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Abstract

We develop the theory of semi-primary lattices, a class of modular lattices, including
abelian subgroup lattices and invariant subspace lattices, in which an integer parti-
tion is assigned to every element and every interval. Flags in these lattices give rise to
chains of partitions, which may be encoded as tableaux. In certain of these lattices,
Steinberg and van Leeuwen respectively have shown that relative positions and co-
types, which describe configurations of elements in flags, are generically computed by
the well known Robinson-Schensted and evacuation algorithms on standard tableaux.
We explore extensions of this to semi-primary lattices: we consider the nongeneric
configurations, leading to nondeterministic variations of the Robinson-Schensted and
evacuation tableau games, and consider exact and asymptotic enumeration of the
number of ways to achieve certain configurations. We also introduce other configura-
tion questions leading to new tableau games, and develop a number of deterministic
and nondeterministic tableau operators that can be combined to describe the generic
and degenerate configurations of flags undergoing various transformations.

We also look at similar problems in the class of modular lattices whose comple-
mented intervals have height at most 2, such as Stanley’s Fibonacci lattice Z(r). Here
the generic relative position is related to Fomin’s analogue of the Robinson-Schensted
correspondence in Z(1).

Thesis Supervisor: Richard P. Stanley
Title: Professor of Applied Mathematics
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Notation

Symbol Description Page
? a hole in a tableau during a game 72
• in a tableau of shape λ/µ, the “entry” in cells of µ; also, a cell

in a Ferrers diagram 20, 22
#S cardinality of set S
∅ empty partition, composition, sequence, or tableau 20, 21
0̂ minimum element of poset 16
1̂ maximum element of poset 16

x ∨ y least upper bound, or “join,” of x and y 16
x ∧ y greatest lower bound, or “meet,” of x and y 16
x∗ inclusion of x into the dual lattice 17

[x, y][k] join of all cycles in [x, y] of rank ≤ k; x[k] = [0̂, x][k] 35
[x, y](k) meet of all cocycles in [x, y] of corank ≤ k; x(k) = [x, 1̂](k) 35
~x[[λ]] x1[λ1] ∨ x2[λ2] ∨ · · · 51
~x((λ)) x1(λ1) ∧ x2(λ2) ∨ · · · 51
x <· y cover relation: x < y and nothing is between them 16
x ≤· y x <· y or x = y 16
i <· j i = j − 1 in Z 16
µ ≤ λ µi ≤ λi for all i > 0 21

µ ≤ e λ µ ≤ λ, and fill λ/µ with e 75

µ ≤∨ λ µ ≤ λ and λ/µ is a vertical strip 56
µ <· |r| λ λ′r ·> µ′r and λ′i = µ′i for i 6= r 77
µ <·x λ λ ·> µ and λ = µ⊕ x 75
λ ` n ∑

i λi = n 20
µ v λ subcolumn partition: mi(µ′) ≤ mi(λ′) for i > 0 53

λ′ conjugate partition: λ′j = # { i : λi ≥ j } 20
A +B append B to A rowwise 60
λ+ µ (λ1 + µ1, λ2 + µ2, . . .) 21
λ ∪ µ (λ′1 + µ′1, λ

′
2 + µ′2, . . .)

′ 21
λ⊕ µ union of subsets of P× P 21
λ	 µ set difference of subsets of P× P 21
λ/µ a skew partition or composition; an ordered pair with µ ≤ λ 21
|λ| ∑

i λi 20(
n
k

)
binomial coefficient n!/(k!(n− k)!)

〈n〉 (qn − 1)/(q − 1) = 1 + q + · · ·+ qn−1 44
〈n〉! 〈1〉 · · · · · 〈n〉, 〈0〉! = 1 44
Ax join of all weak upper covers of x 25
Ayx join of all weak upper covers of x in [x, y] 25
Aλµ partition with ith part min {µi + 1, λi} 52
ALR Littlewood-Richardson sequence of an element 63

arank[x, y] atomic rank of [x, y] 30
Cµλ partition with ith part max {λi − 1, µi} 52
Cλ (λ1 − 1, λ2 − 1, . . . , λk − 1) where λk > λk+1 = 0 40
Cy meet of all weak lower covers of y 25
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Cxy meet of all weak lower covers of y in [x, y] 25
CLR Littlewood-Richardson sequence of an element 63

col(P , k) column of entry k in P 23
entry(P , c) entry at cell c of P 64

F P (q) number of flags of type P 45
fΛ(q) number of flags with itype f = Λ 89
ΓL(x) complements to x in L 49
gλµν(q) Hall polynomial 62

high(f) high index used in a flag or tableau 16, 23
λ lowercase greek letters are partitions or compositions 20
Λ interval type table, meet type table,

A-statistics 73, 85, 131, 161, 173, 178
Λ′ transpose, dependent on structure 87, 131
L lattice

L(G) lattice of subgroups of G 24
L(V,N) lattice of N-invariant subspaces of V 24

LR∗,LR∗ extremal Littlewood-Richardson sequences 67
low(f) low index used in a flag or tableau 16, 23
Mλ(q)

∏
i 〈mi(λ)〉! 46

mi(λ) multiplicity: number of parts of λ of size i 20
N {0, 1, 2, . . .}

n(λ)
∑
i>0(i− 1)λi =

∑
i

(
λ′i
2

)
21

n(λ/µ) n(λ) − n(µ) 21

n0(λ)
∑
i>0

(
λ′i−λ′i+1

2

)
46

oshP outer shape of tableau P 22
O(q−1) a function whose product with q is bounded by a constant as

q →∞
P {1, 2, 3, . . .}
P uppercase bold italic letters are tableau 22

ρ(x) rank of x 16
ρ̄(x) corank of x 16

row(c) row of cell c 23
row(P , k) row of entry k in P 23

S(λ) straightening: arrange parts of λ in decreasing order 67
S(P ) straightening: arrange entries of each column in order, and re-

move gaps 67
shP skew shape of tableau P 22

cotypex type[x, 1̂] 34
Atype[x, y] (ρ(Ak−1

y x,Ak
yx))k>0 28

Ctype[x, y] (ρ(Ck
xy, C

k−1
x y))k>0 28

ftype f (type[fl, fl], type[fl, fl+1], . . . , type[fl, fh]) 45
ftypex f (type[x, fl], type[x, fl+1], . . . , type[x, fh]) 45
itypef (type[fi, fj])0≤i≤j≤n 76

itypeP (S(λ(j) − λ(i)))l≤i≤j≤h 102
type[x, y] type of interval in a semi-primary lattice 34

typex type[0̂, x] 34
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vlen vertical strip length 152
Z {0,±1,±2, . . .}

Fibonacci lattice notation.
x ∧ y greatest lower bound in Z(r) 169
x ∨ y least upper bound in Z(r) 169

x ≤F y x ≤ y in F ib(r) 165
x ≤Z y x ≤ y in Z(r) 165
x <·1 y x = 2kα and y = 2k1iα in Z(r) 165
x <·2 y x = 2k1iα and y = 2k2α in Z(r) 165
x <·1∗ y y = x1 in Z∗ 172
x <·2∗ y x = α11m and y = α21m in Z∗ 172
κ+(x) number of upper covers of x 165
κ−(x) number of lower covers of x 165
µ, ν, τ decomposition of a pair of words 166
F ib(r) one of the Fibonacci lattices 165
Z(r) one of the Fibonacci lattices 165
Z∗ restriction of F ib(1) 172

Operations on flags.

flag g low(g) high(g)
f=(fl, fl+1, . . . , fh) l h
∂f=(fl+1, . . . , fh) l + 1 h
df=(fl, . . . , fh−1) l h− 1
Cf=(Cflfl, . . . , Cflfh) l h
Cxf=(Cxfl, . . . , Cxfh) l h
Af=(Afhfl, . . . , Afhfh) l h
Axf=(Axfl, . . . , Axfh) l h
f∗=(f∗h , . . . , f

∗
l ) n− h n− l

f ∨ x=(fl ∨ x, . . . , fh ∨ x) l h
f ∧ x=(fl ∧ x, . . . , fh ∧ x) l h

fs= saturate f l h
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Tableau games.

LR-sequences of adjacent elements 66
A delete rowends, prepend •’s 103

C : ftype f 7−→ ftypeCf delete first column 103, 117
C : ftype0̂ f 7−→ ftype0̂C0̂f

CL, CL̃ : ftype f 7−→ ftypeAf 157

∆, ∆̃ : ftype f 7−→ ftype ∂f elementary evacuation step 72, 76, 116
∂ : ftype0̂ f 7−→ ftype0̂ ∂f l + 1 7→ • 116
∂ : ftype f 7−→ ftypefl ∂f

Dc, D̃c : ftype f 7−→ ftype(f ∧ x) Robinson-Schensted deletion step 126
fl ≤ x <· fh and c = λ/(type[fl, x])

Dc, D̃c : ftype0̂ f 7−→ ftype0̂(f ∧ x) x <· fh and c = λ/ type x

D∗c , D̃∗c : ftype f 7−→ ftype(f ∨ x) transposed R-S deletion step 137
x ·> fl and c = λ/(type[fl ∨ x, fh ∨ x])

D∗c , D̃∗c : ftype0̂ f 7−→ ftypex(f ∨ x) x ·> 0̂ and c = λ/ type[x, fh ∨ x]
d : ftype f 7−→ ftype df remove cells with h 103, 117
d : ftype0̂ f 7−→ ftype0̂ df

ev, ẽv : ftype f 7−→ ftype f∗ Schützenberger’s evacuation 121
evλ, ẽvλ : ftype0̂ f 7−→ ftype0̂∗ f

∗ 121

Ic, Ĩc : ftype0̂ f 7−→ ftype0̂(f ∨ x) internal insertion 140

x ·> 0̂ and c = typex/ type fl
j, ̃ : ftype0̂ f 7−→ ftype f jeu de taquin 115

jc, ̃c : ftype0̂ f 7−→ ftypex f jeu de taquin slide 112

x ·> 0̂ and c = type[0̂, fl]/ type[x, fl]

L, L̃ : ftype0̂ f 7−→ ftype0̂Af leftward vertical strip game 145

R, R̃ : ftype0̂ f 7−→ ftype0̂Cf rightward vertical strip game 150

S, S̃ : ftype f 7−→ ftype fs saturate a row and column weak tableau

S, S̃ : ftype0̂ f 7−→ ftype0̂ f
s 118

S−1 : ftype fs 7−→ ftype f unsaturate 120
S−1 : ftype0̂ f

s 7−→ ftype0̂ f

Games G are deterministic, and follow the same rules as the ordinary game by that
name when such a game was already known. Games G̃ are nondeterministic, with
many possible outcomes, among which is G. Most maps are uniform (see Section 5.3),
so composition of flag operators induces composition of the deterministic games. The
only exceptions are S (similar to uniform, see Section 6.8); Dc and D̃c (generic but not
uniform); Ic (neither generic nor uniform); and A and LR-sequence transformations
(tableau games describing transformations of a different nature than the others).
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Part I. Background

1. Introduction

An integer partition of n is a weakly decreasing sequence of nonnegative integers,
λ1 ≥ · · · ≥ λk, whose sum is n. It may be represented by a diagram consisting of left
justified rows of boxes, where the ith row from the top has λi boxes. Young’s lattice
is the set of all partitions ordered by µ ≤ λ iff the diagram of µ is contained in the
diagram of λ. A standard tableau of shape λ is a filling of the boxes of the diagram
of λ with the numbers 1, . . . , n so that each row increases from left to right, and each
column increases from top to bottom. Robinson, Schensted, and others created an
algorithmic bijection between ordered pairs of standard tableaux of the same shape
with entries 1, . . . , n, and permutations of 1, . . . , n. Schützenberger introduced an
involution ev on standard tableaux of any given shape, also algorithmic in nature; a
good exposition of these algorithms may be found in Sagan [22]. The purely algo-
rithmic Robinson-Schensted map was found by Steinberg [29] to describe naturally
certain properties of the flag variety of all subspaces of V fixed by a given nilpotent
transformation N , where V is a vector space over an infinite field. Hesselink [10] and
van Leeuwen [31] found that ev naturally describes other properties in the same flag
variety.

To any pair W1 ⊂ W2 of N-invariant subspaces, we may associate an integer parti-
tion called the type of the quotient W2/W1, by examining the Jordan canonical form
of the action of N on the quotient W2/W1; it is a block sum of matrices with 1’s on
the main diagonal and the diagonal just above it. The lengths of the main diagonals,
sorted into decreasing order, form an integer partition, denoted type(W2/W1) or in
lattice terms, type[W1,W2]. Any subinterval [W ′

1,W
′
2] (i.e., W ′

1,W
′
2 are N-invariant

and W1 ⊆ W ′
1 ⊆ W ′

2 ⊆ W2) has a smaller type in Young’s lattice. Given a saturated
flag 0 = W0 ⊂ W1 ⊂ · · · ⊂ Wn = V of N-invariant subspaces of V , form a chain
of increasing partitions in Young’s lattice: type(W0/0), . . . , type(Wn/0). This chain
can be encoded as a standard Young tableau by filling the square added in the ith
term with i. The tableau so obtained is called the type of the flag. The cotype of the
flag is the tableau encoding the chain of partitions type(V/Wn), . . . , type(V/W0); van
Leeuwen showed that, in the Zariski topology, the generic cotype of a flag of type P is
ev(P ). The relative position of two flags in a modular lattice is a permutation that
measures the distance between two flags; the higher the permutation is in the Bruhat
order, the farther apart the flags are. Steinberg showed that, in the Zariski topology,
the generic relative position of flags of type P and Q is the same permutation that
the Robinson-Schensted algorithm associates with the pair (P,Q).

A semi-primary lattice is a modular lattice of finite height in which, for every
join-irreducible x, the interval [0̂, x] is a chain, and for every meet-irreducible x, the
interval [x, 1̂] is a chain; see Jónsson and Monk [13] (for background on lattices see
Stanley [27]). A q-regular semi-primary lattice is a semi-primary lattice in which
every interval of length 2 is either a chain or has exactly q+1 atoms. The lattice of N-
invariant subspaces of a vector space over any field (not only the complex numbers)
is a semi-primary lattice, and if the field is finite of order q, it is q-regular. The
lattice of subgroups of a finite abelian p-group is another semi-primary lattice, and
is p-regular. As with the first example, an integer partition may be assigned to any
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interval in the lattice; the quotient of two groups is isomorphic to a product of cyclic
p-groups, Z/pλ1 × · · · ×Z/pλk , and if the λi are arranged in weakly decreasing order,
they form the integer partition corresponding to the type of the quotient. There is
a lattice theoretic definition of this partition for all semi-primary lattices, coinciding
with the partitions given in these two cases: for an interval [x, y], express y as the
join of independent join-irreducibles over x (the meet of any one with the join of the
others is x). Sort the ranks (as measured in [x, y]) of these irreducibles into weakly
decreasing order to obtain a partition. This partition turns out to be independent
of what independent join-irreducibles were chosen, and is taken as the definition of
type[x, y].

Lattices and Combinatorial Algorithms. Although objects that are instances
of semi-primary lattices have been studied at length, they have not generally been
considered as semi-primary lattices, and the results about them do not always im-
mediately apply to other semi-primary lattices. The generic flag cotype and relative
positions described previously do not apply if the field is not infinite, because the
notion of “genericity” and the proofs of these results are critically dependent on the
Zariski topology. We must reformulate the problems and find new methods of proof
if we are to solve them in the wider context of semi-primary lattices. We consider
probabilistic and enumerative analogues and degenerate cases.

For q-regular semi-primary lattices, a probabilistic analogue of Hesselink and van
Leeuwen’s result is that all but a fraction O(q−1) of the flags of type P have cotype
ev(P ) (see Theorem 5.14). An enumerative extension is the following empirical ob-
servation, verified for certain cases: the number of flags of type P whose cotype is
Q is often a polynomial in q, and the degree of this polynomial is maximized when
Q = ev(P ). We describe a refinement of these polynomials that allows us to analyze
the degenerate behavior of flags in semi-primary lattices. Denote a saturated flag
by f = (f0 <· · · · <· fn). Given partitions Λ = (λ(ij)) (where 0 ≤ i ≤ j ≤ n) the
number of flags in a q-regular semi-primary lattice whose interval type table is
type[fi, fj] = λ(ij) is often a polynomial in q depending only on the partitions Λ, and
on no further structure of the lattice; in particular, the polynomials are the same
for abelian subgroup lattices and invariant subspace lattices. (In the case of invari-
ant subspaces over an infinite field, the dimension of the closure of the set of flags
achieving this type table equals the degree of this polynomial, but any meaning the
lower order terms might have is lost.) This polynomial generalizes Hall polynomials
(see Macdonald [16] for a comprehensive treatment), which may be used to count the
number of flags in which only certain intervals’ types are specified. These polynomials
have been computed for all arrays Λ with n ≤ 8 (see Appendix A), and for a class of
arrays that includes all those occurring for lattices whose type has two columns (see
Section 5.6).

The Fibonacci Lattice. Fomin [4, 5] has generalized the Robinson-Schensted
algorithm from standard Young tableaux, which encode chains in Young’s lattice, to
chains in certain other lattices. One such lattice is the Fibonacci Lattice Z(r),
introduced by Stanley [28]. It consists of words from the alphabet {11, . . . , 1r, 2},
in which y covers x iff some 1i in x preceded only by 2’s is changed to a 2, or a 1i
is inserted in a position preceded only by 2’s. Fomin bijectively associates permuta-
tions in Sn to pairs of saturated chains in Z(1) from 0̂ to equal elements of rank n.

12



This is a direct analogue of the Robinson-Schensted algorithm in Young’s lattice. In
Section 9, we introduce strongly modular lattices, the class of modular lattices
whose complemented intervals all have height at most 2, of which Z(r) is an example.
We study this in Section 9. Steinberg’s result about the Robinson-Schensted algo-
rithm for invariant subspace lattices over infinite fields has an analogue for strongly
modular lattices: the relative position of two flags is bounded above in the Bruhat
order by a variation of Fomin’s Robinson-Schensted algorithm for Z(1) applied to the
flags’ types, where the types are chains of integer compositions given by a generalized
lattice interval type defined in Section 3.3. For Z(r), the number of pairs of flags of
prescribed types in a prescribed relative position is a polynomial in r, whose degree
is maximized when the relative position is the same permutation assigned given by
the modified Robinson-Schensted algorithm. Fomin does not have an analogue of
Schützenberger’s evacuation for Z(r), but there is an analogue of the interval type
table for strongly modular lattices. In Z(r), the number of ways of achieving a par-
ticular interval type table is a polynomial in r, and there is a generic interval type
table for flags of a given type.

Overview. Part I includes this introduction, and continues with a thorough
grounding in the required background on lattices, partitions, and tableaux.

In Part II, we develop semi-primary lattices, describe their basic properties, rep-
resentation, enumeration, and prior work on them. In Section 3, we introduce new
lattice operators A and C that generalize kerN and NV in invariant subspace lat-
tices, or socleG and pG for p-subgroup lattices, to discrete modular lattices whose
complemented intervals have finite length. This includes semi-primary lattices and
the Fibonacci lattice. Integer compositions, coinciding with the interval type previ-
ously defined for semi-primary lattices, can be assigned to any interval in terms of
these operators A and C. These generalized interval types, and the new operators,
are studied in a general setting.

In Section 4, we develop the fundamentals of semi-primary lattices. We begin in
Section 4.1 by developing them essentially as Jónsson and Monk [13] did, but with ties
to the new lattice operators. We also establish that the type of an interval is larger
(in Young’s lattice) than the type of any subinterval. In Section 4.2, we introduce
several new characterizations of semi-primary lattices: they may be characterized by
lattice polynomials, rank equations, and local conditions in the lattice, in much the
same way that modular lattices can. They also may be characterized in terms of
properties of the generalized lattice type. In Section 4.3, we discuss what is known
about representing many semi-primary lattices as submodule lattices.

In Sections 4.4–4.5, we introduce enumeration in semi-primary lattices. The num-
ber of ways to achieve various configurations of elements is often a polynomial in
the parameter q described previously. In Section 4.6, we completely characterize and
enumerate complemented elements in semi-primary lattices, generalizing what was
already known for particular cases.

The notion of a basis in a vector space or matroid has a counterpart in semi-
primary lattices. In Sections 4.7–4.8, we enumerate such bases, determine when
different elements have similar bases, and analyze lattice polynomials whose variables
are elements of a basis.
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The Littlewood-Richardson sequence of an element is a statistic introduced by
Green [8] as a means of computing Hall polynomials. In Section 4.9, we describe
Hall polynomials, and then in Sections 4.10–4.11, we describe new properties of these
statistics: how these statistics change for adjacent elements; using them to determine
the most and least likely cotype of an element given its type; and using them to
determine the types between certain pairs of elements in a flag.

The type of a flag is the tableau encoding the chain of partitions that are the types
of the elements in the flag. In Part III we discuss how various operators transform flag
types. First, in Section 5, we look at intervals between elements of a flag. We describe
Schützenberger’s evacuation algorithm, the connection Hesselink and van Leeuwen
established between it and the generic cotype of a flag of specified type in invariant
subspace lattices over infinite fields, and then establish the probabilistic counterpart
for it. We then describe an algorithm for computing how many flags have particular
interval type tables (computer runs of which are summarized in Appendix A), and
conclude with a specific formula for this polynomial for a large class of interval type
tables, including all those occurring in lattices whose type has two columns.

