therefore violating
the rule that the multiplier must be a whole number) it drops
slightly by an average of about 13 percent; and on problems
whose multiplier is a decimal smaller than 1 (violating the
exact same rule and the rule that the multiplication makes
bigger) it drops by an average of about 41 percent. These
results indicate a moderate effect on the level of difficulty
from changing the type of multiplier from a whole number to
a decimal greater than 1, but a great impact on the level of
difficulty when the multiplier changes from a whole number
or a decimal greater than 1 to a decimal smaller than 1. These
results are consistent with results obtained in other studies,
and therefore they support Fischbein et al.’s intuitive models
for multiplication, the repeated addition model.

The percentage distribution of correct responses to the
partitive division and quotitive division problems is included
in Table 10.5. These results are consistent with the constraints
of the models associated with these types of problems as
were suggested by Fischbein et al. (1985). This can be seen by
comparing the percentage of correct responses on P(0) prob-
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(131)

44

(67)

37

{146)

33

V.50 = 0O./9

U1ividena must be grealer tnan divisor

and
Quotient must be greater than dividend

95.1 (88)
63.7 (39)

91.5 (83)
35.2 (89)

90.6 (145)
38.4 (145)

175 = 35

No rule violation

Q(0)

83 + 193

Dividend must be greater than divisor

Q(1)
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lems (those that conform to the partitive division model) to
P(1.1), P(2), P(1.1, 2), P(1.2, 3), and P(1.2, 2, 3) problems (those
that violate some or all of the partitive division rules), and the
percentage of correct responses on Q(0) problems (those that
conform to the quotitive division model) to @(1) (those that
violate the rule that the dividend must be greater than the
divisor): The performance on P(0) problems is significantly
higher than the performance on each of the other partitive
division categories, except P(2); and the performance on G(0)
problems is significantly higher than the performance on
@Q(1) problems.

These findings are consistent with other studies’ find-
ings; therefore they support Fischbein et al.'s argument that
intuitive models, which are not necessarily in accord with the
operations of multiplication and division, govern subjects’
solutions of multiplicative problems. However, as is dis-
cussed later, a further look at our data leads to new observa-
tions.

The Impact of the Operators, Multiplier and Divisor. Re-
call Fischbein et al.’s “absorption effect” notion that they
suggested to explain the conceptual basis for why multiplica-
tive problems with “small” (e.g., 0.65 and 1.25) decimal opera-
tors (i.e., multipliers and divisors) are more difficult than
those with “big” (e.g., 3.25) decimal operators: “We conjec-
tured that when the whole part of a decimal is clearly larger
than the fractional part, the pupil may treat it more like a
whole number (as though the whole part ‘masks’ or ‘absorbs’
the fractional part). ... Although the decimal operator still
appears as a source of difficulty, one can see that compared
to decimals like 0.75, 0.65, or 1.25, a decimal like 3.25 has a
slighter counterintuitive effect when playing the role of oper-
ator” (p. 11). From this explanation it is expected that an
increase in the value of a decimal operator (multiplier or di-
visor) greater than 1 will increase the effect of masking the
decimal part of the operator by its whole number part, which,
in turn, will decrease problem difficulty. As can be seen in
Table 10.6, our data on subjects’ performance on multiplica-
tion problems do not dovetail with this pattern: An increase
in the whole part of the multiplier has notled to a decrease in
problem difficulty. Further, the data in Table 10.5 suggest
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TABLE 10.6. DISTRIBUTION OF RESPONSES
TO MULTIPLICATION PROBLEMS WITH DECIMAL
MULTIPLIERS GREATER THAN 1

% Correct responses (N)

Preservice

Multiplier Multiplicand Group J Group S Inservice

1.45 2.86 71(93) — 87(23)
2.5 0.75 87(150) 90(60) 96(22)
2.89 3 88(146) 89(62) 91(22)
10.5 18.25 94(145) 93(72) 100(22)
16.5 3 76(146) 79(67) 91(22)
43.61 2.37 54(146) 58(72) 74(132)

that the “absorption effect” does not apply to partitive divi-
sion problems. This can be seen by comparing the perfor-
mances of problems whose divisor is a decimal greater than 1
(P(1.1)) and problems whose divisor is a decimal smaller
than 1 (P(1.2, 3)). In both cases the level of performance is
relatively low compared to the level of performance on P(0)
problems (those which conform to Fischbein et al.’s partitive
model).