In Section 6, we consider many more operations on flags. Given a flag of type P
and an operator φ, the flag φ(f) can usually have many types, but a particular one is
the most common. The ordinary evacuation, jeu de taquin, and Robinson-Schensted
games are among those that describe the most common types associated with certain
operators. Nondeterministic variants of these games describe other possible values of
the type: the ordinary rules of these games are modified to allow choices of several
moves at each step, one of which is the usual move. We enumerate the number of
pairs of flags (f, φ(f)) where f and φ(f) have prescribed types. We show how compo-
sition of flag operators leads to composition of tableaux games, and determine when
composition of the deterministic games yields the most likely value of the composi-
tion of the corresponding flag operators. All these games are for saturated flags, so in
Section 6.8, we describe a canonical way to transform games on standard tableaux to
games on row and column weak tableaux, reflecting how the corresponding operators
behave on nonsaturated flags. This transformation generalizes that of Knuth [15] for
the Robinson-Schensted algorithm on semistandard tableaux.

In Section 7, we describe the Robinson-Schensted correspondence and its relation
to relative positions of flags. We are not as successful in providing probabilistic and
enumerative counterparts of Steinberg’s results as we were for Hesselink and van
Leeuwen’s in Section 5, but we present partial results and conjectures.

In Section 8, we introduce new tableau games, similar in spirit to the Robinson-
Schensted and evacuation algorithms. Instead of sliding or bumping numbers entries
along a single path as is done in the other games, a vertical strip of holes is formed
in a tableau and numbers slide into and out of it. These games and their nonde-
terministic versions describe how the new operators A and C behave on flags. A
connection between these games and evacuation and the jeu de taquin is discussed in
Section 8.3. A generalization of the interval type table polynomials based on these
games is described in Section 8.5.

Finally, in Part IV, we discuss strongly modular lattices, including Fibonacci lat-
tices and semi-primary lattices whose type has two rows. The Fibonacci lattice Z(r)

14



was defined by Stanley [28] in terms of its cover relations. In Section 9.1, we give
a simple direct test, apparently new, to determine if two elements are comparable,
without having to exhibit a chain of elements from one to the other satisfying this
cover relation. We then compute the type of any interval in Z(r); our generalized
lattice type yields two different integer compositions, whose parts are 1’s and 2’s, as
types of intervals in strongly modular lattices.

While Young’s lattice describes the relation between the type of an interval and
the type of its subintervals in a semi-primary lattice, Z(1) and a restriction of F ib(1)
describe the analogous problem in strongly modular lattices: lowering the upper
boundary of an interval causes the type to decrease in one of these, and raising
the lower boundary causes the type to decrease in the other. We describe this in
Section 9.2. Next, in Section 9.3, we develop interval type tables for strongly modular
lattices, by considering these properties of types of subintervals. We determine the
“generic” interval type table of a flag given its type in a strongly modular lattice, and
we quantify this for Z(r) by computing how many flags achieve each possible interval
type table. It is a polynomial in r, and the polynomials for the “generic” interval
type tables have the maximal degrees.

We conclude with an analysis of relative positions of flags in strongly modular
lattices. A variation of Fomin’s version of the Robinson-Schensted game in Z(1) de-
scribes the maximum relative position of flags in any strongly modular lattice, and a
nondeterministic variant of the game gives the other possible relative positions. As
a consequence, the conjectured maximum relative position for semi-primary lattices
does in fact hold for two row semi-primary lattices. In Z(r), we compute polynomials
for how many pairs of flags have specified types and relative positions, and these poly-
nomials have maximum degree precisely when the relative position is the permutation
given by this modified Robinson-Schensted algorithm on the types of the flags.

2. Review of combinatorial objects

2.1. Posets. Our notation and definitions for partially ordered set and lattice no-
tions are those in Stanley [27]; consult that or Dilworth [2] for further information.

A partially ordered set P , or poset, is a set (also denoted P by abuse of notation)
with a binary relation ≤ satisfying three axioms.

Reflexive: For all x ∈ P , we have x ≤ x.
Antisymmetric: If x ≤ y and y ≤ x, then x = y.
Transitive: If x ≤ y and y ≤ z, then x ≤ z.

The notation x < y means x ≤ y and x 6= y, while y ≥ x means x ≤ y, and y > x
means x < y. When dealing with multiple posets, or multiple partial orders on the
same ground set, use subscripts, such as ≤P , or other special symbols, to specify
which order is to be used. The relation ≤ is weak while < is strict. Elements x and
y of P are comparable if either x ≤ y or y ≤ x, and are incomparable otherwise.

Two posets P and Q are isomorphic if there is a bijection φ : P → Q such that
x ≤ y in P iff φ(x) ≤ φ(y) in Q.

An induced subposet of P (often abbreviated to subposet) is a subset Q of the
elements of P with the order, if x and y are in Q then x ≤ y in Q iff x ≤ y in P . A
particular subposet of interest is the closed interval [x, y] = { z ∈ P : x ≤ z ≤ y }
with the order induced by P , defined for all x, y with x ≤ y in P .
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We say that y covers x in P if x < y and no element z ∈ P satisfies x < z < y.
Equivalently, we say x is covered by y, that x is a lower cover of y, and that y
is an upper cover of x. This may be written as y ·> x or x <· y. The notations
y ·≥ x and x ≤· y mean that either x = y or x <· y. For integers x, y we have x <· y iff
x = y − 1, and x ≤· y iff x = y or x = y − 1.

A poset P has a minimum element 0̂ if there exists an element 0̂ ∈ P such
that x ≥ 0̂ for all x ∈ P . Dually, P has a maximum element 1̂ if there exists an
element 1̂ ∈ P such that x ≤ 1̂ for all x ∈ P . When dealing with multiple posets,
use subscripts, 0̂P and 1̂P , to differentiate these elements. For example, 0̂[x,y] = x and

1̂[x,y] = y. When dealing with subposets Q of P , denote the minimum and maximum

elements of P by 0̂ and 1̂, and those of Q by 0̂Q and 1̂Q. An element x is minimal if
for no y does y < x hold, and an element x is maximal if for no y does y > x hold.

A flag in a poset is a sequence of elements f = (fl, fl+1, . . . , fh) with fl ≤ fl+1 ≤
· · · ≤ fh. To indicate a more specific relationship between consecutive elements in
a flag, such as equality, strictly less than, or weakly or strongly covered by, replace
the commas with this relationship. A saturated flag has the form f = (fl <· fl+1 <·
· · · <· fh) and a multisaturated flag has the form f = (fl ≤· fl+1 ≤· · · · ≤· fh).
We may need to be concerned with the indices of the elements of a flag, so define
low(f) = l and high(f) = h. Define operators that remove the bottom and top
elements of a flag by ∂f = (fl+1, fl+2, . . . , fh) and df = (fl, fl+1, . . . , fh−1). A chain
is synonymous with a flag.

The length of a saturated chain (fl, . . . , fh) is h − l. A poset is graded if
whenever x ≤ y, all saturated chains from x to y have the same length, which is
denoted ρ(x, y). In posets with 0̂, the rank of x is ρ(x) = ρ(0̂, x), and in posets
with 1̂, the corank of x is ρ̄(x) = ρ(x, 1̂). A graded poset has finite length if all
saturated chains have finite length. This does not require the poset to have a finite
number of elements; the subspaces of a finite dimensional vector space, ordered by
subspace inclusion, form a poset (actually a modular lattice, defined below) of finite
length, but if the field is infinite, there will be an infinite number of subspaces (in
dimensions larger than 1). From now on, we will only consider graded posets in which
every closed interval has finite length, even if the poset itself is not of finite length.

2.2. Lattices. If x and y are in a poset P , an upper bound is some z ∈ P such
that z ≥ x and z ≥ y. A least upper bound of x and y is an upper bound z such
that every upper bound w satisfies z ≤ w. In general, neither an upper bound nor
a least upper bound exists, but if a least upper bound exists, it is unique, and is
denoted x∨ y, which is read “x join y.” Dually, the greatest lower bound, if it exists,
is denoted x ∧ y, which is read “x meet y.” A lattice is a poset for which every pair
of elements has a least upper bound and a greatest lower bound. Alternately, we
may define a lattice as a set with a pair of binary operations ∧ and ∨, obeying the
following laws.

Associative: (x ∨ y)∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z).
Commutative: x ∨ y = y ∨ x and x ∧ y = y ∧ x.
Idempotent: x ∨ x = x ∧ x = x.
Absorption: x ∧ (x ∨ y) = x = x ∨ (x ∧ y).
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The partial order description and the binary operation description can be recovered
from each other via x ∧ y = x iff x ∨ y = y iff x ≤ y. Because meet and join are
associative and commutative, any finite set of elements in a lattice has a meet and
a join. If all infinite sets of elements also have meets and joins, a lattice is called
complete. In particular, all lattices of finite length are complete.

All lattices of finite length have 0̂ and 1̂.

The dual of a poset (P,≤) is (P ∗,≤∗), with the same ground set as P but the
reverse order. For x ∈ P , let x∗ be inclusion of x into P ∗. The order is x∗ ≤∗ y∗ iff
y ≤ x. We have 0̂∗ = 1̂ when either exists, and 1̂∗ = 0̂ when either exists. In a lattice,
x∗∨∗ y∗ = (x∧ y)∗ and x∗∧∗ y∗ = (x∨ y)∗. Applying an operator, definition, or other
notion to the dual of a poset is referred to as dualizing that notion, and often, we can
dualize theorems by replacing every notion in its statement and proof with the dual
notion.

In any lattice, a nonzero element x is join-irreducible if it cannot be expressed
as x = y ∨ z with y < x and z < x. The element 0̂ is not considered to be a join-
irreducible. A local condition for an element to be join-irreducible is that it covers
precisely one element. Meet-irreducibles are defined dually as elements x 6= 1̂
which cannot be expressed as x = y ∧ z with y > x and z > x. A local condition for
an element to be meet-irreducible is that it is covered by precisely one element.

A special type of join-irreducible is an atom, which is an element that covers 0̂.
The atoms of an interval [x, y] are the elements of the interval that cover x. Dually,
a coatom is any element covered by 1̂, and a coatom of an interval [x, y] is any
element of the interval that is covered by y. A lattice is atomic if every element can
be expressed as the join of atoms, and dually, is coatomic if every element can be
expressed as the meet of coatoms.

A complement to an element x in a lattice is some y with x∧y = 0̂ and x∨y = 1̂.
While 0̂ and 1̂ are always unique complements to each other, it is not always true that
elements have complements, or that complements are unique when they do exist. A
complemented lattice is a lattice in which all elements possess complements.

There are several classes of lattices of interest in combinatorics. An upper semi-
modular lattice is a lattice in which all closed intervals have finite length, and the
following local condition is satisfied: if x and y both cover x ∧ y, then x ∨ y covers
both x and y. If a lattice is of finite length, it is upper semimodular iff it is graded
and its rank function satisfies ρ(x) + ρ(y) ≥ ρ(x ∧ y) + ρ(x ∨ y) for all x, y in the
lattice. Lower semimodular lattices are defined dually by inverting the meets, joins,
and inequalities.

A modular lattice is a lattice that is both upper and lower semimodular. That is,
x ∨ y covers both x and y iff both x and y cover x ∧ y. A lattice of finite length is
modular iff it is graded and its rank function satisfies ρ(x)+ρ(y) = ρ(x ∧ y)+ρ(x ∨ y).
In addition to this local condition and the rank equation, there is also a lattice identity
that applies to all lattices without any finiteness restrictions: a lattice is modular iff
x ≤ z implies x ∨ (y ∧ z) = (x ∨ y) ∧ z.

A distributive lattice is a lattice in which all x, y, z satisfy either of the equivalent
equations x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Every
distributive lattice is modular, but not conversely. For example, the lattice of all
subsets of a set, ordered by set inclusion, has union and intersection as meet and join,
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and is distributive. However, the lattice of all subgroups of an abelian group, ordered
by subgroup inclusion, is modular but usually not distributive.

We hope to add semi-primary lattices to this list. We will show that in addition
to the classical definitions of semi-primary lattices, they, too, may be defined by
local conditions, rank equations, and lattice identities similar to the ones used for the
preceding classes of lattices.

2.3. Properties of modular lattices. The following facts about modular lattices
will be frequently used.

Lemma 2.1. For any x, y in a modular lattice L, there is an isomorphism from [x∧
y, y] to [x, x∨y] preserving meets and joins. The intervals are said to be perspective.
The isomorphism is given by z 7→ z ∨ x, and its inverse is z 7→ z ∧ y. Conversely,
any lattice of finite length in which these maps are inverse for all x, y is modular.

Proof. Let x, y be in a modular lattice L. For any z ∈ [x ∧ y, y], the composition of
the two maps given is (z ∨ x)∧ y. By the modular law, this equals z ∨ (x∧ y), which
is z, since everything in this interval is at least x∧ y. Similarly, for z ∈ [x, x∨ y], the
composition of the maps in the other order is the identity.

For the detailed proof of the converse, consult any reference on lattice theory, such
as [2, pp. 22–23] (which actually proves it in a class of lattices called compactly
generated lattices that is broader than finite length lattices).

Lemma 2.2. Let [x, y] be an interval of finite length in a modular lattice L. For any
z ∈ L such that x, y, z lie in an interval of finite length, ρ(x ∧ z, y ∧ z) ≤ ρ(x, y), and
if equality holds, [x∧ z, y ∧ z] and [x, y] are perspective. Dually, the same statements
apply with meets replaced by joins.

Proof. Let w = y ∧ z, so that [x ∧ z, y ∧ z] = [x ∧ w,w] ∼= [x, x∨ w]. Then x ∨ w ≤ y
because x, w ≤ y, so the interval [x, x∨w] is contained in [x, y] and hence has weakly
smaller length. If the lengths are the same then x ∨ w = y so [x ∧ z, y ∧ z] and [x, y]
are the perspective pair [x ∧ w,w] ∼= [x, x ∨ w].

The dual statements are proved similarly.

Lemma 2.3. In a modular lattice, if y ·> x, then for any z such that x, y, z are
contained in an interval of finite length, either

(1) y ∧ z ·> x ∧ z and y ∨ z = x ∨ z, or
(2) y ∧ z = x ∧ z and y ∨ z ·> x ∨ z.

Proof. All ranks are relative to the minimal element of a finite length interval con-
taining x, y, z. By the modular law,

ρ(y ∧ z) + ρ(y ∨ z) = ρ(y) + ρ(z)
ρ(x ∧ z) + ρ(x ∨ z) = ρ(x) + ρ(z)

so (ρ(y ∧ z)− ρ(x ∧ z)) + (ρ(y ∨ z)− ρ(x ∨ z)) = 1.

The two parenthesized expressions are nonnegative, so one is 0 and the other is 1.

Lemma 2.4. A closed interval in a modular lattice is itself a modular lattice.
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Proof. The equation defining a modular lattice,

x ∨ (y ∧ z) = (x ∨ y)∧ z when x ≤ z,
is obeyed for x, y, z in any subinterval of the lattice, because the values of ∧ and ∨
do not change.

Theorem 2.5. The following are equivalent for modular lattices L of finite length.

(1) 1̂ is the join of atoms.
(2) 0̂ is the meet of coatoms.
(3) L is atomic.
(4) L is coatomic.
(5) L is complemented.

Proof. Let x ∈ L. Any set {a1, . . . , an} of atoms of minimal cardinality such that
a1 ∨ · · · ∨ an = x has n = ρ(x), because in the successive joins 0̂ <· a1 ≤· a1 ∨ a2 ≤·
· · · ≤· a1 ∨ · · · ∨ an = x, if any ≤· is =, we can eliminate the atom introduced in the
join to its right without affecting the value of any joins. Such a set of S atoms is
called an atomic basis of x. If Y ⊆ S and y is the join of all elements of Y , then
ρ(y) = #Y , for if it is smaller we can again eliminate atoms from S without affecting
its join. If Y and Z are subsets of S with joins y and z, then ρ(y ∨ z) = #(Y ∪Z) so
ρ(y ∧ z) = ρ(y) + ρ(z) − ρ(y ∨ z) = #(Y ∩ Z), and y ∧ z is the join of the atoms of
Y ∩ Z (for it is bounded below by that join, and has the same rank).

(1)⇒ (2): Let a1, . . . , an be an atomic basis of 1̂. Then a1∨· · ·∨ai−1∨ai+1∨
· · · ∨ an (with i = 1, . . . , n) are coatoms whose meet is 0̂.

(1)⇒ (3): Assume (3) fails, and let x > 0̂ be a minimal element not express-
ible as the join of atoms. If x covers at least two elements, it is the join of the
atoms of which those two elements are joins, so x can only cover one element,
and thus is a join-irreducible; denote the unique lower cover y.

Let a1, . . . , ak be an atomic basis of y, and b1, . . . , bn be an atomic basis of
1̂. Let ym = y ∨ b1 ∨ · · · ∨ bm, so that y = y0 ≤· · · · ≤· yn = 1̂. Extend the
sequence a1, . . . , ak to an atomic basis a1, . . . , an of 1̂ by including those bm
with ym−1 <· ym. Let z = ak+1 ∨ · · · ∨ an, so y ∧ z = 0̂.

Since x ∨ z ≥ y ∨ z = 1̂, in fact x ∨ z = y ∨ z. Since x ·> y, it follows that
x∧ z ·> y∧ z = 0̂ by Lemma 2.3. Since the only element less than or equal to
x not also less than or equal to y is x itself, x = x∧z and y = y∧z = 0̂. Thus,
x is an atom, contradicting the assumption that it is not a join of atoms.

(3)⇒ (5): The maximum element 1̂ has complement 0̂. Now let x < 1̂ have
an atomic basis a1, a2, . . . , ak. Choose atoms ak+1, . . . , am with m maximal so
that x <· x∨ak+1 <· · · · x∨ak∨· · ·∨am, and call the final join y. If y 6= 1̂, then
since the lattice is atomic, 1̂ is the join of all atoms of the lattice, so there
is some atom am+1 6≤ y extending the sequence, contradicting maximality of
m. Thus, y = 1̂, m = n, and x has complement ak+1 ∨ · · · ∨ an.

(5)⇒ (1): Suppose L is complemented and has length n. Form a maximal
sequence of atoms a1, a2, . . . , ak so that a1 <· a1 ∨ a2 <· a1 ∨ a2 ∨ a3 <· · · · .
Since the lattice has length n, we must have k ≤ n. Suppose k < n. Let
x = a1∨· · ·∨ak, and choose a complement x′ of x. Then x′ has rank n−k ≥ 1,
so there is an atom ak+1 ≤ x′. Then x∧ak+1 ≤ x∧x′ = 0̂, so x∧ak+1 = 0̂ and
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ρ(x ∨ ak+1) = ρ(x) + ρ(ak+1)− ρ(x ∧ ak+1) = k+ 1− 0 = k+ 1, contradicting
maximality of the sequence. Thus k = n, so 1̂ is the join of atoms.

(2)⇒ (4)⇒ (5)⇒ (2)⇒ (1): Dualize (1)⇒ (3)⇒ (5)⇒ (1)⇒ (2).

2.4. Compositions, partitions, and tableaux. A (strong) composition of a
positive integer n is a sequence of positive integers whose sum is n. For example, the
compositions of 3 are (1, 1, 1), (1, 2), (2, 1), and (3). A weak composition may have
parts that are 0, and so we may insert any number of zeros into these sequences.

A partition of a nonnegative integer n is a sequence λ = (λ1, . . . , λk) of weakly
decreasing nonnegative integers whose sum is n. We write λ ` n or n = |λ| = ∑

i λi.
For example, the partitions of 3 are (1, 1, 1), (2, 1), and (3). For convenience, we allow
both strong compositions and partitions to have any number, finite or infinite, of zeros
appended to them, and we consider two strong compositions or partitions with the
same sequence of nonzero entries but differing in the number of zeros at the end to be
equivalent; for example, (4, 3, 3, 2) = (4, 3, 3, 2, 0) = (4, 3, 3, 2, 0, 0) = · · · . In instances
where all entries are single digits, we may also drop parentheses and commas, yielding
4332 in this example. An exponent indicates that an entry is repeated that number of
times consecutively, so that (4, 32, 2, 10) = (4, 3, 3, 2). The number of parts of λ equal
to i is called the multiplicity of i, and is denoted mi(λ), or mi when the partition λ
is known from context. The nonzero terms are called the parts of λ, and the number
of nonzero terms is called the length of λ. For λ = (4, 3, 3, 2), we have length 4;
multiplicities m2 = m4 = 1, m3 = 2, and mi = 0 otherwise; and |λ| = 12. We apply
the same notational conventions concerning parentheses, commas, exponents, trailing
zeroes, and the definition of length to arbitrary sequences and to strong compositions.
The unique partition of 0, strong composition of 0, and empty sequence, are denoted
∅.

The Young diagram of a composition or partition λ of n is a left-justified array
of n squares (also called cells) with λi squares in the ith row, while the Ferrers
diagram has dots in place of the squares. It may be viewed as a subset of P × P
(where P is the set of positive integers) using matrix coordinates, where (i, j) is the
cell at the ith row from the top, jth column from the left; the diagram consists of all
(i, j) ∈ P× P with j ≤ λi. For example, the Young diagram and Ferrers diagram of
(4, 3, 3, 2) are respectively

and

• • • •
• • •
• • •
• •

The same symbol λ will be used to denote both a sequence of integers and its corre-
sponding diagram.

The conjugate λ′ of a partition λ is the partition obtained by reflecting its diagram
about the main diagonal. For example, the conjugate of (4, 3, 3, 2) is (4, 4, 3, 1).
Clearly λ′′ = λ. While λi is the number of squares in the ith row of λ, the number of
squares in the jth column is λ′j . The rows that have squares in the jth column are
precisely those whose length is at least j, so λ′j = #{ i : λi ≥ j } (where #S is the
cardinality of set S). Hence, mj(λ) = λ′j − λ′j+1. Note that λ′1 is the length of λ.
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We define a partial order on compositions and partitions by µ ≤ ν iff µi ≤ νi for
all i, or equivalently, if the the cells of the diagram of µ are a subset of the cells of
the diagram of ν. We have (µ∨ ν)i = max {µi, νi} and (µ∧ ν)i = min{µi, νi}. In the
case of partitions, this partial order forms a lattice called Young’s lattice. From
the diagram interpretation of the order, it is clear that in Young’s lattice, µ ≤ ν iff
µ′ ≤ ν′.

The sum of two partitions or compositions µ and ν is µ+ν = (µ1 +ν1, µ2 +ν2, . . .).
It is obtained by appending the rows of ν to those of µ. The difference of two
compositions, µ− ν = (µ1 − ν1, µ2 − ν2, . . .), is well defined when ν ≤ µ. The union
µ ∪ ν of two partitions is obtained by adding together the multiplicities of the parts,
so mi(µ ∪ ν) = mi(µ) + mi(ν); equivalently, it is obtained by appending columns
of ν to the bottoms of those of µ, so for partitions we obtain µ ∪ ν = (µ′ + ν′)′.
Beware that this is completely different from the join µ ∨ ν. The concatenation of
two strong compositions or finite sequences x = (x1, . . . , xk) and y = (y1, . . . , ym), is
xy = (x1, . . . , xk, y1, . . . , ym).

For λ, µ ⊂ P×P, we define λ⊕µ = { c : c ∈ λ or c ∈ µ } as the ordinary set union
of these, and λ	µ = { c : c ∈ λ and c 6∈ µ } as the ordinary set difference. Typically,
λ will be a partition or composition and µ will be a single cell.

An inner corner of a partition λ is a cell of λ, which if removed would yield a
valid partition, and an outer corner is a cell not in λ, which if added to λ would
yield a valid partition. The inner and outer corners of (4, 3, 3, 2) are marked i and o
below.

i o
o

i
i o

o

For a partition λ, we define

n(λ) =
∑
i≥1

(i− 1)λi =
∑
i≥1

(
λ′i
2

)

as the number obtained by filling each square in the top row of λ with 0, each square
in the next row with 1, and so on, and then adding together all the numbers. The
middle expression is obtained by adding the numbers in each row and then adding
the row totals, while the right expression is obtained by adding the numbers in each
column, and then adding the column totals.

For partitions µ ≤ λ, we define a skew partition or skew shape λ/µ. It is simply
a pair of partitions. Its diagram is { (i, j) ∈ P× P : µi < j ≤ λi }. The diagram
is ambiguous because different pairs of partitions may yield the same diagram; for
example, λ/λ is always empty. The skew partition λ/∅ is identified with the ordinary
partition λ. For a skew partition λ/µ, define n(λ/µ) = n(λ)− n(µ).

A tableau of (partition or composition) shape λ is obtained from the Ferrers dia-
gram of λ by replacing the dots with numbers, or from the Young diagram by writing
numbers in the boxes. Occasionally we may fill the squares with other symbols. The
tableau of shape ∅ is denoted ∅. A skew tableau is similarly defined by filling in a
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skew partition. The plural of “tableau” is “tableaux.” Denote tableaux with upper-
case bold italic letters, P , and denote the shape λ or skew shape λ/µ by shP . Also
denote the outer shape λ by oshP .

A row strict tableau has the numbers strictly increasing from left to right on each
row: if the entry at cell (i, j) is aij then aij < ai,j+1, provided cells (i, j), (i, j + 1) ∈
λ/µ. A row weak tableau is similar with < replaced by ≤, and column strict and
column weak are similar but for columns. A standard Young tableau is row and
column strict with all numerical entries distinct; if the entries aren’t specified, assume
1, . . . , n, where n is the number of cells in the diagram. A semistandard tableau is
row weak and column strict. Here is a standard tableau and a semistandard tableau:

1 2 5 6
3 7 8
4

1 1 2 2
2 2 3
3 4

The hook length of cell (i, j) in a partition λ is h(i, j) = (λi − j) + (λ′j − i) + 1,
which is the number of cells of λ weakly right of (i, j) on the same row, or weakly
below it in the same column. The number of standard tableaux of shape λ is denoted
fλ, and may be computed by the well known Hook Formula, introduced by Frame,
Robinson, and Thrall [7, pp. 317–318]:

fλ =
n!∏

(i,j)∈λ h(i, j)
.

See also Sagan [22, pp. 91-97] for a survey of derivations of this formula. The number
of standard skew tableaux of shape λ/µ is denoted fλ/µ, and there is no similarly
elegant formula known for it.

A finite or infinite chain of partitions λ(l) ≤ λ(l+1) ≤ · · · may be represented by a
row and column weak skew tableau where the cells of λ(k)/λ(k−1) are filled with k, for
each k > l. The cells of the inner partition λ(l) are filled with • in the Ferrers diagram,
and either omitted or filled with • in the Young diagram. Whichever representation
is used, the entries in the cells of λl are considered to be •. For example, the chain
λ(3), . . . , λ(7)

< < = <

is represented by the Young tableau or the Ferrers tableau, respectively,

5
4 7

5 5
and

• • 5
• 4 7
5 5

A standard skew tableau on entries l + 1, l + 2, . . . , h is uniquely associated with a
saturated chain of partitions λ(l) <· · · · <· λ(h) and conversely.

We will often view tableaux and chains of partitions interchangeably, writing P =
(λ(l), . . . , λ(h)), because almost all the tableaux we consider will arise from such chains.
This is a skew tableau of shape λ(h)/λ(l). There is a minor ambiguity in this repre-
sentation. If λ(l) = λ(l+1) (respectively, λ(h−1) = λ(h)), the number l+ 1 (respectively,
h) will not appear in P , so the tableau representation of a chain in Young’s lattice
does not unambiguously determine the upper and lower indices used in the chain.
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When this is an issue, we define low(P ) = l and high(P ) = h (or high(P ) = ∞ if
the indices are unbounded).

In a tableau P where e occurs just once, let row(P , e) be the number of the
row containing e. Alternately, if P = (λ(l) ≤ · · · ≤ λ(h)), and λ(e−1) <· λ(e), define

row(P , e) as the unique value r for which λ(e−1)
r <· λ(e)

r . Also define rowk(P , e) = λ
(e)′

k+r,
which is the length of the column k columns right of e once all entries larger than e
are removed. Similarly, define col(P , e) to be the number of the column containing
e, and colk(P , e) to be the length of the row k rows below e when all entries larger
than e are removed. For example, in the tableau

P =
1 2 5 7
3 6 8
4 9 10

where λ(8) = (4, 3, 1) = (3, 2, 2, 1)′, we have row(P , 8) = row0(P , 8) = 2, and
row−2(P , 8) = 3; row−1(P , 8) = 2; row1(P , 8) = 1; and rowk(P , 8) = 0 for k > 1.
Also, col(P , 8) = 3; the values colk(P , 8) for k = −1, 0, 1 are 4, 3, 1; and colk(P , 8) = 0
for k > 1.
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Part II. Semi-primary lattices

3. Lattice types

3.1. Subgroup lattices, subspace lattices, and the Fibonacci lattice. We now
introduce examples of the lattices that will be studied in depth in this manuscript.

(1) Subgroup lattice. Let G be a finite abelian group. The collection L(G) of
subgroups of G, with the order H ≤ K iff H is a subgroup of K, forms a
modular lattice. The meet of two subgroups is their intersection, and the join
is the group generated by the two.

Any finite abelian p-group is isomorphic to a product of cyclic p-groups,

Z/pλ1Z× · · · × Z/pλkZ.
Sort the λi into weakly decreasing order to form a partition called the type
of G. Any quotient K/H of finite abelian p-groups is itself a finite abelian
p-group, and the interval [H,K] of L(G) is isomorphic to L(K/H). The type
of the interval [H,K] is the type of the group K/H, and this is less than the
type of G in Young’s lattice. The length of an interval of type µ is |µ|.

(2) Invariant subspace lattice. Let V be a finite dimensional vector space, and
N be a nilpotent transformation, that is, a linear transformation such that for
all vectors ~v ∈ V , we have Nk~v = 0 for sufficiently large k. A subspace W
of V is N-invariant iff NW is a subspace of W . The collection L(V,N) of all
N-invariant subspaces of V , ordered by subspace inclusion, forms a modular
lattice. The meet of two N-invariant subspaces is their intersection, and the
join is their span.

Because N is nilpotent, all the roots of its characteristic equation are 0. The
Jordan canonical form of N is a matrix that is the block sum of blocks with
the characteristic root 0 on the diagonal; 1 just above each entry on the main
diagonal; and 0 everywhere else. For example,

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


is the sum of two such blocks, one of length 4 and the other of length 3. Dif-
ferent bases of V might put these blocks in a different order, but the partition
formed by sorting these lengths into weakly decreasing order is an invariant of
N , called the type of N . This is the type of the lattice L(V,N).

If W ≤ X are two N-invariant subspaces of V , their quotient X/W has
an action induced by N . The lattice L(X/W,N) is isomorphic to the interval
[W,X] in L(V,N). The type of the interval [W,X] is the type of the lattice
L(X/W,N), and is a subpartition of the type of L(V,N) in Young’s lattice.
The length of an interval of type µ is |µ|.

Both L(G) and L(V,N) are instances of semi-primary lattices. We will prove
facts about semi-primary lattices through latticial means, without assuming
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they have a represention as a subgroup lattice or a subspace lattice. Such
proofs are called synthetic. The lattice structure admits no knowledge of the
elements of the group G, or the elements of the space V ; only the subgroups and
subspaces are known. We will sometimes provide alternate coordinate-based,
or analytic, proofs where such elements are known. The analytic proofs will
be based on the space L(V,N). When the type of L(V,N) is λ, we can choose
a basis of V with elements

eij with (i, j) ∈ λ, such that Nei1 = 0 and Neij = ei,j−1 when j > 1.

Since N is linear, this defines the action N on the whole space.
(3) The Fibonacci Lattice Z(r) (see [28]). Let r ∈ P. Form a poset Z(r)

on the set of all words from the alphabet {11, . . . , 1r, 2}, in which v covers u,
denoted v ·>Z u, if u is obtained from v by either deleting the leftmost 1 of v
(with any subscript) or by changing a 2 of v preceeded only by 2’s to a 1 (with
any subscript). So in Z(2), we have 2212211 ·>Z 22211 , 11212211, 12212211,
21112211, and 21212211.

This forms a modular lattice, which will be studied in Section 9.1. The rank
of an element in the lattice is the sum of the digits in the word, ignoring the
subscripts. Every complemented interval in this lattice has length at most 2:
we see that for any word x, all upper covers of x are also lower covers of 2x,
so all atomic intervals have length at most 2, and a modular interval of finite
length is atomic iff it is complemented.

3.2. New lattice operations A and C.

Definition 3.1. Let L be a lattice and x ∈ L. Let

Ax =
∨
y ·≥x

y

be the join of all elements covering x, or x if x is maximal, and let

Cx =
∧
y≤·x

y

be the meet of all elements covered by x, or x if x is minimal. If x ≤ z are both in
L, let

Azx =
∨

y: x≤·y≤z
y

be the join of all atoms in the interval [x, z], and

Cxz =
∧

y: x≤y≤·z
y

be the meet of all coatoms in [x, z]. These are well defined in any discrete lattice
where all complemented intervals have finite length. The operators A and C are dual
to each other.

We also define iterates of A and C: A0
yx = x and Ak+1

y x = Ay(Ak
yx), and similarly

for the unary form of A, and for both forms of C.
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This coincides with the Frattini element of a complete lattice [32, p. 214], which
is C 1̂ in our notation. However, we will consider properties of A and C as binary
operators, and the restriction that all complemented intervals have finite length will
yield certain properties not present in other complete lattices.

We now consider our three sample lattices.

(1) Subgroup lattice. Let

G = Z/pλ1Z× · · · × Z/pλkZ.
The atoms of L(G) are nonzero subgroups of G with no proper subgroups; they
are isomorphic to Z/pZ. The socle of G is the maximum elementary subgroup,
that is, the unique subgroup isomorphic to one of the form Z/pZ×Z/pZ×· · · .
It is the join of all the atomic subgroups. Explicitly, it is

socle(G) = pλ1−1Z/pλ1Z× · · · × pλk−1Z/pλkZ.

We have A0̂ is the socle of G, and for any subgroups H ≤ K of G, we have
AKH is the image in L(G) of the socle of K/H under the natural isomorphism
from L(K/H) to [H,K]. Thus,

Ar
KH = { g ∈ H : prg ∈ K } .

The coatoms of L(G) are those K for which G/K ∼= Z/pZ. Their meet is
CG = pG. For any subgroups H ≤ K of G, we have CHK is the image in
L(G) of pK/H under the natural isomorphism from L(K/H) to [H,K]. So

Cr
HK = H + prK.

(2) Invariant subspace lattice. The atoms of L(V,N) are the nonzero N-
invariant subspaces of V with no nonzero proper subspaces that are N-invariant.
If W ∈ L(V,N) and W 6= 0, then NW is a proper subspace of W because the
chain W ⊇ NW ⊇ N2W ⊇ · · · is 0 after a finite number of steps, and once a ⊇
is =, so are all further ones to the right. Thus, if W is atomic, it is a subspace
of the kernel of N . The atoms of L(V,N) are 1-dimensional subspaces of V
spanned by some vector from the kernel of N , and the join of all the atoms is
the kernel of N .

Let W ≤ X be N-invariant subspaces of V . Then AXW is the image in
L(V,N) of the kernel of N on X/W , and

Ar
XW = {~v ∈ W : N r~v ∈ X } .

The coatoms of L(V,N) are maximal proper subspaces of V . Their meet
is CV = NV . For N-invariant subspaces W ≤ X of V , we have CWX =
W + NX is the image in L(V,N) of NX/W under the natural isomorphism
from L(X/W ) to [W,X], and

Cr
WX = W +N rX.

(3) The Fibonacci Lattice Z(r). The operators A and C have no counterpart
in the prior theory of these lattices. Their values will be derived in full in
Section 9.1. We derive the values of the unary operators Ax and Cx here.
For any word x, if we insert a 1i in the leading sequence of 2’s, we can then
change it to a 2, while if we change the first 1i to a 2, we can then insert a 1i

26



following that change. So all upper covers of x are lower covers of 2x. As long
as either r > 1 or x > 0̂, there is more than one upper cover, and so the join
of all upper covers of x is Ax = 2x. When r = 1 and x = 0̂, the only upper
cover of x is 11, so Ax = 11.

Now consider Cx. If x has the form 1iy, then the only lower cover is y, so
Cx = y. If x has the form 2y, we see that y is a lower cover of all lower covers
of x, for we either delete the first 1i and then change the 2 preceding it to 1i,
or we change some initial 2 to a 1i and then delete that 1i, to obtain y. There
is always more than one lower cover unless r = 1 and x = 2, so Cx = y unless
r = 1 and x = 2, when Cx = 1. In short, Cx is obtained from x by deleting
the first digit, with the exceptions C∅ = ∅ for all r, and C2 = 1 for r = 1.

We will compute Ayx and Cxy in Section 9.1.

When we develop the theory of semi-primary lattices, the elements of a group G or a
vector space V will not be available; only the lattice structure of L(G) or L(V,N) will
be known. By examining only the lattice structure and the operators A and C, rather
than exhibiting elements of a group or a vector space, the results will be applicable
to any semi-primary lattice, and not just ones with particular representations.

Theorem 3.2. If L is upper semimodular and x ≤ x′, then Ax ≤ Ax′. If L is lower
semimodular and x ≤ x′, then Cx ≤ Cx′.

Proof. It suffices to prove these for x <· x′, and since the proofs are the same but with
all lattice operations dualized, only the first will be shown. If y ·≥ x, then by upper
semimodularity, y ∨ x′ ·≥ x′. Since Ax is the join of all y ·≥ x, which includes x′, it’s
also the join of all y ∨ x′ with y ·≥ x. But Ax′ is the join of all these and possibly
more, so Ax′ is at least as large as Ax.

Theorem 3.3. Consider a modular lattice of finite length.

(1) CxAx = AxCx = x.
(2) AkCkx ≥ x and CkAkx ≤ x for all nonnegative integers k.
(3) AkCkAkx = Akx and CkAkCkx = Ckx.
(4) If x ≤ y then Ayx = Ax ∧ y and Cxy = Cy ∨ x.
(5) A(x ∧ y) = Ax ∧Ay and C(x ∨ y) = Cx ∨ Cy.
(6) Ckx ≤ y iff x ≤ Aky.

Note. Items (4) and (5) will be used extensively, and so should be ingrained now as
basic arithmetic.

Proof.

(1) The interval [x,Ax] is atomic, hence coatomic by Theorem 2.5, so the meet
CxAx of all its coatoms is x. The dual argument is similar.

(2) First, A0C0x = x and ACx ≥ AxCx = x. Next, let k be a positive integer, and
assume that the theorem holds for smaller nonnegative k. Then AC(Ck−1x) ≥
Ck−1x so Ak−1(AC(Ck−1x)) ≥ Ak−1(Ck−1x), or AkCkx ≥ Ak−1Ck−1x ≥ x.
Similarly CkAkx ≤ x.

(3) On the one hand, CkAkx ≤ x by (2), so Ak(CkAkx) ≤ Akx by Theorem 3.2.
On the other hand, AkCk(Akx) ≥ (Akx) by (2). So in fact AkCkAkx = Akx.
The other equality is proven dually.
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(4) Since Ayx is a join of a subset of the elements of which Ax is a join, Ayx ≤ Ax,
and since all the elements of which Ayx is a join are less than or equal to y,
also Ayx ≤ y. Thus Ayx ≤ Ax ∧ y.

Conversely, the interval [x,Ax] is atomic and hence coatomic (by Theo-
rem 2.5), and the meet of any of its coatoms with y is either Ax ∧ y or a
coatom of [x,Ax∧ y] (by Lemma 2.3). So

x ≤ Cx(Ax ∧ y) ≤
∧

v: x≤v<·Ax
(v ∧ y) = CxAx ∧ y = x ∧ y = x.

So [x,Ax ∧ y] is coatomic, hence atomic, so Ax ∧ y is the join of some of the
elements that cover x but are less than y, and hence is less than or equal to
the join Ayx of all elements that cover x and are less than or equal to y.

(5) Since x ∧ y ≤ x, y, it follows that A(x ∧ y) ≤ Ax,Ay and hence A(x ∧ y) ≤
Ax ∧Ay.

Now we show that [x ∧ y, Ax ∧ Ay] is coatomic. The intervals [x,Ax] and
[y, Ay] are atomic and hence coatomic. The meet of any coatom of [x,Ax]
with Ay, and the meet of any coatom of [y, Ay] with Ax, is either Ax ∧Ay or
is covered by Ax ∧ Ay. So in (Ay ∧ CxAx) ∧ (Ax ∧ CyAy) = x ∧ y, the left
side can be expressed as the meet of coatoms of [x ∧ y, Ax∧Ay], whence this
interval is coatomic, and hence atomic. Thus Ax∧Ay ≤ A(x∧ y); the reverse
inequality was already shown, so Ax ∧ Ay = A(x ∧ y).

(6) If Ckx ≤ y then x ≤ Ak(Ckx) ≤ Aky; the first inequality is by (2), and the
second is by Theorem 3.2. Dually, if Aky ≥ x then y ≥ Ck(Aky) ≥ x.

Corollary 3.4 (Monotonicity of A,C lattice polynomials). In modular lattices
of finite length, all lattice polynomials constructed from variables, meets, joins, and
the unary or binary forms of the operators A and C, weakly increase as the variables
weakly increase.

This extends the monotonicity of lattice polynomials constructed from variables,
meets, and joins in arbitrary lattices.

3.3. Interval types in modular lattices. To each finite length interval [x, y] in a
lattice, we associate two strong compositions. Let

Atype[x, y]
def
=

(
ρ(x,Ayx), ρ(Ayx,A

2
yx), ρ(A2

yx,A
3
yx), . . .

)
Ctype[x, y]

def
=

(
ρ(Cxy, y), ρ(C2

xy, Cxy), ρ(C3
xy, C

2
xy), . . .

)
We consider evaluating these in our three example lattices.

(1) Subgroup lattice. We compute Ctype[0, G], where

G = Z/pλ1Z× · · · × Z/pλkZ.

The rank of G in the lattice is λ1 + . . .+ λk, and

CrG = prZ/pλ1Z× · · · × prZ/pλkZ.
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When r ≥ λi, the factor prZ/pλiZ is 0, and when r < λi, it has rank λi− r, so
the rank of CrG is

k∑
i=1

max {λi − r, 0} =
∑
j>r

λ′j .

The successive differences in ranks as r increases are thus λ′1, λ
′
2, . . . . So

Ctype[0, G] = λ′.
Now compute Atype[0, G]. We have

Ar0 = { g ∈ H : prg = 0 } = pmax{λ1−r,0}Z/pλ1 × · · · × pmax{λk−r,0}Z/pλk .

The successive differences in ranks are λ′1, λ
′
2, . . . so Atype[0, G] = λ′.

(2) Invariant subspace lattice. Consider the lattice L(V,N) of type λ. Choose
a basis of V ,

eij with (i, j) ∈ λ, such that Nei1 = 0 and Neij = ei,j−1 when j > 1.