Further, note that the performance on the division prob-
lem with the divisor 24.67 ((P1.1,2)) is very low (less than 30
percent; see Table 10.5), even though its whole part is rela-
tively large. One might argue that this low result is attribut-
able to the fact that this problem violates another rule, that
the divisor must be smaller than dividend. Although itis like-
ly that this rule violation has, to some extent, affected sub-
jects' performance, we do not think that its effect is that
strong. This is supported by the fact that the performance on
problems that violate only this rule (i.e., P(2)) is relatively
high (Table 10.5).

Levels of Robustness. In Table 10.5, there are two con-
spicuous results concerning how the intuitive rules effect
differently the solution performance: First, the performance
on M(1.1) problems (Table 10.5) that violate only the rule that
the multiplier must be a whole number is higher than the
performance on M(1.2, 2) problems that violate two rules:
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that rule and the rule that multiplication makes bigger.
Second, the performance on P(2) problems (those that violate
only the rule that the dividend must be greater than the di-
visors) is higher than the performance on the other catego-
ries of partitive division problems that violate one or a combi-
nation of intuitive rules. The latter result indicates that,
when the divisor is a whole number, the rule that the divi-
dend must be greater than the divisor is the least robust in
the solution of partitive division among other combinations
of the intuitive rules. This is not surprising, because prob-
lems with this rule violation (i.e., a number of objects, x, is to
be equally divided into a whole number of sets, y, where x <
y) are quite common in everyday situations. On the other
hand, problems that violate the rule that the divisor must be
greater than the dividend and, in addition, violate the rule
that the divisor must be a whole number (i.e., P(1.1, 2)) scored
the lowest level of performance.

In looking at the subjects’ solutions to problems in Cat-
egory P(1.1), we found that almost all subjects who did not
solve these types of problems correctly offered an inverse
expression to the correct division expression (for example, if
the solution of the problem was 11 + 2.53, the incorrect solu-
tion was 2.53 + 11) Many more subjects chose the inverse
expression (mean = 54.75) than solved the problem correctly
(mean = 32.5). Note that, although the correct expression
violates the rule that the divisor must be a whole number, the
inverse expression violates the rule that the divisor must be
smaller than the dividend. We interpret this resultto indicate
that the former rule is more robust that the latter one.

The Impact of the Multiplicand. Looking back at Table
10.4, one can see that our data do not fully dovetail with other
studies that have observed no impact of the multiplicand.
Indeed, consistent with other studies, Table 10.4 shows that,
as long as the multiplier is a whole number or a decimal
greater than 1, the type of the multiplicand as a whole num-
ber, decimal greater than 1, or decimal smaller than 1, has
almost no effect on the problem's difficulty. On the other
hand, when the multiplier is smaller than 1, our data show
that the type of the multiplicand seems to have some effect:
The percentage of correct responses on problems with a
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whole-number multiplicand is much higher than that on
problems with decimal multiplicand.

This observation could, of course, be a result of a pertur-
bation or noise in our data. However, assuming this is not so,
we speculate the following explanation: The presence of a
whole-number quantity in the problem helps subjects to sort
out the role of the quantities involved, which, in turn, enables
them to choose a correct operation for solving the problem.

SUMMARY

In this chapter, we dealt with several aspects of the impact of
the number type on the relative difficulty of muitiplicative
problems. We reexamined the findings from other studies
concerning this impact, investigated the “absorption effect”
notion suggested by Fischbein et al. to account for differ-
ences in subjects’ performance on multiplicative problems
with. different non-whole-number operators and probed into
the level of robustness of the intuitive rules derived from
Fischbein et al.’s models. The observations and findings re-
ported in this chapter are summarized as follows:

1. The instruments used in Fischbein et al. and the
studies that followed it do not control for many variables
known to be influential in problem solution. We offered a
framework for an instrument that controls for a wide range of
confounding variables: number type, text, structure, context,
syntax, and rule violation.