We have

CrV = N rV = span { eij : (i, j) ∈ and (i, j + r) ∈ λ } ,

which has rank λ′r+1 + λ′r+2 + · · · . Thus, the successive differences in ranks
again yield the partition Ctype[0, V ] = λ′.

Now

ArV = kerN r = span { eij : (i, j) ∈ λ and j ≤ r }
has rank λ′1 + · · ·+λ′r. Thus, the successive differences in ranks yet again yield
the same partition, Atype[0, V ] = λ′.

We will later see that in all semi-primary lattices, Atype and Ctype are the
same, and are the conjugate partition of the natural notion of type. This is
unique to semi-primary lattices.

(3) The Fibonacci Lattice Z(r). We will fully compute Atype and Ctype in
Z(r) in Section 9.1; for now we consider an example. Let x = 2212211 in
Z(2). We compute Ctype[0̂, x]. We showed before that when r > 1, Cx is
evaluated by stripping off the first digit of x, so the successive drops in rank
are 2, 2, 1, 2, 1, and Ctype[0̂, x] = (2, 2, 1, 2, 1). Now observe that A30̂ = 222 ≤
x, and that the interval [222, x] is the chain {222 <· 22211 <· 2212211}. So
Atype[0̂, x] = (2, 2, 2, 1, 1), which is different from Ctype[0̂, x].

Theorem 3.5. The sequences Atype[x, y] and Ctype[x, y] are strong compositions.
In a modular lattice, they both have the same number of parts.

Proof. The first is a strong composition because if r is the minimum nonnegative
integer with Ar

yx = y, then for 0 < i ≤ r, the ith part of Atype[x, y] is nonzero as

Ay(Ai−1
y x) > Ai−1

y x, while for i > r, the ith part is 0. Similarly, if s is the minimum
nonnegative integer with Cs

xy = x, then Ctype[x, y] is a strong composition with s
parts.

By Theorem 3.3(2), we have y ≤ As
yC

s
xy. Also y ≥ As

yC
s
xy, since Ay yields elements

at most y. Thus, y = As
yC

s
xy = As

yx, so s ≥ r. By a dual argument, s ≤ r, so
s = r.
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The number of parts of Atype[x, y], or equivalently of Ctype[x, y], is the atomic
rank of the interval [x, y], and will be denoted arank[x, y]. It is also the minimum
nonnegative r satisfying any of the following equivalent conditions: Ar

yx = y; Arx ≥ y;

Cr
xy = x; and Cry ≤ x. In a modular lattice with 0̂, define arank x = arank[0̂, x],

and in a finite height modular lattice L, define arankL = arank[0̂, 1̂]. The function
arank[x, y] weakly increases as x decreases or y increases, and when the decrease in
x or increase in y is by a single cover relation, the function stays the same or goes up
by 1. Also see [32, p. 215], which defines the ascending and descending Loewy series
in a complete modular lattice, which in our notation are 0̂ < A0̂ < · · · < Ar0̂ = 1̂
and 0̂ = Cs1̂ < · · · < C 1̂ < 1̂, and shows r = s.

Theorem 3.6. In a modular lattice, if x ≤ y ≤ z then Atype[x, y] ≤ Atype[x, z] and
Ctype[y, z] ≤ Ctype[x, z] as compositions.

Proof. The ith part of Atype[x, y] is the length of the interval [Ai−1
y x,Ai

yx]. The ith

part of Atype[x, v] is the length of the interval [Ai−1
v x,Ai

vx] = [v ∧ Ai−1
y x, v ∧ Ai

yx],
and is hence weakly smaller by Lemma 2.2.

When x ≤ y ≤ z, the relationship between Atype[x, z] and Atype[y, z], or between
Ctype[x, z] and Ctype[x, y], is not as nicely described, in general, but we describe it
here for completeness. In the theorem, let |µ≤k| denote µ1 + µ2 + · · · + µk.

Theorem 3.7. Let x <· y ≤ z, and set µ = Atype[x, z] and ν = Atype[y, z]. Dually,
let x ≤ y <· z, and set µ = Ctype[x, z] and ν = Ctype[x, y]. In each case, for all i ≥ 0
we have |µ≤i| ≤ 1 + |ν≤i| ≤ |µ≤i+1|. If either inequality is equality for a particular i,
it is equality for all larger i.

Proof. We have x <· y so A0
zx ≤ A0

zy ≤ A1
zx. Apply Ai

z to obtain Ai
zx ≤ Ai

zy ≤ Ai+1
z x.

If either inequality is equality for some i, it is equality for all larger i, as we are
applying a power of Az to two equal elements. Take the ranks of these elements in
the interval [x, z] to obtain ρ(x,Ai

zx) ≤ ρ(x,Ai
zy) = 1 + ρ(y, Ai

zy) ≤ ρ(x,Ai+1
z x).

Finally, express this in terms of µ and ν as |µ≤i| ≤ 1 + |ν≤i| ≤ |µ≤i+1|.

Theorem 3.8. In a graded lattice, let Atype[a, b] = λ = (λ1, λ2, . . .). For each k,
the element Ak

ba is the unique element c of [a, b] with Atype[a, c] = (λ1, . . . , λk).
Dually, if Ctype[a, b] = (λ1, λ2, . . .), then for each k, the unique element c of [a, b]
with Ctype[c, b] = (λ1, . . . , λk) is Ck

ab.

Proof. We prove the first statement; the second statement may be proved dually. Let
c ∈ [a, b] with Atype[a, c] = (λ1, . . . , λk). The ith part of Atype[a, c] is ρ(Ai−1

c a,Ai
ca),

and of Atype[a, b] is ρ(Ai−1
b a,Ai

ba). We have A0
ba = A0

ca = a. We have A1
ba ≥ A1

ca,
since the right side is the join of a subset of the elements of which the left side is a
join. Since the first part of Atype[a, b] and Atype[a, c] are equal, ρ(A1

ba) = ρ(A1
ca),

so in fact A1
ba = A1

ca. By iterating this, Ai
ba = Ai

ca for i = 0, . . . , k, since the first
k parts of Atype[a, b] and Atype[a, c] agree. For further parts of Atype[a, c] to be
0 requires that Ai−1

c a = Ai
ca when i > k, which requires Ai

ca = c for i ≥ k. So
c = Ak

ca = Ak
ba.

Another way to compute Atype and Ctype is the following.
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Theorem 3.9. Let L be a modular lattice of finite height. Let x ∈ L. Let λ =
AtypeL and ν = Atype[0̂, x]. Let µj = ρ(x ∨Aj−10̂, x ∨Aj0̂). Then µ+ ν = λ.

Dually, let λ = CtypeL and ν = Ctype[x, 1̂]. Let µj = ρ(x ∧ Cj−11̂, x ∧ Cj1̂).
Then µ+ ν = λ.

Proof. We prove the statement for Atype. By the modular rank equation,

ρ(x ∨ Aj0̂) = ρ(x) + ρ(Aj0̂)− ρ(x ∧Aj0̂) = ρ(x) + ρ(Aj0̂)− ρ(Aj
xa).

Subtracting the like equation for j − 1 from this yields

µj = ρ(Aj−10̂, Aj0̂)− ρ(Aj−1
x 0̂, Aj

x0̂) = λj − νj .
Corollary 3.10. Let L be a finite height modular lattice. Let x ∈ L. Let λ = AtypeL
and ν̃ = Atype[0̂, x]. Then

Atype[0̂, x ∨Ak0̂] = (λ1, . . . , λk, ν̃k+1, ν̃k+2, . . .).

Dually, let x ∈ L. Let λ = CtypeL and ν̃ = Atype[x, 1̂]. Then

Ctype[x ∧ Ak
ab, x] = (λ1, . . . , λk, ν̃k+1, ν̃k+2, . . .).

Proof. We prove the statement for Atype. Let z = x ∨Ak0̂. Let ν = Atype[0̂, z] and
for all j ≥ 1 let µj = ρ(z ∨Aj−10̂, z ∨ Aj0̂). When j ≤ k,

z ∨Aj0̂ = x ∨Ak0̂ ∨Aj0̂ = x ∨ Ak0̂

so µ1 = · · · = µj = 0. Thus the first k parts of ν equal the first k parts of λ. When

j ≥ k we have z∨Aj0̂ = x∨Aj0̂, so that the remaining parts of ν equal the remaining
parts of ν̃.

4. Semi-primary lattices

4.1. Basic concepts.

Definition 4.1. An element c of a finite length lattice is called a cycle if [0̂, c] is a
chain and a cocycle if [c, 1̂] is a chain [13, 4.1]. An r-cycle is a cycle of rank r, and
an r-cocycle is a cocycle of corank r.

Definition 4.2. A lattice is semi-primary if it is modular of finite length, all join-
irreducibles are cycles, and all meet-irreducibles are cocycles [13, 4.2].

We consider our three sample lattices.

(1) Subgroup lattice. Consider L(G). If a subgroup H of G is the product
of two or more nonzero groups, then H is the join of those smaller groups,
and hence is not a join-irreducible. So the join-irreducibles are the nonzero
cyclic subgroups of G, that is, those isomorphic to Z/prZ for some r > 0. The
subgroups of this group form a chain

prZ/prZ <· pr−1Z/prZ <· · · · <· Z/prZ,
so any join-irreducible in L(G) is a cycle.

Dually, the meet-irreducibles are those proper subgroups H of G for which
G/H is a cyclic group, and a similar argument applies. Thus, L(G) is a semi-
primary lattice.
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(2) Invariant subspace lattice. Consider L(V,N). For any nonzero vector
~v ∈ V , let S(~v) = span {~v,N~v,N2~v, . . .}. We see that for any N-invariant
subspace W of V , if ~v ∈ W then S(~v) ≤ W . If we cannot express W as
W = S(~v), we must choose several vectors and express W as the span of the
spaces S(~v1), S(~v2), . . . . Each of these spaces is a proper N-invariant subspace
of V , so W is not join-irreducible. Hence, the join-irreducibles are those spaces
of the form S(~v). The subspaces of S(~v) form the chain

0̂ = S(N r~v) <· S(N r−1~v) <· · · · <· S(~v)

for some r. Thus the join-irreducibles of L(V,N) are cycles. By a dual argu-
ment, the meet-irreducibles are cocycles.

(3) The Fibonacci Lattice Z(r). These are not semi-primary. The only lower
cover of 122 is 22, so 122 is a join-irreducible. However, the interval [∅, 122]
has incomparable elements 12 and 21, so it is not a chain.

The lattice Z(r) has infinite length, but even the finite length closed intervals
in it are not semi-primary, except in trivial cases.

Now we develop the theory of semi-primary lattices. The development is based on
that of Jónsson and Monk [13], but we introduce the operators A and C; the partitions
Atype and Ctype; and we show the connection the types have with Young’s lattice.

Theorem 4.3. Every closed interval in a semi-primary lattice L is semi-primary
[13, 4.3–4.4].

Proof. Every interval in a modular lattice is modular. Let [a, b] be a closed interval
and c a join-irreducible of the induced subposet [a, b] of L. We must show [a, c] is
a chain. We do not consider a to be join-irreducible in [a, c], so c > a, and there is
a unique coatom v of [a, c]. Let z be a join-irreducible of L with z ≤ c but z 6≤ v;
since every element is the join of join-irreducibles and c ·> v, such a join-irreducible
exists. Then a ∨ z is in [a, c] but not [a, v]; these intervals only differ in the element
c, so a ∨ z = c. So [a, c] = [a, a ∨ z] ∼= [a ∧ z, z], and since z is a join-irreducible of L
and hence a cycle, the last interval is a chain. Thus, c is a cycle in [a, b]. The dual
argument shows that the meet-irreducibles of [a, b] are cocycles.

Recall that one way of defining arankL is as the minimum r for which Ar0̂ = 1̂.

Theorem 4.4. The maximum of ρ(c) as c ranges over the cycles of a semi-primary
lattice L is arankL (cf. [13, 4.6]).

Proof. Let r = arankL. If L is a chain then the maximum rank cycle is 1̂ and indeed
arankL = r = ρ(1̂). So assume L is not a chain.

For any cycle c, we have c = c∧ 1̂ = c∧Ar0̂ = Ar
c0̂, so all cycles have ρ(c) ≤ r. For

any coatom v of L, we have arank v ≤ r. If some coatom has arank v = r, then any
r-cycle in [0̂, v] is also an r-cycle in L, so the upper bound is achieved. So assume
all coatoms have arank vler− 1. Then v ≤ Ar−10̂ for all coatoms, so Ar−10̂ is weakly
greater than the join of all coatoms. Since L is not a chain, 1̂ is not a join-irreducible,
so there are multiple coatoms, and the join of all coatoms is 1̂. Thus 1̂ ≤ Ar−10̂, so
arankL ≤ r − 1, contradicting arankL = r.
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Theorem 4.5. If L is a semi-primary lattice and c is a cycle of maximum possible
rank r = arankL, then c has a complement in L. Any such complement is a cocycle
of corank r (cf. [13, 4.8]).

Note. See Theorem 4.44 for an enumeration of complemented cycles of each rank;
Theorem 4.43 for a complete characterization of complemented elements; and Theo-
rem 4.47 for an enumeration of the number of complements an element has.

Proof. We induct on intervals ordered by inclusion. The trivial case c = 1̂ has com-
plement 0̂. Assume c 6= 1̂. There must be an atom v of L besides the one in [0̂, c],
because if that is the only atom, then 0̂ is a meet-irreducible and hence a cocyle, so
that [0̂, 1̂] is a chain, so that the maximum cycle is c = 1̂. The element c ∨ v is an
r-cycle in [v, 1̂] because [v, c∨v]∼= [c∧v, c] = [0̂, c], so c∨v is a maximal cycle in [v, 1̂]
(where maximality follows from the preceding theorem and monotonicity of arank on
intervals). By induction, the current theorem applies to this smaller interval, whence
there is c′ ∈ [v, 1̂] with (c∨ v)∨ c′ = 1̂ and (c∨ v)∧ c′ = v. So c∨ c′ = c∨ (v ∨ c′) = 1̂,
and v ∨ (c∧ c′) = v, so c ∧ c′ ≤ v, so c∧ c′ ≤ c∧ v = 0̂. Thus c′ is a complement to c
in L.

For any complement c′ of c, we have [c′, 1̂] = [c′, c′ ∨ c] ∼= [c′ ∧ c, c] = [0̂, c], so c′ is
a cocycle of corank r.

Definition 4.6. A sequence x1, . . . , xk of elements of a finite length modular lattice
are (join) independent if any of the following equivalent conditions hold [13, §2].

(1) ρ(x1 ∨ · · · ∨ xk) = ρ(x1) + · · ·+ ρ(xk).
(2) (x1 ∨ · · · ∨ xi−1) ∧ xi = 0̂ for i = 2, . . . , k.
(3) For any subsets I and J of {1, . . . , n},(∨

i∈I
xi

)
∧
(∨
i∈J

xi

)
=

( ∨
i∈I∩J

xi

)
,

so in fact, {x1, . . . , xk} generates a Boolean subalgebra of the lattice.

There is also a dual notion of meet independence.

Theorem 4.7. Every element b of a semi-primary lattice L is the join of independent
cycles [13, 4.9]. If b = x1 ∨ · · · ∨ xk is such a join and the xi are arranged so that
ρ(x1) ≥ · · · ≥ ρ(xk), then the partition (ρ(x1), . . . , ρ(xk)) is (Ctype[0̂, b])′.

Note. See Theorem 4.48 for an enumeration of the ways to choose x1, . . . , xk.

Proof. We induct on ρ(b). If b = 0̂ the join is empty. By the last two theorems, we
may choose a cycle x1 of maximum rank in b, and then a complement y1 to it in b;
since ρ(y1) = ρ(b) − ρ(x1) < ρ(b), we inductively have y1 as the join of independent
cycles x2, . . . , xk, and so b is the join of independent cycles x1, . . . , xk.

Given b = x1 ∨ · · · ∨ xk with the xi independent cycles, for any r ≥ 0, the cycles
Crx1, . . . , Crxk are independent, so Crb = Crx1 ∨ · · · ∨ Crxk has rank ρ(Crb) =
ρ(Crx1) + · · · + ρ(Crxk). Since ρ(Crxi) = max {ρ(xi)− r, 0}, we have for r > 0 that
ρ(Cr−1b)− ρ(Crb) is the number of i with ρ(xi) = r.
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Definition 4.8. Although the independent cycles in the last theorem are not uniquely
determined by b, the partition determined by their ranks is unique. This partition
is called the type of b, denoted type b. The type of a semi-primary lattice is
typeL = type 1̂. The type of an interval [a, b], denoted type[a, b], is the type of
the semi-primary lattice [a, b], so it may be expressed as the partition of decreasing
ranks of independent join-irreducibles in [a, b] whose join is b, and as (Ctype[a, b])′.
The cotype of b is cotype b = type[b, 1̂].

An alternative approach to this last theorem is taken in [13, pp. 97,103]. They
do not compute anything analogous to type b = (Ctype[0̂, b])′. Instead, they apply
a theorem of Ore [19]: If an element b of a finite length modular lattice has two
representations as a join of independent join-irreducibles,

b = x1 ∨ · · · ∨ xk = y1 ∨ · · · ∨ ym,
then k = m and there is a permutation σ of 1, . . . , k such that

b = yσ(1) ∨ · · · ∨ yσ(i) ∨ xi+1 ∨ · · · ∨ xk
for i = 1, . . . , k. Thus, xi and yσ(i) have the same rank for each i. A complete proof of
Ore’s theorem in this form can be found in [2, pp. 58–60]. If we apply this theorem to
a semi-primary lattice, we see that any two expressions of b as the join of independent
join-irreducibles have the same number of cycles and the same multiset of ranks of
these cycles, so that type b = (ρ(x1), . . . , ρ(xk)) is well defined.

Theorem 4.9. The type of a semi-primary lattice L and the type of its dual are
equal [13, 4.11].

Proof. Let 1̂ = x1 ∨ · · · ∨ xk be the join of independent join-irreducibles with ρ(xk) ≥
· · · ≥ ρ(x1). The xi’s are independent, so lattice polynomials in them form a boolean
algebra. The complement of xi is yi = ∨j 6=ixi , the yi’s are independent in the dual

lattice to L, and their meet is 0̂. Further, [yi, 1̂] = [yi, xi ∨ yi] ∼= [xi ∧ yi, xi] = [0̂, xi],
so yi is a meet-irreducible in L whose corank is the rank of xi. Thus, the partition
(ρ̄(y1), . . . , ρ̄(yk)) giving the type of the dual of L, and the partition (ρ(x1), . . . , ρ(xk))
giving the type of L, are the same.

Note. A semi-primary lattice need not be isomorphic to its dual. See Figure 1 for a
minimal example of an irregular (Definition 4.24) semi-primary lattice that’s not self-
dual. For regular semi-primary lattices, the smallest examples are provided by non-
Desarguean projective planes. There are four projective planes of order 9, two of which
are self-dual, and the other two of which are dual to each other; see Stevenson [30,
p. 80]. Thus, there are two 9-regular semi-primary lattices of type (1, 1, 1) that are
not self-dual.

Corollary 4.10. The type of an interval [a, b] of a semi-primary lattice may be com-
puted as any of the following.

(1) (ρ(a, x1), . . . , ρ(a, xk)), where x1, . . . , xk are independent join-irreducibles of
weakly decreasing rank in [a, b] whose join is b;

(2) (ρ(y1, b), . . . , ρ(yk, b)), where y1, . . . , yk are independent meet-irreducibles of
weakly decreasing corank in [a, b] whose meet is a;

(3) (Ctype[a, b])′;
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(4) (Atype[a, b])′.

Proof. (1) and (3) are equal by Theorem 4.7, while (2) and (4) are equal by a dual
argument, and (1) and (2) are equal by Theorem 4.9.

Inaba [12, Theorem 34] proved that if a ≥ b, the number of parts in type a is weakly
larger than in type b; that type a is lexicographically weakly larger than type b; and
for each k > 0, the number of parts of size at least k in type a weakly exceeds that in
type b. This is a cryptic description of Young’s lattice. It generalizes to intervals as
follows.

Theorem 4.11. Let a ≤ a′ ≤ b′ ≤ b. Then type[a, b] ≥ type[a′, b′] in Young’s lattice.

Proof. Both types are partitions in Young’s lattice. We have

(type[a, b])′ = Atype[a, b] ≥ Atype[a, b′] = (type[a, b′])′,

where the equalities hold by the preceding theorem and the inequality holds by The-
orem 3.6 (considering the partitions to be compositions, but noting the order is the
same). Similarly,

(type[a, b′])′ = Ctype[a, b′] ≥ Ctype[a′, b′] = (type[a′, b′])′.

Thus (type[a, b])′ ≥ (type[a′, b′])′, so type[a, b] ≥ type[a′, b′].

Definition 4.12. For an interval [a, b] in a semi-primary lattice, let [a, b][k] be the
join of all cycles of rank at most k, and [a, b](k) be the meet of all cocycles of corank
at most k. This extends the notation x[k] = [0̂, x][k] defined in [13, 4.5]. We also
define x(k) = [x, 1̂](k).

For any partition λ and k ≥ 0, let

λ[k] = (min{λ1, k} ,min{λ2, k} , . . .) = (λ′1, . . . , λ
′
k)
′.

Theorem 4.13. Let L be a semi-primary lattice of type λ. There is a unique element
of type λ[k], and it may be expressed as 1̂[k] and Ak0̂. In an interval [a, b] of type λ,
there is a unique element z with type[a, z] = λ[k], and it may be expressed [a, b][k] =
Ak
ba. Dually, [a, b](k) = Ck

ab is the unique element of cotype λ[k] in [a, b].