2. Our data is consistent with the finding that subjects’
model for multiplication is the repeated addition model, and
for division, subjects’ models are partitive division and quoti-
tive division.

3. Our data do not support Fischbein et al.’s notion of
the “absorption effect”: No significant difference in perfor-
mance was found between multiplication problems with mul-
tipliers whose whole part is relatively large and those with
multipliers whose whole part is relatively small. Moreover,
the absorption effect does not apply to division problems.

4. Evidence was shown for differential robustness of the
intuitive rules associated with Fischbein et al.’s models.

5. The type of multiplicand seems to have an impact on

problem solution when the multiplier is smaller than 1.
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FURTHER RESEARCH QUESTIONS

This research has raised several questions for further inves-
tigations. First, this and other studies focused on one type of
problem quantities: decimal numbers. The question of
whether subjects encounter similar difficulties with multi-
plication and division problems that involve fractions has
never been directly addressed. There is a reason to believe,
however, that fractions and decimals do not have the same
effect on the solution of multiplication and division prob-
lems. More specifically, it seems easier to solve multiplica-
tion and division problems in which the operator (i.e., the
multiplier or divisor) is a fraction than in those in which the
operator is a decimal. A rationale for this is based on the fact
the naming rule of fractions is different from the naming rule
of decimals: Under these naming rules, it is easier to identify
the role of a problem quantity as an operator or operand if the
quantity is a fraction than if it is a decimal; therefore it is
easier to recognize its relation to other problem quantities.
For example, the two propositions in the statement, “John
had 5 ounces of ice cream and he ate x of the amount he
had” are easier to connect if (the operator) x is a fraction, say
2/5, than if x is a decimal, say 0.40.

Second, a further distinction among the intuitive rules
derived from Fischbein et al.’s model is that some of the rules
are associated with the problem information, others with the
problem solution. In multiplication, the rule that the multi-
plier must be a whole number imposes a constraint on the
type of multiplier provided in the problem information; in
contrast, the rule that the multiplication makes bigger re-
stricts the problem solution to be a number greater than the
multiplicand. Similarly, in partitive division, the rules that
the divisor must be a whole number and the divisor must be
smaller than dividend are problem information rules, where-
as the rule that the quotient must be greater than dividend is
a problem solution rule. Finally, in quotitive division, the rule
that the divisor must be smaller than dividend is a problem
information rule; no problem solution rule is involved. This
raises the question of whether problem information rules are
equally robust as the problem solution rules.

Finally, when we looked at the other studies’ data on
multiplication and division, we raised the question, Why are

£
e
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problems with a multiplier greater than 1 relatively easy for
the subjects despite the fact that they are in conflict with the
model of multiplication as a repeated addition? If indeed this
model governs subjects solution of multiplication problems,
it is not at all clear why the intuitive rule derived from it—
that the multiplier must be a whole number—is substantially
less robust in the case of a non-whole-number multiplier
greater than 1 than in the case of a multiplier smaller than 1.
Further, it is not all clear what is the conceptual basis for the
multiplier 1 being an index for the relative difficulty of multi-
plication problems. In fact, Fischbein et al. in their explana-
tion to the observation that the intuitive rule that the multi-
plier must be a whole number does not equally affect
multiplication problems with decimal multipliers, did not dif-
ferentiate between multipliers greater than 1 and those less
than 1. Rather, they suggested the “absorption effect” notion,
which differentiates between multiplicative problems accord-
ing to the size relationship between the whole number part
and the fractional part of their multipliers. In this chapter we
reported data that are not consistent with this explanation;
therefore, further theoretical and empirical investigations
are needed to answer these questions.

NOTE
This research was funded in part by grant #CRG.890977 from NATO.
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