Proof. We prove the first sentence, and the others follow by applying it to intervals,
which are semi-primary, and by dualizing. By Theorem 3.8, Ak0̂ is the unique element
with this type. Suppose c is a cycle of rank at most k. Then c = Ak

c 0̂ = c ∧ Ak0̂, so
c ≤ Ak0̂, so the join of all such cycles satisfies 1̂[k] ≤ Ak0̂, whence type 1̂[k] ≤ λ[k].
Conversely, given any decomposition of 1̂ into independent cycles, 1̂ = x1 ∨ · · · ∨ xm,
we have that x1[k], . . . , xm[k] are independent cycles of rank at most k, whose ranks
are precisely the row lengths of λ[k]. Thus, their join has type λ[k]; this join is a
lower bound of 1̂[k] because it is a join of only some of the cycles of rank at most k,
so λ[k] ≤ type 1̂[k], whence in fact type 1̂[k] = λ[k]. Since there is a unique element
of this type, 1̂[k] = Ak0̂.

Corollary 4.14. If a and b are independent elements in a semi-primary lattice, then
(a ∨ b)[k] = a[k] ∨ b[k].
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Proof. (cf. [13, 4.13]) Since a and b are independent, type(a∨ b) = (type a)∪ (type b),
and

type
(
(a ∨ b)[k]

)
=

(
(type a)∪ (type b)

)
[k] = (type a)[k] ∪ (type b)[k]

=
(
type a[k]

)
∪
(
type b[k]

)
.

Since a[k] ≤ a and b[k] ≤ b, the elements a[k], b[k] are independent, so the type of
a[k] ∨ b[k] is precisely the last expression in the above equation. By the previous
theorem, (a∨ b)[k] is the unique element of [0̂, a∨ b] whose type is the first expression
in this equation. Since a[k]∨ b[k] is in this interval, it must equal (a ∨ b)[k].

4.2. Alternate characterizations of semi-primary lattices. We present some
new characterizations of semi-primary lattices. Theorem 4.15(1)–(3) is the classical
definition of semi-primary lattices, and all the other characterizations in this section
are new. In particular, Theorem 4.15(4) is a local characterization of semi-primary
lattices; Theorem 4.16 is a rank equation characterization; and Theorem 4.17 is anal-
ogous to interval perspectivity in modular lattices, and is essentially a lattice equation
characterization of semi-primary lattices.

Theorem 4.15. Let L be a modular lattice of finite length. Then the following are
equivalent.

(1) L is semi-primary.
(2) Every element is the join of cycles and the meet of cocycles.
(3) Every join-irreducible is a cycle and every meet-irreducible is a cocycle.
(4) Whenever x covers precisely one element, that element is either 0̂ or in turn

covers precisely one element. Whenever x is covered by precisely one element,
that element is either 1̂ or is covered by precisely one element.

(5) For every interval [x, y], we have Atype[x, y] = Ctype[x, y].
(6) For every interval [x, y], both Atype[x, y] and Ctype[x, y] are partitions.
(7) Whenever x <· y, we have Cx ≤· Cy and Ax ≤· Ay.

Proof.

(1)⇔(2): This is the definition of a semi-primary lattice.
(2)⇔(3): In any lattice, every element is the join of join-irreducibles and the
meet of meet-irreducibles, and all cycles are join-irreducibles and all cocycles
are meet-irreducibles.

(3)⇔(4): The elements with unique lower covers are precisely the join-irre-
ducibles, and the elements with unique upper covers are precisely the meet-
irreducibles.

(1)⇒(5): This is Theorem 4.9.
(5)⇒(4): Suppose x is a join-irreducible. Then Ctype[0̂, x] begins with a 1,
so by (5), Atype[0̂, x] does too. Let v = Cx. If v = 0̂, then x is an atom
and hence a cycle. Otherwise, 0̂ ≤ Av0̂ ≤ Ax0̂, but Ax0̂ is an atom because
Atype[0̂, x] begins with a 1, and Av0̂ is nonzero because v > 0̂. So Av0̂ = Ax0̂,
so Atype[0̂, v] begins with a 1, so Ctype[0̂, v] begins with a 1, so v is also a
join-irreducible. Thus, (4) holds.

(1)⇒(6): This follows from Theorem 4.7.
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(6)⇒(3): Let x be a join-irreducible. Then Ctype[0̂, x] begins with 1, and
the entries are weakly decreasing, so in fact, all the nonzero entries are 1. So
[0̂, x] is a chain, whence x is a cycle. Similarly, meet-irreducibles are cocycles,
so L is semi-primary.

(1)⇒(7): Since Ctype[0̂, x] ≤ Ctype[0̂, y] in Young’s lattice (by Theorem 4.11)
and the right side has one more square than the left, in fact the two partitions
are equal in all but one part, in which the second partition exceeds the first
by 1. Now Cx ≤ Cy by Theorem 3.2, so if the partitions are equal in the
first part, ρ(Cx) <· ρ(Cy) and Cx <· Cy, while if the partitions differ by 1 in
the first part, Cx = Cy. By a dual argument, Ax ≤· Ay.

(7)⇒(4): Let y be a join-irreducible, so Cy <· y. Then C2y ≤· Cy, so Cy is a
join-irreducible or 0̂. Dually, the unique element covering a meet-irreducible
is also a meet-irreducible or 1̂.

Note. (4) characterizes semi-primary lattices by a local condition similar to the local
condition that can be used to describe modular and semimodular lattices. While the
preceding characterizations are in terms of cycles and cocycles, and hence require
there to be a 0̂ and 1̂ in the lattice, this characterization does not require either, and
so may possibly be used to extend the definition of semi-primary lattices to discrete
modular lattices of infinite length.

Theorem 4.16. Let L be a finite length graded lattice. Then L is semi-primary iff
the semi-primary equation

ρ(Akx ∧ y) + ρ(x ∨ Cky) = ρ(x) + ρ(y)

holds for all nonnegative integers k and all x, y in L, iff it holds for k = 0, 1.

Proof. Let L be semi-primary. If x ≤ y, this equation is equivalent to the fact
that Atype[x, y] = Ctype[x, y], since the sum of the first k parts of Atype[x, y] is
ρ(Akx ∧ y)− ρ(x) and the sum of the first k parts of Ctype[x, y] is ρ(y)− ρ(x ∨ Cky).
For arbitrary x and y, let x′ = x ∧ y ≤ y, and apply this equation to x′, y to get

ρ(Akx′ ∧ y) + ρ(x′ ∨ Cky) = ρ(x′) + ρ(y).

The left-hand side is

ρ(Akx ∧Aky ∧ y) + ρ((y ∧ x) ∨ Cky) =

ρ(Akx ∧ y) + ρ(y ∧ (x ∨ Cky)) =

ρ(Akx ∧ y) + ρ(x ∨ Cky)− ρ(y ∨ x ∨ Cky) + ρ(y) =

ρ(Akx ∧ y) + ρ(x ∨ Cky) + (ρ(y)− ρ(x ∨ y)) =

ρ(Akx ∧ y) + ρ(x ∨ Cky) + (ρ(x ∧ y)− ρ(x))

Equate it with the right side ρ(x ∧ y) + ρ(y) and rearrange the terms to obtain the
semi-primary equation.

Now suppose L is a finite length graded lattice that satisfies the semi-primary
equation for k = 0, 1. The k = 0 case is precisely the rank identity for modular
lattices, so L is modular. Let x = 0̂ and let y be a join-irreducible. Then the k = 1
equation yields ρ(A0̂ ∧ y) = ρ(y) − ρ(Cy) = 1, so that [0̂, y] has a unique atom, v.
Now y is join-irreducible in L, hence in the sublattice [v, y] as well (or y = v), so
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inducting on the length of the lattice, we have that [v, y] is a chain, so [0̂, y] is too.
Meet-irreducibles are cocycles by a dual argument, so L is semi-primary.

One way to characterize modular lattices is by perspectivity of intervals, introduced
in Lemma 2.1. A lattice is modular iff for each pair of elements x, y, the functions φ
and ψ below are lattice isomorphisms

[x, x ∨ y] −→ [x ∧ y, y]

t
φ7−→ t ∧ y

x ∨ t′ ψ←−7 t′

iff the functions φ′ and ψ′ obtained by swapping all occurrences of x and y are lattice
isomorphisms. There is a partial analogue for semi-primary lattices, which provides
an algebraic counterpart to the semi-primary equation.

Theorem 4.17. Consider

Ik = [x, x∨ Cky] −→ [Akx ∧ y, y] = Jk

t
φk7−→ Akt ∧ y

x ∨ Ckt′
ψk←−7 t′

A graded lattice of finite length is semi-primary iff φk and ψk are inverse lattice
isomorphisms for all x, y in the lattice and all k ≥ 0, iff they are inverse for k = 0, 1.

Proof. Suppose these are inverse for k = 0, 1. The k = 0 maps are precisely the
characterization of modular lattices in terms of perspective intervals, so the lattice
is modular. Now let y be a join-irreducible and x = 0̂. We must show that Cy
is a join-irreducible (or 0̂) as well. By the k = 1 equation, [0̂, Cy] and [Ay0̂, y] are

isomorphic. Since y is join-irreducible in [0̂, y], it also is join-irreducible (or minimal)
in the subinterval [Ay0̂, y], whence Cy is join-irreducible (or 0̂) in [0̂, Cy] and hence
in the whole lattice. By a dual argument, the unique element covering each meet-
irreducible is a meet-irreducible or 1̂, so by Theorem 4.15(4), the lattice is semi-
primary.

Conversely, suppose a lattice is semi-primary. The maps φk and ψk are order-
preserving in any modular lattice. For any t ∈ Ik we have Ck(Akt ∧ y) ≤ CkAkt ≤ t
and x ≤ t, so that ψk(φk(t)) = x ∨ Ck(Akt ∧ y) ≤ t. If t, u ∈ Ik and t <· u then
φk(t) ≤· φk(u) by Theorem 4.15(7) and Lemma 2.3; since φk maps the endpoints of Ik
to those of Jk and both Ik and Jk have the same length by the semi-primary equation,
in fact φk(t) <· φk(u). Similarly, for t′, u′ ∈ Jk with t′ <· u′, we have ψk(t′) <· ψk(u′).
So φk and ψk preserve the rank of an element within the interval. Thus for t ∈ I1, both
sides of ψk(φk(t)) ≤ t have the same rank, and so are equal. Similarly, φk(ψk(t′)) = t′

when t′ ∈ Jk, so ψk and φk are inverses.

The analogue with modular lattices is not complete. The transposed pair of in-
tervals to consider is I ′k = [x ∨ Cky, y] and J ′k = [x,Akx ∧ y]. Unless x ≤ y, these
intervals are both empty, since they are subintervals of [x, y]. When x ≤ y does hold,
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the intervals do not need to be isomorphic, though they both have the same type be-
cause Atype[x, y] = Ctype[x, y]. Figure 1 is the Hasse diagram of a minimal example
with these intervals not isomorphic, with k = 1. The vertices are the elements of the
lattice, and the edges are the cover relations in the lattice.

uy
�� @@Ayx u u u

�� @@ ��u u
Cxy@@ ��x u

Figure 1. An irregular, non self-dual, semi-primary lattice.

Note. Theorem 4.17 can be transformed to equations satisfied by all x, y, t in a semi-
primary lattice by projecting any t into the intervals Ik or Jk, as follows. A lattice of
finite length is semi-primary iff for all x, y, t,

ψk(φk(x ∨ (t ∧ (x ∨ Cky)))) = x ∨ (t ∧ (x ∨ Cky))

φk(ψk(y ∧ (t′ ∨ (Akx ∧ y)))) = y ∧ (t′ ∨ (Akx ∧ y))

hold for all nonnegative k, iff they hold for k = 0, 1.

Definition 4.18. If P and Q are graded posets, a map φ : P → Q is called a growth
if x ≤· y ⇒ φ(x) ≤· φ(y).

Theorem 4.19. Let L be a semi-primary lattice. Let φ(t) be a lattice polynomial
constructed from meets, joins, A, C, elements of L, and one occurrence of the variable
t. Then φ is a growth on L. Further, if intervals [x, y] and [φ(x), φ(y)] have the same
length, they are isomorphic.

Proof. For any x ∈ L, both t ∧ x and t ∨ x are growths in t by Lemma 2.2, and if
they preserve interval lengths, they induce isomorphisms by Lemma 2.3.

The function At is a growth by Theorem 4.15(7). Suppose [a, b] and [Aa,Ab] have
the same length. Let c = Ab and λ = type[a, c]. Then ρ(a,Aa) = ρ(a,Aa ∧ c) =
λ′1 = ρ(a ∨ Cc, c) so ρ(a, a ∨ Cc) = ρ(Aa, c) = ρ(Aa,Ab). Also a ∨Cc = a ∨CAb ≤ b
so [a, a ∨ Cc] ⊆ [a, b]. Since these have equal lengths, in fact a ∨ Cc = b. Finally,
[a, b] = [a, a ∨ Cc] ∼= [Aa ∧ c, c] = [Aa,Ab]. The proof for Ct is similar.

Finally, all lattice polynomials of the form in the theorem are compositions of the
forms just considered, and hence are growths that induce isomorphisms when they
preserve interval lengths.

Note. Isomorphisms of the form in the above theorem may be useful in determining
conditions under which intervals of the same type in a lattice are in fact isomorphic.
Also see [1] for a study of rank and order preserving maps from certain semi-primary
lattices of one type to another type.

Example 4.20. Note that not all lattice polynomials are growths, and not all growths
expressible as lattice polynomials induce isomorphisms when they preserve an inter-
val’s length.
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(1) S.V. Fomin (personal communication) notes that all nondistributive modular
lattices contain a sublattice isomorphic to

1̂
w
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�
@
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a wb wc w

@
@
�
�

w

0̂

The polynomial φ(t) = (t ∨ b) ∧ (t ∨ c) has values φ(0̂) = 0̂ and φ(a) = 1̂, so
it is not a growth. Thus, for all nondistributive modular lattices, some lattice
polynomial is not a growth.

(2) In any semi-primary lattice L, choose x ∈ L and consider the polynomial
φ(t) = t ∧ (x ∨ Ct). It monotonically increases in t. We have ρ(φ(t)) =
ρ(t) + ρ(x ∨ Ct) − ρ(x ∨ t) (since t ∨ x ∨ Ct = x ∨ t). If t <· t′, the increase
in rank from φ(t) to φ(t′) is at most 2 because upon substituting t′ for t, each
rank on the right of the rank equation can go up by 1. The only way to achieve
an increase of 2 is if t <· t′ and x ∨ Ct <· x ∨ Ct′ but x ∨ t = x ∨ t′. However,
applying Cx to both sides of x ∨ t = x ∨ t′ yields x ∨ Ct = x ∨ Ct′, so this
cannot occur. Thus, φ(t) is a growth.

Now consider φ(t) = t ∧ (A0̂ ∨ Ct) applied to the length 2 interval [a, 1̂]
in the following lattice. We have type[a, 1̂] = and type[φ(a), φ(1̂)] = ,
so while the interval length is preserved, the intervals are not isomorphic. A
similar construction can be done in any semi-primary lattice of type (3, 1) with
at least three elements of rank two by choosing a with type a = cotype a = .
Any semi-primary lattice whose type contains (3, 1) has intervals of type (3, 1)
in which such a construction can be done as well, provided there are at least
three elements on the middle level.

v
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We now provide a strengthening of Theorem 3.3(2) for semi-primary lattices.

Definition 4.21. For a partition λ, let Ckλ = (λ′k+1, λ
′
k+2, . . .)

′ be obtained from λ
by deleting the first k columns.

Theorem 4.22. In a semi-primary lattice, AkCkx = x∨Ak0̂ and CkAkx = x∧Ck1̂.

Proof. We prove the first statement, and the second is proven dually. Since AkCkx ≥
x and AkCkx ≥ Ak0̂, we have AkCkx ≥ x ∨ Ak0̂. Let λ = typeL and µ = typex.
Then typeCkx = Ckµ. Since Ckx ∈ [0̂, Ck1̂], we have type[Ak0̂, AkCkx] = Ckµ as
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well, by Theorem 4.17. Thus,

type[0̂, AkCkx] = (Atype[0̂, AkCkx])′ = (Atype[0̂, Ak0̂])′ + (Atype[Ak0̂, AkCkx])′

= λ[k] + Ckµ = µ ∨ λ[k] = type(x ∨ Ak0̂).

The only tricky equality is the last, which follows from Corollary 3.10. Since AkCkx
is bounded below by x ∨Ak0̂, and they both have the same type, they are equal.

4.3. Classification and representation of semi-primary lattices. We sum-
marize what is known about representing semi-primary lattices. See Jónnson and
Monk [13] for a detailed history of the development of this representation.

Definition 4.23 (see [13, 6.1,6.2]). A lattice is primary if it is semi-primary and
no interval of length 2 has precisely 2 elements on the middle level, i.e., all intervals
of type have at least 3 atoms. Clearly the dual of a primary lattice is also primary.

Definition 4.24. A q-regular lattice is a lattice with the property that all intervals
of length 2 are either chains or have precisely q+1 atoms. A q-regular semi-primary
lattice is, therefore, a semi-primary lattice in which every interval of type has q+1
atoms. A regular lattice is a lattice with the property that all intervals of length 2
that aren’t chains have the same cardinal number of atoms, whether a finite q+ 1, or
an infinite cardinal. All other lattices are irregular.

Example 4.25. We provide examples of different lattices and their classifications.

(1) If G is a finite abelian p-group, then L(G) is p-regular and primary. Every
interval of type is a quotient isomorphic to L((Z/pZ)2). The subgroups of
(Z/pZ)2 are itself; 0; and the groups with generators (1, i) (where i ∈ Z/pZ)
and the group with generator (0, 1). So there are p + 1 atoms in the interval.
Because p + 1 ≥ 3 for all primes, it is primary.

(2) The lattice L(V,N) over a field K is #K-regular and primary. Let V be
a vector space over a field K and N be a nilpotent transformation. Every
interval of L(V,N) of type is isomorphic to the lattice of subspaces of a
two dimensional vector space over K. There are #K + 1 atomic subspaces
(with essentially the same construction as in the subgroup lattice), so when
#K is finite, L(V,N) is #K-regular, and when it is infinite, it is regular. In
either case, all fields have at least two elements, so #K + 1 ≥ 3, so L(V,N) is
primary.

(3) The 1-regular semi-primary lattices are products of chains. Nontrivial products
of chains (at least two nonempty factors) are not primary.

(4) A direct product of semi-primary lattices is a semi-primary lattice, but in non-
trivial products, is neither regular (unless all factors are chains) nor primary.
Intervals of type are either wholly contained in one factor, or are the product
of a chain of length 1 from one factor and a chain of length 1 from another
factor. Intervals of the latter sort have exactly 2 atoms, so the product isn’t
primary. If all intervals of the former sort have exactly 2 atoms, this is a
product of chains.

(5) If λ is a partition with two rows, we may construct an infinite number of
primary irregular lattices of type λ. Take any primary lattice L of type λ. We
require an element x which is both a cycle and a cocyle. One way to obtain such
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an x is to decompose 1̂ = x∨y where x and y are independent join-irreducibles.
Then x is both a cycle and a cocycle (as [x, 1̂] = [x, x∨ y] ∼= [x∧ y, y] = [0̂, y]).

The cover Ax of x is not join-irreducible, because if it is, then Ax and x are
both complements to y, but have two different ranks. Thus, Ax has at least one
lower cover besides x, and the meet of any such lower cover with x must be Cx
by modularity. So [Cx,Ax] is an interval of type , and it contains an element
x which has no cover relation with any other element in the lattice. Form a
lattice L′ from L by inserting additional atoms into [Cx,Ax]; the additional
atoms cover Cx and are covered by Ax, and also have no other cover relations
with any elements of L′. By the local characterizations of modularity and
semi-primariness, this lattice is semi-primary, for if we consider the local part
of the lattice with the additional atoms, they behave exactly as x did in the
original lattice L. Each interval has at least 3 atoms, so L′ is primary and
irregular.

While two-rowed lattices usually contain a plethora of elements that are
both cycles and cocycles, lattices whose type has more than two rows do
not have such elements. Suppose x > 0̂ is a cycle. Then Ax ≥ x ∨ A0̂ so
typeAx ≥ (typex)∨ (1λ

′
1), whence ρ(Ax) ≥ ρ(x) + λ′1 − 1. When λ′1 > 2, this

implies ρ(Ax) − ρ(x) > 1, so x isn’t a cocycle. So this construction doesn’t
work when λ has at least 3 rows.

(6) The parameters q and λ are insufficient to classify all the q-regular semi-
primary lattices. Let G = (Z/p2Z)3. Let Fp be the finite field of order p; V
be a 6-dimensional vector space over Fp; and N be a nilpotent transformation
on V of type (2, 2, 2). Both L(G) and L(V,N) are p-regular semi-primary
lattices of type (2, 2, 2), and Butler and Hales [1, p. 9] prove that they are
not isomorphic. Thus, for any partition λ ≥ (2, 2, 2), the p-subgroup lattice of
type λ and the invariant subspace lattice of type λ over the field Fp are not
isomorphic, because their subintervals of type (2, 2, 2) are not isomorphic.

Theorem 4.26 (see [13, 6.3]). In a primary lattice with at least three independent
atoms, any two intervals of type are projective.

Corollary 4.27. Every primary lattice of type λ with λ′1 ≥ 3 is regular.

Definition 4.28 (see [13, 6.6]). A ring R with unit is completely primary and
uniserial if there is a two-sided ideal P of R such that every left or right ideal of R
is of the form P k, where P 0 = R, and P k = 0 for some finite k.

Definition 4.29 (see [13, 2.1]). A lattice is Arguesian if it satisfies the following
lattice-theoretic analogue of Desargues’ Law: for any elements a0, a1, a2, b0, b1, b2, if

y = (a0 ∨ a1) ∧ (b0 ∨ b1) ∧
[(

(a0 ∨ a2) ∧ (b0 ∨ b2)
)
∨
(
(a1 ∨ a2) ∧ (b1 ∨ b2)

)]
,

then
(a0 ∨ b0) ∧ (a1 ∨ b1) ∧ (a2 ∨ b2) ≤ (a0 ∧ (a1 ∨ y)) ∨ (b0 ∧ (b1 ∨ y)).

Jónsson and Monk [13] show that every Arguesian lattice is modular, and that
every primary lattice of type λ where the first part has multiplicity at least 4 is
Arguesian. Not all primary lattices with mλ1 < 4 are Arguesian, because there are
non-Desarguean projective planes. Any projective plane of order q gives rise to a
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q-regular primary lattice of type (13) by taking the points p to be the atoms and the
lines l to be the coatoms, with p < l in the lattice iff p is on the line l in the plane.
We also attach a minimum element 0̂ and a maximum element 1̂. For examples of
non-Desarguean projective planes, see, for example, [11, Chapter IX], or [30, Chapter
2.4 and Part 3].

There is a representation theorem for certain primary lattices, which generalizes
the coordinatization of projective geometries.

Theorem 4.30 (see [13, 6.7,12.3]). The lattice of all submodules of a finitely gen-
erated module over a completely primary and uniserial ring is primary. Conversely,
any primary Arguesian lattice with mλ1 ≥ 3 (which includes all primary lattices with
mλ1 ≥ 4), is isomorphic to the lattice of submodules of a finitely generated module
over a completely primary and uniserial ring.

These lattices include L(G), L(V,N), and the lattice of submodules of a module
of finite length over a discrete valuation ring; see Macdonald [16, p. 85]. The residue
field of the ring plays a role similar to the field in the lattice L(V,N); in particular,
if q is the order of the residue field, the lattice of the theorem is q-regular.

Regonatti has a representation theorem for modular lattices.

Theorem 4.31 (see [20, pp. 45–47]). Let L be a modular lattice. If the number of
atoms equals the number of coatoms in every interval of length 3, then L is the direct
product of primary q-lattices (with the different factors possibly having different values
of q).

There is also a converse of sorts to this theorem.

Theorem 4.32 (see [13, 6.2]). Every primary lattice that is not a chain is simple,
that is, has no nontrivial homomorphic images.

4.4. Enumeration in q-regular semi-primary lattices. In a q-regular semi-
primary lattice L, we often can count how many solutions (x1, x2, . . .) there are to
a system of equations ρ(pi(x1, x2, . . .)) = ri, where the pi are lattice polynomials in
the operators A and C; meets and joins; constants from the lattice; and the variables
xi, while the ri are integers. These counts often turn out to be polynomials in q
depending on the parameters ri and the type of the lattice, but not on any further
structure of the lattice. The polynomials are the same for abelian subgroup lattices,
invariant subspace lattices, and any other q-regular semi-primary lattice.

The equations we consider will be derived from type specifications. For example,
in this section, we will count how many atoms of cotype µ are in a q-regular semi-
primary lattice of type λ. We have type[a, 1̂] = µ iff ρ(a,Aka) = µ′1 + · · · + µ′k, so
such a are the solutions of ρ(Aka) = 1 + µ′1 + · · ·+ µ′k for all k.

We will also count how many flags f = (f0 ≤ f1 ≤ · · ·) there are in which type fi =

λ(i) is specified for each i. In this case, the type equations are ρ(Ak0̂ ∧ fi) = λ(i)′

1 +

· · · + λ
(i)′

k for all i and k. The fact that f is a flag can also be expressed as a rank
equation: since fi ≤ fi+1, we have fi∧ fi+1 = fi, so ρ(fi ∧ fi+1) = |λ(i)|. Or, we could
use ρ(fi ∨ fi+1) = |λ(i+1)|.

The counts we obtain for q-regular semi-primary lattices also provide information
about regular lattices with a variety structure. The proofs of the counts generally
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entail selecting an element within a certain interval but excluded from a lower di-
mension subinterval. In the variety case, we would instead select an element of the
interval generic with respect to a certain property that excludes the subinterval. The
closure of the solution space would have the same dimension as the degree of the
polynomial specifying the number of choices in the interval, which equals the degree
of the polynomial specifying the number of choices in the interval less the smaller
dimension subinterval. We obtain the following principle.

Principle 4.33. Consider a system of rank equations which has f(q) solutions in all
q-regular semi-primary lattices of specified type for sufficiently large q. In a semi-
primary lattice of that type with a variety structure, the dimension of the closure of
the set of solutions to the rank equations equals the degree of the polynomial f(q).

Definition 4.34. For a nonnegative integer n, let

〈n〉q
def
= (qn − q1)/(q − 1) = 1 + q + · · ·+ qn−1

〈n〉q!
def
= 〈n〉q〈n− 1〉q · · · 〈1〉q

〈0〉q!
def
= 1.

When the subscript is omitted, implicitly assume it is q, so 〈n〉 = 〈n〉q. We will

commonly use 〈n〉q−1, and it should be noted that 〈n〉q−1 = q1−n〈n〉 and 〈n〉q−1! =

q−(n2)〈n〉!. The common notation (n) for 〈n〉 is not used here because often in this
manuscript, n will be a long expression with parentheses, and the former notation is
difficult to read.

Theorem 4.35. The number of atoms in a q-regular semi-primary lattice L of type
λ is 〈λ′1〉. Dually, the number of coatoms of such a lattice is also 〈λ′1〉.

Proof. The atoms of L and the atoms of [0̂, A0̂] are identical, and the type of the
latter is (1λ

′
1), so it suffices to consider lattices of type λ = (1n). When n = 0, there

are no atoms; when n = 1, there is one atom, 1̂, and when n = 2, there are q + 1
atoms since the lattice is q-regular. So the theorem holds for n = 0, 1, 2. Now assume
it holds for integers smaller than n, and count the number a of atoms of a q-regular
semi-primary lattice of type (1n). In two different ways, we will count triples (u, v, w)
of elements of the lattice, where u, v are distinct atoms and w = u ∨ v. First, pick
u in a ways, then an atom w of [u, 1̂] in 〈n− 1〉 ways (as the interval [u, 1̂] has type

(1n−1)), and then let v be any of the q atoms of [0̂, w] other than u; altogether, there
are a〈n− 1〉q such triples. Second, pick u in a ways and v in a − 1 ways, and then
w = u ∨ v in one way; so there are a(a − 1) triples. Thus, a(a− 1) = a〈n− 1〉q, so
a = 〈n− 1〉q + 1 = 〈n〉.
Theorem 4.36. In a q-regular semi-primary lattice of type λ, the number of coatoms

of type µ <· λ (dually, atoms of cotype µ <· λ) is 〈λ′c〉 −
〈
λ′c+1

〉
, where c = col(λ/µ).

Proof. The coatoms x of type µ satisfy x ≥ 1̂[c− 1] but not x ≥ 1̂[c]. Thus, we want

the coatoms of the interval
[
1̂[c− 1], 1̂

]
not in the subinterval

[
1̂[c], 1̂

]
. The types of

these intervals are Cc−1λ and Ccλ, respectively, and so they contain 〈λ′c〉 and
〈
λ′c+1

〉
coatoms, respectively, by the preceding theorem.
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Definition 4.37. By Theorem 4.11, the types of elements in a flag increase in Young’s
lattice, so we may define for each x ≤ fl the flag type ftypex f of a flag f =
(fl, . . . , fh) as the chain of partitions

ftypex f
def
= (type[x, fl], . . . , type[x, fh])

ftype f
def
= (type[fl, fl], . . . , type[fl, fh]).

This is a skew tableau of shape type[x, fh]/ type[x, fl] in which for each k = l+1, . . . , h,
the squares of type[x, fk]/ type[x, fk−1] are filled with k.

Theorem 4.38. Let L be a q-regular semi-primary lattice of type λ, and P be a
standard skew tableau of outer shape λ with distinct entries. The number of flags
with ftype0̂ f = P is

F P (q)
def
=

∏
i ∈ P

(
〈row(P , i)〉 − 〈row1(P , i)〉

)
.

This is a monic polynomial of degree n(shP ).

Proof. We have fh = 1̂. Given fh ·≥ · · · ·≥ fl with types given by P , we want to
choose fi−1 ≤· fi. If λ(i−1) = λ(i) (equivalently, i doesn’t appear in P ) then fi−1 = fi.
So consider λ(i−1) <· λ(i), with these differing in the cell at the bottom of column c.
Then the number of coatoms fi−1 of [0̂, fi] of type λ(i−1) is〈

λ(i)′

c

〉
−
〈
λ(i)′

c+1

〉
= 〈row(P , i)〉 − 〈row1(P , i)〉.

This is a monic polynomial of degree row(P , i)− 1, The number of flags of type P is
the product of these polynomials over all entries i of P , and is hence monic of degree
n(shP ).

Note. Many theorems concerning flag types will be stated for saturated flags with
f = (f0 <· · · · <· fn), so that ftypex f contains 1, . . . , n; however, they can always
be applied to multisaturated flags with different indices f = (fl ≤· fl+1 ≤· · · · ≤· fh),
where the tableau ftypex f has entries { k : fk−1 <· fk }. Simply change the indices
used, and when some k doesn’t appear in the flag type, take fk to be the same as
fk−1 or conversely, depending on which is constructed first in the proof. Also, when
a theorem is stated concerning ftype0̂ f , it can be applied to ftypex f with any x ≤ fl
by applying the theorem to the semi-primary lattice [x, 1̂] instead of L = [0̂, 1̂].

Definition 4.39. The superstandard skew tableau of shape λ/µ is the tableau
of shape λ/µ in which the entries are filled in consecutively along the first row, then
the second, and so on. If the entries aren’t specified, count beginning with 1. So the
superstandard tableau of shape 4332/221 is

1 2
3

4 5
6 7
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Definition 4.40. The following quantities frequently appear in enumerating various
objects in semi-primary lattices. Let λ be a partition.

Mλ(q)
def
=

λ1∏
j=1

〈
λ′j − λ′j+1

〉
! =

λ1∏
j=1

〈mj(λ)〉!

n0(λ)
def
=

λ1∑
j=1

(
mj(λ)

2

)

We will sometimes use Mλ(q−1) = q−n0(λ)Mλ(q), which has only non-positive powers
of q, including a constant term 1. For any polynomial p(q) divisible by qn0(λ), the
product p(q)Mλ(q−1) is a polynomial of the same degree as p(q). A fact we will not
use that may be of interest is that Mλ(q) is a polynomial whose coefficients form
a symmetric, unimodal sequence, i.e., if we write Mλ(q) =

∑d
i=0 aiq

i where d is the
degree of Mλ(q), then ai = ad−i and 0 < a0 ≤ · · · ≤ abd/2c. This is because Mλ(q) is
the product of terms 〈n〉, each of which is unimodal and symmetric, and the product
of unimodal symmetric polynomials is again unimodal symmetric.

Corollary 4.41. Let P be the superstandard tableau of shape λ/µ in a q-regular semi-
primary lattice of type λ. Let ν be the partition given by mj(ν) = # { i : λi = µi = j } .
The number of flags of type P is

qn(λ/µ)Mλ(q−1)/Mν(q
−1).

Proof. We evaluate the product over i ∈ P of

〈row(P , i)〉 − 〈row1(P , i)〉 = qrow1(P ,i)〈row(P , i)− row1(P , i)〉.

First consider the differences on the right side. Since P is superstandard, the differ-
ences row(P , i)− row1(P , i) equal 1 when i is not at the end of a row of P , and since
〈1〉 = 1, we can ignore these terms. The mj(λ)−mj(ν) rows of length j with at least
one entry contribute consecutive factors 〈mj(ν) + 1〉, 〈mj(ν) + 2〉, . . . , 〈mj(λ)〉 to the
product, which we collect into 〈mj(λ)〉!/〈mj(ν)〉!. The product of this over all row
lengths j is Mλ(q)/Mν(q).

Next consider the product over i ∈ P of the powers of q. The exponent of q is
d =

∑
i row1(P , i). Consider the contribution of the cell (r, j) of λ/µ to this sum.

Each cell of λ/µ not at the end of a row contributes r − 1 to the sum. An entry is
at the end of a row when λ′j+1 + ν′j < r ≤ λ′j, and contributes λ′j+1 to the sum. The
sum of r− 1 over all squares of λ/µ is n(λ/µ), while the sum of r− 1− λ′j+1 over all
squares at the end of rows that contain entries is n0(λ) − n0(ν). The difference is d.
The total number of flags is then

qn(λ/µ)−(n0(λ)−n0(ν))Mλ(q)/Mν(q) = qn(λ/µ)Mλ(q−1)/Mν(q
−1).

4.5. Lattice automorphisms. We examine lattice automorphisms of L = L(V,N).
As usual, let V be a vector space, and choose a basis of V with elements

eij with (i, j) ∈ λ, such that Nei1 = 0 and Neij = ei,j−1 when j > 1.

Let ~x = (x1, . . . , xλ′1) be given componentwise by xi = span { eij : 1 ≤ j ≤ λi }; these
are N-invariant subspaces of V .
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Let A = Aut(L). Let E be the group of endomorphisms (invertible linear trans-
formations) on V that commute with N . Any endormorphism in E induces a lattice
automorphism of L, and since nonzero scalar multiples of the same endomorphism in-
duce the same lattice automorphism, we may projectively identify E with a subgroup
E′ of A. However, E′ may not be all of A. For example, suppose the field is C, and

for any W ∈ L(V,N), let W =
{∑

(i,j)∈λ aijeij :
∑

(i,j)∈λ aijeij ∈W
}
; this fixes ~x.

More generally, for any field, the Galois group induces distinct lattice automorphisms
fixing ~x, and these are distinct from the automorphisms in E′, so that A contains at
least the product of E′ with the automorphisms induced by the Galois group acting
on coordinates with respect to a fixed basis.

We will not determine A, but we will show that the cardinality of the orbit under
A of any saturated flag from 0̂ to 1̂ is divisible by Mλ(q).

Theorem 4.42. In L = L(V,N), the orbit of each maximal length saturated flag
under the automorphism group has cardinality divisible by Mλ(q). The minimal orbit
has cardinality exactly Mλ(q).

Note. We may replace L by any q-regular Arguesian lattices of the form given by
Jónsson and Monk (summarized in Theorem 4.30), but this result may not apply to
non-Desarguean q-regular semi-primary lattices.

Proof. Let Vk = span { eik : λi = k }. Let Gk be the set of endomorphisms on Vk.
With m = mk(λ),

#Gk = (qm− q0)(qm − q1) · · · (qm− qm−1) = (q − 1)mq(
m
2 )〈m〉!.

To any tuple (g1, . . . , gλ1) ∈ G1 × · · · × Gλ1 , associate an endomorphism g on V ,
commuting with N , by defining g(eij) = Nλi−j(gλi(eik)) and extending linearly to all
of V . Let G be the group of all such endomorphisms; then #G = (q−1)lqn0(λ)Mλ(q),
where l = λ′1.

Define projections by linearly extending their action on a basis of V :

πk : V −→ Vk

eij 7−→
eij if λi = j = k;

0 otherwise.

For x ∈ L, define π(x) = (π1(x), . . . , πλ1(x)).
For any saturated flag 0 = f0 <· f1 <· · · · <· fn = V , let Gπ(f) be the subgroup of

G fixing π(f) = (π(f0), . . . , π(fn)). We can explicitly determine Gπ(f) as follows. For
each k with mk(λ) > 0, consider the sequence 0 = πk(f0) ≤· · · · ≤· πk(fn). Among
these are m = mk(λ) distinct spaces forming a saturated chain, 0 = W0 <· · · · <·
Wm = Vk. Initially, the action of gk on W0 = 0 is void. Assume gk fixes each of
W0, . . . ,Wd−1. Arbitrarily choose a vector in Wd not in Wd−1, and extend gk to fix
Wd as well by mapping this vector to any of the qd − qd−1 vectors in Wd not also

in Wd−1. Altogether there are
∏m
d=1(qd − qd−1) = (q − 1)mq(

m
2 ) possible gk’s fixing

W0, . . . ,Wd. Making independent choices of g1, . . . , gλ1 to form all g fixing π(f), there
are (q − 1)lqn0(λ) endomorphisms in Gπ(f).

Thus, #G/#Gπ(f) = Mλ(q) is the size of the orbit of π(f) under the action of G.
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Let Gf be the subgroup of G fixing f . If f is fixed, so is π(f), so Gf is a subgroup
of Gπ(f). Thus, #Gf divides #Gπ(f), so the size of the orbit of f under G is a
multiple of Mλ(q), specifically #G/#Gf = (#G/#Gπ(f))(#Gπ(f)/#Gf ) = Mλ(q) ·
(#Gπ(f)/#Gf ).

Although G is not a subgroup of A, it may be projectively identified with some
subgroup H of A: each element of G induces an automorphism in A, and only nonzero
scalar multiples yield the same automorphism. Consider right cosets Ha with a ∈ A.
Apply two cosets Ha1 and Ha2 to f . Either they yield the exact same orbit, or they
yield disjoint orbits: if h1a1(f) = h2a2(f) with h1, h2 ∈ H, the orbits are the same
because for any h ∈ H we have ha1(f) = (hh−1

1 h2)a2(f) and ha2(f) = (hh−1
2 h1)a1(f).

Each coset yields an orbit (Ha)(f) = H(a(f)) with cardinality divisible by Mλ(q),
and unequal orbits are disjoint, so the orbit of f under A also has cardinality divisible
by Mλ(q).

The minimum cardinality of an orbit is in fact exactly Mλ(q). Let P be the
superstandard tableau of shape λ. Since the flag type is an automorphism invariant,
the set of flags of type P is the union of orbits of A, and since there are F P (q) = Mλ(q)
such flags, they form one orbit of size Mλ(q).

4.6. Complemented elements.

Theorem 4.43. Let L be a semi-primary lattice of type λ. An element of L is com-
plemented iff it has type µ and cotype ν with µ∪ν = λ (i.e., µ and ν are complementary
subsets of the rows of λ).

Proof. If x and y are complements, a join decomposition of 1̂ may be formed from
any join decompositions of x and y, so we manifestly have type 1̂ = typex ∪ type y.
But also [x, 1̂] = [x, x ∨ y] ∼= [x ∧ y, y] = [0̂, y], so type 1̂ = typex ∪ cotypex.

We prove the converse by induction on the length of L. Suppose x has type µ
and cotype ν where µ ∪ ν = λ. Either µ1 = λ1 or ν1 = λ1 (or both). In the former
case, pick a µ1-cycle c in [0̂, x], and a complement c′ to c in L. Then x ∧ c′ and
c are complementary in [0̂, x] because (x ∧ c′) ∨ c = x ∧ (c′ ∨ c) = x ∧ 1̂ = x and
(x ∧ c′) ∧ c = x ∧ (c′ ∧ c) = x ∧ 0̂ = 0̂. Thus, type(x ∧ c′) ∪ type c = typex, so
type(x∧ c′) = (µ2, µ3, . . .). Also, type[x∧ c′, c′] = type[x, x∨ c′] = type[x, 1̂] = ν, and
type[0̂, c′] = (λ2, λ3, . . .). Inductively apply the theorem to find a complement x′ of
x∧ c′ in the subinterval [0̂, c′] of L, i.e., 0̂ = (x∧ c′)∧ x′ and c′ = (x∧ c′)∨ x′. In fact,
x′ is a complement to x in L: since x′ ≤ c′, we have x ∧ x′ = x ∧ (x′ ∧ c′) = 0̂, and
since x = c ∨ (x ∧ c′), we have

x ∨ x′ = (c ∨ (x ∧ c′)) ∨ x′ = c ∨ ((x ∧ c′) ∨ x′) = c ∨ c′ = 1̂.

In case ν1 = λ1, we dualize the above argument, choosing a cocycle c of maximum
rank in [x, 1̂], a complement c′ to c in L, and then a complement x′ to x ∨ c′ in
[c′, 1̂].

Theorem 4.44. The number of complemented cycles of length r > 0 in a q-regular
semi-primary lattice L of type λ is

q(λ′1+···+λ′r)−r〈mr(λ)〉q−1.
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Hence, the number of maximum length cycles is

q|λ|−λ1〈mλ1(λ)〉q−1 = qλ2+λ3+···〈mλ1(λ)〉q−1.

In the trivial case r = 0, the number of complemented cycles is 1.

Proof. We induct on r and λ1. The only complemented cycle of length r = 0 is 0̂.
When r = 1, the complemented atoms are the atoms whose cotype is (λ′1 −

1, λ′2, λ
′
3, . . .)

′. Equivalently, by evaluating the cotype as (Ctype[v, 1̂])′, an atom v
is complemented iff v 6≤ C 1̂. The number of atoms in L, less the number in [0̂, C 1̂], is

〈λ′1〉 − 〈λ′2〉 = qλ
′
1−1〈λ′1 − λ′2〉q−1 = qλ

′
1−1〈m1(λ)〉q−1 ,

as the theorem claims for r = 1.
When λ1 = 0, there are no cycles of positive length, and indeed we have mr(λ) = 0

when r > 0.
Now take λ1 > 0 and r > 1 and assume the theorem is true for smaller values. In

two ways, we count pairs (c, d) where c is a complemented r-cycle in the lattice; d is
a complemented (r − 1)-cycle in [A0̂, 1̂]; and c ≤ d.

Let c be a complemented r-cycle in L, with a complement c′. We require d ≥ c
and d ≥ A0̂, so d ≥ A0̂∨ c. Now type[A0̂, A0̂∨ c] = type[A0̂∧ c, c] = (r− 1), so only
d = A0̂ ∨ c is possible (as a larger d would not be an (r − 1)-cycle). We will show
that this d is complemented in [A0̂, 1̂] by showing that d′ = c′ ∨A0̂ is a complement.
By Corollary 3.10, type[0̂, d′] is the type of c′ with the first column lengthened by 1.
We have d ∨ d′ = c ∨ c′ ∨A0̂ = 1̂ ∨A0̂ = 1̂. Also, d ∧ d′ ≥ A0̂ and

ρ(d ∧ d′) = ρ(d) + ρ(d′)− ρ(1̂)

= (ρ(c) + ρ(A0̂)− 1) + (ρ(c′) + 1) − ρ(1̂)

= (ρ(c) + ρ(c′)− ρ(1̂)) + ρ(A0̂)

= ρ(A0̂)

so in fact, d ∧ d′ = A0̂. So the number of pairs (c, d) is the same as the number of
complemented r-cycles c of L.

On the other hand, let d be a complemented (r − 1)-cycle in [A0̂, 1̂], in one of
q(λ′2+···+λ′r)−(r−1) ways. This has type (λ′1, 1

r−1)′ in L. Consider the atom v = Cr−1d
of L. Any r-cycle c of L with c ≤ d must have c ≥ v, for we must have d = c ∨A0̂,
and then Cr−1d = Cr−1c ∨ Cr−1A0̂ = Cr−1c. Also, type[v, d] = (λ′1, 1

r−2)′. So c is
an (r − 1)-cycle in [v, d], hence a maximum length cycle, hence complemented. The
number of choices of c is, by induction, q(λ′1+(r−2)·1)−(r−1) = qλ

′
1+1. So the number

of pairs (c, d) is q(λ′1+···+λ′r)−r. By the first count, this number is also the number of
complemented r-cycles.

Definition 4.45 (see [20, p. 38]). In a semi-primary lattice L, the set of comple-
ments of x ∈ L is ΓL(x).

An enumerative counterpart to Theorem 4.5 is the following.

Theorem 4.46 (see [20, pp. 38–39]). If c is a cycle of rank highest rank arankL
in a q-regular semi-primary lattice L, then the number of complements to c in L is
qρ(1̂)−ρ(c).
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We now generalize this to enumerate the complements of all complemented ele-
ments.

Theorem 4.47. Let x be a complemented element of type µ and cotype ν in a q-
regular semi-primary lattice of type λ = µ ∪ ν. The number of complements to x
is

#ΓL(x) = q
∑

j
µ′jν
′
j .

We present two proofs. The first is analytic, and the second is synthetic, so it
applies to any q-regular semi-primary lattice.

Analytic proof. Let V be a vector space with a nilpotent action of type λ. Choose a
basis of V with two kinds of elements,

eij with 1 ≤ j ≤ µi Nei1 = 0 Neij = ei,j−1 for j > 1, and
e′ij with 1 ≤ j ≤ νi Ne′i1 = 0 Ne′ij = e′i,j−1 for j > 1,

such that the eij span the subspace x of V . A complement to x is some y which
can be expressed canonically as follows. It is spanned by the vectors Nkzm where
(m, k + 1) ∈ ν and zm is of the form

zm = e′m,νm +
∑

(i,j)∈µ: j≤νm
a(m)
ij eij.

The restriction j ≤ νm is because the space spanned by {zm, Nzm, . . . , Nνm−1zm}
must be annihilated by Nνm .

We can set all the parameters a(m)
ij independently to any of the q elements of the

field. For given m and j ≤ νm, the number of i with (i, j) ∈ µ is µ′j. Thus, the total

number of parameters a
(m)
ij is∑

m

∑
j≤νm

µ′j =
∑
j

∑
m: νm≥j

µ′j =
∑
j

ν′jµ
′
j.

Synthetic proof. We induct on λ1. When λ1 = 0, then x = 0̂, its only complement is
0̂, and µ = ν = λ = ∅, so

∑
j µ
′
jν
′
j = 0. Now take λ1 > 0 and assume lattices with

smaller values of λ1 obey the theorem.
Let k = µ′1. In two ways, we count flags (c0 <· c1 <· · · · <· ck) where c0 is a

complement to x in L and ck is a complement to x ∨ A0̂ in [A0̂, 1̂]. Note that
typex∨A0̂ = (λ′1, µ

′
2, µ

′
3, . . .)

′ and type ck = (λ′1, ν
′
2, ν
′
3, . . .)

′. So in any such sequence,
we have ck = c0 ∨A0̂, and type ci = (ν′1 + i, ν′2, ν

′
3, . . .)

′.
Let c0 be a complement of x in L. Successively choose c1, c2, . . . , ck so that ci is

an atom of [ci−1, c0 ∨ A0̂]. This interval is elementary of rank k − i + 1, because it
is contained in the elementary interval [c0, c0 ∨ A0̂], so it has type (1k−i+1), and the
number of choices of ci is 〈k − i+ 1〉. The final term is ck = c0 ∨A0̂. So there are

#ΓL(x) ·
k∏
i=1

〈k − i+ 1〉 = #ΓL(x) · 〈k〉!

sequences.
On the other hand, choose a complement ck to x ∨ A0̂ in [A0̂, 1̂]. First we show

that type ck ∧ x = (1k). We have ck ∧ (x ∨ A0̂) = A0̂ because the elements on the
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left are complementary. By modularity, (ck ∧ x) ∨ A0̂ = A0̂, so ck ∧ x ≤ A0̂, so
ck ∧ x = ck ∧ A0̂ ∧ x = A0̂ ∧ x, which has type (1k).

Next choose ci−1 to be a coatom in [0̂, ci] with ci−1 ∨ x = ci ∨ x = 1̂ and ci−1 ∧
x <· ci ∧ x; thus, ci−1 is any coatom of [0̂, ci] not also in [ci ∧ x, ci]. The type of
[0̂, ci] has first column ν′1 + i, so this interval has 〈ν′1 + i〉 coatoms. The interval

[ci ∧ x, ci] ∼= [x, x ∨ ci] = [x, 1̂] has type ν and hence 〈ν′1〉 coatoms. The type of

[0̂, x ∧ ci] is (1i), so c0 is a complement to x.
The number of sequences counted in this second fashion is

#Γ[A0̂,1̂](x ∨A0̂) ·
k∏
i=1

(〈ν′1 + i〉 − 〈ν′1〉) = q
∑

j≥2
µ′jν
′
j ·

k∏
i=1

qν
′
1〈ν′1 + i− ν′1〉

= q
∑

j≥2
µ′jν
′
j · qµ′1ν′1 · 〈k〉!.

Equate this with the number of sequences counted in the first fashion to obtain the
theorem.

4.7. The algebra of independent elements. For a tuple ~x = (x1, . . . , xk) of
elements of a semi-primary lattice, and a weak composition µ = (µ1, . . . , µk), let

~x[[µ]]
def
= x1[µ1] ∨ · · · ∨ xk[µk]

~x((µ))
def
= x1(µ1) ∧ · · · ∧ xk(µk).

Ordinarily, we will apply the former (latter) to a tuple ~x of independent join (meet)
irreducibles.

A join decomposition of x is a tuple ~x of independent join-irreducibles whose
join is x, such that ρ(x1) ≥ · · · ≥ ρ(xk). A meet decomposition is defined dually.

Theorem 4.48. The number of join decompositions of 1̂ in a q-regular semi-primary
lattice of type λ is

q2n(λ)Mλ(q−1).

Proof. Let λ(k) = (λk, λk+1, . . .), and tk be the multiplicity of λk in λ(k). Let nk =∣∣∣λ(k)
∣∣∣ = λk + λk+1 + · · · .

Choose a maximum length cycle x1 in 1̂ in one of qn1−λ1〈t1〉q−1 ways, and then a

complement y1 to x1 in one of qn1−λ1 = qn2 ways.
Suppose we have alternately chosen y0, x1, y1, . . . , xk−1, yk−1 (where y0 = 1̂) so that

xi is a maximum length cycle, and yi is a complement to it, in yi−1, for i = 1, . . . , k−1.
Then type yi = λ(i). The number of ways to pick a maximum length cycle xk in yk−1

is qnk+1〈tk〉q−1 . The number of complements yk to xk in yk−1 is qnk+1 .

The number of sequences y0, x1, y1, . . . , xk, yk of the above form with yk = 0̂, is
the number of join decompositions of 1̂, because the y’s are recoverable from the x’s:
yi = xi ∨ xi+1 ∨ · · · . This number is∏

k

q2nk+1〈tk〉q−1 = q2n(λ)Mλ(q−1).

The exponent follows from
∑
k nk+1 =

∑
k(λk+1 + λk+2 + · · ·), noting that each λi

appears i − 1 times. For each j > 0, there is a string of consecutive tk’s of the form
mj,mj − 1, . . . , 1, so that the product of all 〈tk〉q−1 is Mλ(q−1).
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If x, y are independent elements in a modular lattice, the interval [0̂, x ∨ y] is not
in general isomorphic to the direct product of lattices [0̂, x] and [0̂, y]. However, we
have the following result.

Lemma 4.49. Let x, y be independent elements in a modular lattice. When x1, x2 ≤
x and y1, y2 ≤ y, we have

(x1 ∨ y1) ∨ (x2 ∨ y2) = (x1 ∨ x2) ∨ (y1 ∨ y2)

(x1 ∨ y1) ∧ (x2 ∨ y2) = (x1 ∧ x2) ∨ (y1 ∧ y2)

Proof. The first part is clear from associativity and commutativity. For the second
part, (x1∨y1)∧ (x2∨y2) ≥ (x1∧x2)∨ (y1∧y2) because each parenthesized expression
on the left is weakly greater than each parenthesized expression on the right. Because
x and y are independent, any element less than or equal to x and any less than or
equal to y are independent, so the rank of the left-hand side is

ρ(x1 ∨ y1) + ρ(x2 ∨ y2)− ρ(x1 ∨ y1 ∨ x2 ∨ y2)

= ρ(x1) + ρ(y1) + ρ(x2) + ρ(y2)− ρ(x1 ∨ x2)− ρ(y1 ∨ y2)

= ρ(x1 ∧ x2) + ρ(y1 ∧ y2),

which is the rank of the right-hand side, so we have equality.

Corollary 4.50. Let ~x be a join decomposition of 1̂ of type λ. Then for all composi-
tions µ, ν ≤ λ, we have ~x[[µ]]∨~x[[ν]] = ~x[[µ∨ ν]] and ~x[[µ]]∧~x[[ν]] = ~x[[µ∧ ν]]. Dual
equalities apply to meet decompositions of 0̂.

Theorem 4.51. Let ~x = (x1, . . . , xk) be a join decomposition of 1̂ and ~y = (y1, . . . , yk)
be defined by yi = ∨j 6=ixj. Then ~y is a meet decomposition of 0̂. Further, for
any weak compositions µ, ν with µi + νi = λi, we have ~x[[µ]] = ~y((ν)). Further,
C~x[[µ]] = ~x[[µ−]], A~y((ν)) = ~y((ν−)), A~x[[µ]] = ~y((µ+)), and C~y((ν)) = ~y((ν+)),
where µ−i = max {µi − 1, 0}, µ+

i = min{µi + 1, λi}, and similarly for ν.

Proof. The intervals [0̂, xi] = [xi ∧ y1, xi] and [yi, 1̂] = [yi, xi ∨ yi] are perspective, so
the yi are cocycles with ρ̄(yi) = ρ(xi) = λi. The element µi from the bottom of either
interval is λi − µi = νi from the top, so [yi, 1̂](νi) = yi ∨ xi[µi] = ~x[[λ(i)]], where λ̃ is

the weak composition λ(i)
j = λj if j 6= i, and λ(i)

i = µi. Finally,

~y((ν)) =
∧
i

[yi, 1̂](νi) =
∧
i

~x[[λ(i)]] = ~x[[
∧
i

λ(i)]] = ~x[[µ]],

where we applied Corollary 4.50 to obtain the third equality.
Next,

C~y((ν)) = C~x[[µ]] = C

(∨
i

xi[µi]

)
=
∨
i

C (xi[µi]) =
∨
i

xi[µ
−
i ] = ~x[[µ−]] = ~y((ν+)),

and similarly for the other pair of equalities.

Definition 4.52. Given weak compositions µ ≤ λ, define weak compositions Aλµ
and Cµλ in the interval [µ, λ] by specifying their parts:

(Aλµ)i = min {µi + 1, λi}
(Cµλ)i = max {λi − 1, µi} .
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The weak composition Aλµ adds a cell to the end of each row of µ unless it would
exceed the length of the corresponding row of λ, while the weak composition Cµλ
deletes a cell from the end of each row of λ unless it would be shorter than the same
row of µ.

Corollary 4.53. Let ~x, ~y, λ, µ, ν be as in Theorem 4.51. Then

C~x[[µ]]

(
~x[[λ]]

)
= ~x[[Cµλ]]

A~x[[µ]]

(
~x[[λ]]

)
= ~x[[Aλµ]]

C~y((ν))

(
~y((λ))

)
= ~y((Aνλ))

A~y((ν))

(
~y((λ))

)
= ~y((Cλν))

Definition 4.54. Given partitions µ, λ, we say that µ is a subcolumn partition of
λ, written µ v λ, if µ can be obtained from λ by deleting columns, or equivalently,
mi(µ′) ≤ mi(λ′) for all possible column lengths i.

Lemma 4.55. If µ v λ then µ v Aλµ v λ and µ v Cµλ v λ.

Proof. We obtain Aλµ from µ by inserting the largest column of λ omitted from µ,
while we obtain Cµλ from λ by deleting the largest omitted column.

Lemma 4.56. If µ, ν v λ then µ ∨ ν, µ ∧ ν v λ.

Proof. Let ρ = µ ∧ ν, so ρ′i = min {µ′i, ν′i}. Each ρ′i is the length of some column
of µ or ν and hence of λ. We must make sure that the multiplicity of each length
is no greater than in λ. Suppose i is minimal with ρ′i = k, and that, without loss

of generality, µ′i = k. The
(
i + mk(µ′)

)
th column of µ, and hence of ρ, has length

strictly less than k, so mk(ρ′) ≤ mk(µ′). Also, mk(µ′) ≤ mk(λ′), so mk(ρ′) ≤ mk(λ′).
This holds for all k, so ρ v λ.

The argument for joins is similar, but instead of choosing the leftmost column of
length k and examining the one mk(µ′) to its right, we choose the rightmost one of
length k and examine the column (if any) mk(µ′) to its left.

Theorem 4.57. Let S be the minimal set containing ∅, λ and closed under ∧,∨,A, C.
Then S is precisely the set of all subcolumn partitions of λ.

Proof. If µ v ν v λ then Aνµ adds a column to µ of length equal to the largest i with
mi(ν′) > mi(µ′), while Cνµ subtracts a column of this length from ν. So all elements
of S are subcolumn partitions of λ.

Conversely, let µ v λ be obtained from λ by deleting columns c1 > c2 > · · · >
ck > 0. Abbreviate Ax = Aλx and Cx = C∅x. Then µ = Ack−1Cck · · · Ac1−1Cc1λ,
because Aci−1Cci deletes the first ci columns, which happen to coincide with the first
ci columns of λ, and then inserts the ci − 1 largest columns of λ that are missing,
which in fact are the ci − 1 largest columns of λ.

Theorem 4.58. Let µ v λ = type 1̂. Let ~x and ~y be two join decompositions of 1̂.
Then ~x[[µ]] = ~y[[µ]].
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Proof. By Theorem 4.57, we can express µ as a polynomial in ∧,∨,A, C, ∅, λ. Replace
∅ with 0̂; λ with 1̂; A with A; C with C; and interpret ∧ and ∨ in L instead of Young’s
lattice. This gives a decomposition-independent expression of an element equal to
either of ~x[[µ]] and ~y[[µ]], by recursive applications of Corollaries 4.50 and 4.53.

Definition 4.59. This last theorem allows us, for all µ v λ, to define a special
element 1̂[[µ]]. Its type is µ and its cotype is (λ1−µ1, λ2−µ2, . . .), or alternately, the
columns of λ missing from µ. Further, for any interval [x, y], we may define [x, y][[µ]]
as ~z[[µ]], where µ v type[x, y] and ~z is any join decomposition of y in the interval
[x, y]. We abbreviate [0̂, y][[µ]] by y[[µ]].

Theorem 4.60. Let λ, µ, ν be partitions with µ+ ν = λ. The unique element of type
µ and cotype ν in a semi-primary lattice of type λ is 1̂[[µ]].

Proof. The previous theorem establishes existence. To prove uniqueness, we induct
on the length of the lattice. For λ = µ = ν = ∅, there is only one element in the
lattice, so take a larger case. Suppose x has type µ and cotype ν. Either µ′1 = λ′1, or
ν′1 = λ′1 (or both). In the former case, Ax0̂ = A0̂, so that x has type Cµ and cotype
ν in the interval [A0̂, 1̂] of type Cλ, and since this theorem inductively applies to this
smaller interval, x is unique. In the latter case, Cx1̂ = C 1̂, so that x has type µ and
cotype Cν in [0̂, C 1̂] (of type Cλ), and again x is unique.

4.8. Hereditary Decompositions.

Definition 4.61. A hereditary (join) decomposition of a (nonsaturated) flag
f = (f0 ≤ · · · ≤ fn) is a join decomposition ~x of fn such that fi = ~x[[type fi]] for all
i.

Theorem 4.62. Let L be a semi-primary lattice of type λ. Let f = (f0, . . . , fn)
have a hereditary join decomposition in L. Let p(v0, . . . , vn) be a lattice polynomial
constructed from the variables v0, . . . , vn; constant 0̂; and binary operators ∧,∨, C, A.
Then type p(f0, . . . , fn) is computed by substituting into p(v0, . . . , vn) the following: vi
becomes type fi; C becomes C; A becomes A; 0̂ becomes ∅; and ∧ and ∨ are interpreted
in Young’s lattice instead of L.

Proof. Consider any hereditary decomposition ~x of f . Then

p(f0, . . . , fn) = p(~x[[type f0]], . . . , ~x[[type fn]]).

Also 0̂ can be replaced by ~x[[∅]]. Recursively apply Corollaries 4.50 and 4.53 to this
form of the polynomial to obtain the result.

Now we’ll examine some conditions under which flags have hereditary join decom-
positions.

Theorem 4.63. Let x <· y in a semi-primary lattice L. There is a hereditary de-
composition of (x, y) in which a single part is reduced in length by 1. Consequently,
typex <· type y in Young’s lattice. If the types differ in the first component, then all
join decompositions of y restrict to join decompositions of x.
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Proof. If x = 0̂ then y is an atom, and the decomposition is simply y.
If arank x = arank y then pick a cycle c ≤ x of rank arank x. It will be one

element of the decompositions of both x and y. Take a complement c′ of c in [0̂, y].
Then y ∨ c′ ≥ x ∨ c′ ≥ c ∨ c′ = 1̂ so y ∨ c′ = x ∨ c′ = 1̂, and then by Lemma 2.3,
c′ = y∧c′ ·> x∧c′. Since ρ(c′) < ρ(y), inductively there is a hereditary decomposition
of (x ∧ c′, c′) satisfying the conditions of the theorem, and to this decomposition we
prepend a cycle c to obtain a decomposition of (x, y).

If arank x < arank y then pick any cycle c ≤ y of rank arank y. Let d = c ∧ x <·
c∧ y = c. Let c′ be a complement of d in [0̂, x]. Then c′ ∧ c ·≥ c′ ∧ d = 0̂, but the only
atom in the chain [0̂, c] is also in [0̂, d], so c′ ∧ c = 0̂. Thus, c′ ∨ c ·> c′ ∨ d = x; in fact,
c′ ∨ c = y, since c′ ∨ c ≤ y and y ·> x. Thus c′ is also a complement of c in y, so we
add c to any decomposition of c′ to obtain a hereditary decomposition of (x, y).

As a corollary, we obtain a different proof of Theorem 4.11.

Theorem 4.11. Let [a′, b′] ⊆ [a, b]. Then type[a′, b′] ≤ type[a, b].

Proof. By repeated applications of the preceding theorem on a saturated chain from
b down to b′, we have type[a, b′] ≤ type[a, b]. By a dual argument, we obtain
type[a′, b′] ≤ type[a, b′].

We obtain an enumerative version of Theorem 4.63.

Corollary 4.64. Let x be a coatom of type µ in a q-regular semi-primary lattice of
type λ. Suppose λ and µ differ in their ith part.

(1) The number of complemented cycles c of length r = λi with c 6≤ x is

q(λ′1+···+λ′r)−r.

(2) The number of hereditary decompositions of (x, 1̂) is

q2n(λ)−i+1Mλ(q−1)

〈mr(λ)〉q−1

.

Proof.

(1) Let r = λi. The number of complemented cycles of length r in [0̂, 1̂], less the
number of complemented cycles of length r in [0̂, x], is

q(λ′1+···+λ′r)−r〈mr(λ)〉q−1 − q(µ′1+···+µ′r)−r〈mr(µ)〉q−1

= q(λ′1+···+λ′r)−r〈mr(λ)〉q−1 − q(λ′1+···+λ′r−1)−r〈mr(λ)− 1〉q−1

= q(λ′1+···+λ′r)−r.

by Theorem 4.47. The parts of λ′ and µ′ are the same except µ′r = λ′r − 1, so
mr(µ) = mr(λ) − 1. The two terms subtracted in the second expression are
each sums of consecutive powers of q, differing only in the single power given
in the third expression.

(2) Let d = (λ′1 + · · · + λ′r) − r. Consider any hereditary decomposition ~x of
(x, 1̂). We have xi ≤ 1̂; xi 6≤ x; and Cxi ≤ x. Let c′ = ∨j 6=ixj. Then

c′ is a complement to xi in [0̂, 1̂], and to Cxi in [0̂, x]. Note that in fact
any complement y to Cxi in [0̂, x] is a complement to x in [0̂, 1̂] (though the
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converse is not true): we have xi ∨ y ·≥ Cxi ∨ y = x but xi 6≤ x, so xi ∨ y = 1̂,
and so xi ∧ y = Cxi ∧ y = 0̂.

To enumerate the hereditary decompositions, first choose a complemented
cycle xi ≤ 1̂ but xi 6≤ x in one of qd〈mr(λ)〉q−1 ways. This has type (1r)′ and
cotype

ν = (λ′1 − 1, . . . , λ′r − 1, λ′r+1, λ
′
r+2, . . .)

′.

Then we pick a complement c′ to Cxi in x, with type ν and cotype (1r−1) in
[0̂, x], in one of

qλ
′
1+···+λ′r−1−(r−1) = qd−λ

′
r+1 = qd−i+1

ways by Theorem 4.47. Obtain a decomposition of c′ in one of

q2n(ν)Mν(q
−1) = q2(n(λ)−d) Mλ(q−1)

〈mr(λ)〉q−1

ways, and insert xi into this decomposition as the ith term to obtain a hered-
itary decomposition of (x <· 1̂). Multiply the number of choices together to
obtain the value stated in the theorem.

The next several theorems are different generalizations of Theorem 4.63 to heredi-
tary decompositions of flags.

Definition 4.65. An interval is elementary if its type is of the form (1n).

Definition 4.66. A vertical strip is a skew partition λ/µ with at most one cell in
each row; equivalently, λi ·≥ µi for all i > 0. The notation λ ≥∨ µ means λ ≥ µ and
λ/µ is a vertical strip.

Dually, a horizontal strip is a skew partition λ/µ with at most one cell in each
column; equivalently, λ′i ·≥ µ′i for all i > 0.

Proposition 4.67. Let [x, y] be an elementary interval in a semi-primary lattice.
Then type y/ typex is a vertical strip.

Proof. Since [x, y] is elementary, it is contained in [Cy, y], whence typeCy ≤ typex ≤
type y. Since type y/ typeCy has one cell on each nonempty row of type y, and no
other cells, it is a vertical strip.

Definition 4.68. A row-end of a tableau P of shape λ/µ is any cell (i, λi) with
1 ≤ i ≤ λ′1.

Theorem 4.69. Let f = (f0, . . . , fn) be a flag in which the interval [f0, fn] is ele-
mentary.

(1) f has a hereditary decomposition.
(2) Let P = (λ(0) <· · · · <· λ(n)) be a standard skew tableau whose entries form a

vertical strip, λ(n)/λ(0). In a q-regular semi-primary lattice of shape λ(n), the
number of these flags with ftype0̂ f = P is∏

k ∈ P

(
〈l1〉 − 〈l2〉

)

56



where

l1 = # row-ends of P weakly right of k containing any of •, 1, . . . , k
l2 = # row-ends of P strictly right of k containing any of •, 1, . . . , k

Proof.

(1) We may assume f is saturated, because if it’s not, we can always remove
duplicate elements and add additional intermediate elements to saturate it;
doing so does not change the type of the interval from the first to the last
element, and still provides decompositions of all the original elements.

Any hereditary decomposition of fn−1 <· fn yields a cycle c and an indepen-
dent element c′ with c ∨ c′ = fn and Cc∨ c′ = fn−1.

For 0 ≤ i ≤ n, the interval [c ∧ fi, c ∧ fn] is contained in [0̂, c], so its type,
α, is a one row partition. Also,

[fi ∧ c, fn ∧ c] ⊆ [fi ∧ c, c] ∼= [fi, fi ∨ c] ⊆ [fi, fn],

so α is a one column partition. Thus α is ∅ or (1). Further, c∧ fn−1 <· c ∧ fn,
so α = (1) for i = 0, . . . , n − 1. Thus c ∧ fi = Cc for i = 0, . . . , n− 1.

Let g = (g0 ≤ · · · ≤ gn−1) be the flag given by gi = fi∧ c′. The elements Cc
and gi are independent, and

Cc ∨ gi = Cc ∨ (c′ ∧ fi) = (Cc∨ c′) ∧ fi = fn−1 ∧ fi = fi.

The interval [g0, gn−1] is elementary because

Ag0 = A(f0 ∧ c′) = Af0 ∧ Ac′ ≥ fn ∧Ac′ ≥ fn−1 ∧ c′ = gn−1.

Since the flag g is saturated and shorter than f , by induction we find a hered-
itary decomposition of g, and then add c to it to obtain a hereditary decom-
position of f .

(2) Set fn := 1̂. After choosing fn, . . . , fk, choose fk−1 to be a coatom of [0̂, fk] of
type λ(k−1) so that [fk−1, 1̂] is elementary, as follows. Let r = col(λ(k)/λ(k−1)).
The condition that fk−1 is a coatom of [0̂, fk] of type λ(k−1) is equivalent to

fk−1 <· fk

fk−1 ≥ fk[r − 1]

fk−1 6≥ fk[r]

while the elementary condition is
fk−1 ≤ C 1̂.

So fk−1 is any coatom of I1 =
[
C 1̂∨fk[r−1], fk

]
not also in I2 =

[
C 1̂∨fk[r], fk

]
.

These are both elementary intervals since they are subintervals of [C 1̂, 1̂].
By (1) there is a hereditary decomposition of (fk, 1̂), so by Theorem 4.62,
type(C 1̂∨ fk[r− 1]) = Cλ(n) ∨ λ(k)[r− 1]. Compare this rowwise to λ(k): when

r − 1 < λ(k)
i = λ(n)

i the ith row is λ(k)
i − 1, and otherwise, the ith row is λ(k)

i .

We have λ(k)
i <· λ(k)

n when the entry at the end of row i of P is larger than k.
Thus, ρ(I1) is the number of entries weakly smaller than k at the end of a row
in a column weakly right of k. Similarly, ρ(I2) is the number of entries weakly
smaller than k at the end of a row in a column strictly right of k.
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Theorem 4.70. Let f = (f0 <· · · · <· fn) be a flag in a semi-primary lattice L with
ftype0̂ f equal to the superstandard skew tableau of shape λ/µ.

(1) f has a hereditary decomposition.
(2) If L is q-regular, there are

qn(λ)+n(µ)Mν(q
−1)

such decompositions, where ν is the partition given by

mi(ν) = # { j : λj = µj = i } for i ≥ 1.

Proof. In both parts we induct on the number of rows in λ. When there are no rows,
the flag is (0̂), which has the empty sequence as its sole decomposition.

(1) Let the first row of ftype0̂ f have entries 1, . . . , k, with k = λ1 − µ1. Choose
a cycle c of rank λ1 with c ≤ fk, and take a complement c′ of c in fn. Since
arank fk = · · · = arank fn = λ1, we see that c is a maximal cycle in each of
fk, . . . , fn, and so the type of each is the type of any relative complement of
c, with a part λ1 prepended. The element c′ ∧ fj is a complement to c in
fj (with k ≤ j ≤ n) because c ∨ (c′ ∧ fj) = (c ∨ c′) ∧ fj = fn ∧ fj = fj and

c∧(c′∧fj) ≤ c∧c′ = 0̂. So the flag g = (fk∧c′, . . . , fn∧c′) of complements to c
has type ftype0̂ f with the first row deleted; that is, it is the superstandard skew

tableau of shape λ̃/µ̃ where λ̃ = (λ2, λ3, . . .) and µ̃ = (µ2, µ3, . . .) and entries
k + 1, . . . , n. Inductively applying the theorem to g, we obtain a hereditary
decomposition ~x of g, to which we prepend the cycle c to obtain a hereditary
decomposition ~y of (fk, . . . , fn). Finally, because the types of f0, . . . , fk differ
in only their first component, all join decompositions of fk are hereditary
decompositions of f0, . . . , fk, so ~y is a hereditary decomposition of f .

(2) We count the choices made in (1). The type of fk is γ = (λ1, µ2, µ3, . . .), so
the number of choices of c is

qµ2+µ3+···〈mλ1(γ)〉q−1 =

q|µ|−µ1 if λ1 > µ1;

q|µ|−µ1〈mµ1(µ)〉q−1 if λ1 = µ1.

by Theorem 4.44 (note that if λ1 > µ1 then λ1 > µ2, so mλ1(γ) = 1, and
〈1〉q−1 = 1). The number of choices of c′ is

q|λ|−λ1

by Theorem 4.47. Let ν̃ be the partition given by

mi(ν̃) = #
{
j : λ̃j = µ̃j = i

}
.

Then inductively there are

qn(λ̃)+n(µ̃)Mν̃(q
−1)

decompositions of g.
If we fill in each cell of λ with its row number minus 1 and add up these

entries, we obtain n(λ); subtract an additional 1 from each entry not on the
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first row, and add them up to obtain n(λ̃). A similar argument computes n(µ̃).
Thus,

n(λ̃) = n(λ) − |λ| + λ1

n(µ̃) = n(µ) − |µ| + µ1

Now we multiply all the numbers of choices together to obtain the number
of decompositions:

qn(λ)+n(µ)Mν̃(q−1) if λ1 > µ1;
qn(λ)+n(µ)〈mµ1(µ)〉q−1Mν̃(q−1) if λ1 = µ1.

If λ1 > µ1 then ν = ν̃, so that we have the total stated in the theorem.
If λ1 = µ1 then ν = (µ1, ν̃1, ν̃2, ν̃3, . . .). Since the parts of λ weakly decrease,

but are bounded below by the parts of µ, the first mµ1(µ) parts of λ are also
equal to µ1, so mµ1(ν) = mµ1(µ) and Mν(q−1) = 〈mν1(ν)〉q−1Mν̃(q−1). So
again, the total is as stated in the theorem.

Example 4.71. Consider

P =

• • • • •
• • • • •
• • • • 1
• • • 2 3
• • •
• • •
• • •
• 4 5
•
6

This has shape λ/µ = (5, 5, 5, 5, 4, 4, 4, 4, 1, 1)/(5, 5, 4, 3, 3, 3, 3, 1, 1). The rows with
no entries form the partition ν = (5, 5, 3, 3, 3, 1). A given flag with type P has

qn(λ)+n(µ)Mν(q
−1) = q173+82〈2〉q−1〈3〉q−1〈1〉q−1 = q255〈2〉q−1〈3〉q−1〈1〉q−1

hereditary decompositions.

Corollary 4.72. Let f be a saturated flag and low(f) < k < high(f).

(1) If ftype0̂ f has k + 1 on a lower row than k, then type[fk−1, fk+1] = ;
(2) if k and k + 1 are on the same row, then type[fk−1, fk+1] = ;
(3) if k + 1 is on an earlier row, either type is possible (although generically we

expect ).

Proof. In the first two cases, we have ftype0̂(fk−1 <· fk <· fk+1) is a superstandard skew
tableau, so that these three consecutive elements have a hereditary decomposition.
In (1), two join-irreducibles in the decomposition of fk+1 are each reduced in length
by 1 to obtain fk−1, while in (2), one join-irreducible is reduced in length by 2. So
we obtain the types indicated.

The smallest example of (3) is

ftype0̂ f = 1 3
2

.

59



We see that typeCf3 = (1). So the only value of f1 with type[f1, f3] = is Cf1, and
all other atoms f1 of [f0, f2] yield type[f1, f3] = .

More generally in (3), let P = (λ(k−1) <· λ(k) <· λ(k+1)) be a skew tableau of shape
λ/µ with just 2 entries, k in cell (r0, c0) and k + 1 in cell (r1, c1), with c0 < c1 and
r0 > r1. Choose any fk, fk+1 with ftype0̂(fk, fk+1) = (λ(k), λ(k+1)). We will show that
of those fk−1 <· fk with type λ(k−1), fewer have type[fk−1, fk+1] = than .

We have fk−1 <· fk and type fk−1 = λ(k−1) iff fk−1 is a coatom of the interval

I1 =
[
fk[c0 − 1] ∨ Cfk, fk

]
not also in I2 =

[
fk[c0] ∨ Cfk, fk

]
.

If we further want type[fk−1, fk+1] = , then since fk−1 ≥ Cfk+1, we obtain that

fk−1 is any coatom of I3 =
[
fk[c0−1]∨Cfk+1, fk

]
not also in I4 =

[
fk[c0]∨Cfk+1, fk

]
.

Let x1 = fk[c0−1]∨Cfk, and similarly, let xi = 0̂Ii for i = 1, 2, 3, 4. Since fk <· fk+1,
these have a hereditary decomposition, so the types of x1, . . . , x4 can be computed
by Theorem 4.62 by replacing fk and fk+1 with their types, and C with C.

The type of x1 is λ(k) with each row at least c0 long reduced in length by 1, while
in typex2, each row of λ(k) at least c0 + 1 long is reduced in length by 1. The types of
x3 and x4 are almost the same as x1 and x2 except that an additional cell is added at
(r1, c1 − 1). Since c1 > c0, this cell is not present in type x1, and when c1 > c0 + 1, it
is not present in typex2. Note that in any case, we do not have x3 = x4 because the
cell (r0, c0) is in typex4 but not typex3. Thus, I3 − I4 is nonempty, and any coatom
yields fk−1 with type[fk−1, fk+1] = . Any coatom of I1− I2 not also in I3− I4 yields

. Since I1 is longer than I3 by 1, there are roughly q times as many possibilities
yielding as in a q-regular semi-primary lattice.

Example 4.73. Suppose

ftype f =
1 3 4 8
2 5 6
7 9

Then intervals [f0, f2], [f3, f5], [f5, f7], and [f7, f9] have type . Intervals [f2, f4]
and [f4, f6] have type . The types of the intervals [f1, f3] and [f6, f8] cannot be
determined from ftype f .

Definition 4.74. Let A be a skew tableau and B be an ordinary tableau. The
tableau A +B is obtained by appending the ith row of B to the ith row of A, for

all i. Its shape is oshA + shB =
(
(oshA)′ ∪ (shB)′

)′
, so oshA and shB are both

subcolumn partitions of oshA+B. For example,

1 3 7
2 5
4
6

+

8 10
9 11
12

=

1 3 7 8 10
2 5 9 11
4 12
6

This is also defined for composition tableaux, but the relation for transposed shapes
doesn’t apply. The definition in terms of the chains A = (λ(l), λ(l+1), . . . , λ(k)) and
B = (γ(k), γ(k+1), . . . , γ(h)) is

A+B = (λ(l), λ(l+1), . . . , λ(k) = γ(k) + λ(k), γ(k+1) + λ(k), . . . , γ(h) + λ(k)).
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Definition 4.75. For any tableau A = (λ(l), . . . , λ(h)), let dA = (λ(l), . . . , λ(h−1)), so
low(dA) = low(A) and high(dA) <· high(A). This can be thought of as deleting
the largest entry of A, though when high(A) doesn’t occur in A, this isn’t strictly
correct.

Theorem 4.76. Let f be a saturated flag. Suppose ftype0̂ f = A+B, where A is a
standard skew tableau and B is an ordinary standard tableau. Let h = high(B) and
k = high(A) = low(B). Let µ = shA. Then fk = fm[[µ]] for m = k, . . . , h, and
ftype(fk, . . . , fh) = B.

Proof. We induct on h. When h = k it is true, so take h > k. Then ftypedf =
A+ dB, and inductively we assume the theorem applies to df . Let ~x be a hereditary
decomposition of (fh−1 <· fh).

Since µ v shA+B = type fh, by Theorem 4.58, the shape µ restriction of all join
decompositions of fh are the same. Thus fh[[µ]] = ~x[[µ]] = fh−1[[µ]] = fk. Because
fk = ~x[[µ]], we have type[fk, fh] is obtained from the composition type fh− type fk =
shB by sorting the parts into decreasing order to form a partition, and they already
are in order. By applying the theorem to df and ftype df = d(A + B) = A + dB,
we have ftype(fk, . . . , fh−1) = dB, and by adding a cell with h to achieve the shape
shB of type[fk, fh], we obtain ftype(fk, . . . , fh) = B.

Example 4.77. For all flags f = (f0 <· · · · <· f11),

if ftype f =
1 2 4 7 8
3 5 9 11
6 10

=
1 2 4
3 5
6

+
7 8
9 11
10

then ftype ∂6f =
7 8
9 11
10

.

See Theorem 4.93 for a generalization of this to B being a row and column strict
composition tableau.

4.9. Hall Polynomials. The first two definitions are standard.

Definition 4.78. The reverse row word of a skew tableau P is the sequence of
digits obtained by reading the entries of P from right to left on the first row, then
the second row, and so on to the bottom. For example, the reverse row word of

• • • 1 1 1
• • 1 2 2
• 1 3
4

is 111221314.

Definition 4.79. A ballot sequence is a sequence of integers such that in any initial
segment of the sequence, there are at least as many i’s as (i + 1)’s for all i ∈ P. So
111221314 is a ballot sequence, but 112221314 is not because in the initial segment
11222, there are more 2’s than 1’s.

Definition 4.80 (see [16, p. 90]). A tableau P representing the chain of partitions
(λ(0) ≤ λ(1) ≤ . . . ≤ λ(r)) is called an LR-sequence of type (µ, ν;λ) if

(1) λ(0) = µ and λ(r) = λ;
(2) λ(i)/λ(i−1) is a horizontal strip of length νi for 1 ≤ i ≤ r;
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(3) the reverse row word of P is a ballot sequence.

The number of LR-sequences of type (µ, ν;λ) is the Littlewood-Richardson coef-
ficient cλµν . Their properties include cλµν = cλνµ = cλ

′
µ′,ν′ , proofs of which can also be

found in [16].

Theorem 4.81. Let µ, ν, λ be partitions. There are polynomials gλµν(q) with integer
coefficients, such that in every q-regular semi-primary lattice of type λ, the number
of elements of type µ and cotype ν is gλµν(q). When |µ|+ |ν| 6= |λ|, the polynomial is

0. Otherwise, the leading coefficient is cλµν and the degree is n(λ)− n(µ)− n(ν).

These polynomials are called Hall polynomials.
Hall proved the existence of polynomials gλµν(p) such that in the lattice of subgroups

of an abelian p-group of type λ, the number of subgroups of type µ and cotype ν is
gλµν(p); a summary of his theory is in [9]. He determined the degree and leading
coefficient of the polynomials. Klein [14] was the first to explicitly determine these
polynomials for all parameters, and did so in the wider context of p-modules. Mac-
donald [16, §II.4] later determined a different (but of course equal) formula, in the
context of modules over discrete valuation rings, and replaced the prime p by the
cardinality q of the residue field of the ring.

Macdonald’s construction of these polynomials goes through to the wider context
of q-regular semi-primary lattices by making minor modifications to his proofs. There
are syntactic changes, since we are considering elements of a lattice instead of submod-
ules of a module: the module M is the maximal element 1̂ of L; the sum of modules
is replaced by the join, and the intersection by the meet; and quotients of modules
M/N are replaced by intervals [N,M ]. The socle of M is replaced by M [1] = A0̂,
while piN is replaced by C iN (where p is the maximal ideal of the ring). There are
further semantic changes required because submodules can be viewed as collections of
vectors, while elements of a semi-primary lattice cannot, because not all semi-primary
lattices have a submodule lattice representation. Nonetheless, semi-primary lattices
have sufficient structure to carry out the vector dependent portions of the proof. This
problem arises in his Proposition (3.4) which we redo below as Theorem 4.83 in the
context of semi-primary lattices, and in his Proposition (4.4), which requires selection
of equal length sequences of linearly independent vectors in two elementary quotients
in M . We cannot do this, because in our wider context, the elements of an arbitrary
semi-primary lattice do not further decompose into collections of vectors. He counts
the number of ways of choosing each sequence, and takes the ratio. We circumvent
this by choosing sequences of independent atoms in these elementary intervals, which
diminishes the number of choices of each term in each sequence by a factor q − 1.
Since the number of terms in each sequence is the same, these diminishing factors
cancel when the ratio is taken.

Maley [18] showed that gλµν(p) is a polynomial in (p− 1) with nonnegative integer
coefficients. His formula, though still long, is much simpler than those of Klein and
Macdonald. In his proof, the number of subgroups satisfying certain conditions is
determined by a canonical construction of matrices whose row spans are the subgroups
in question. This dependence on the coordinatization of groups is critical to the
relative simplicity of his formula and proof, but would require extensive changes to
be applied directly to semi-primary lattices. However, since Maley and Macdonald’s
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polynomials are equal, and Macdonald’s proof goes through to semi-primary lattices,
Maley’s formula may also be used for q-regular semi-primary lattices. Refer to Klein,
Macdonald, or Maley for explicit formulas for Hall polynomials.

Definition 4.82. Let y be an element of a semi-primary lattice. Define

ALR(y)
def
= ((typeAiy)′)i≥0

CLR(y)
def
= ((cotypeC iy)′)i≥0

More generally, if [x, z] is an interval and y is in this interval, define

ALR[x,z](y)
def
= ((type[x,Ai

zy])′)i≥0

CLR[x,z](y)
def
= ((type[C i

xy, z])′)i≥0

Green [8] introduced the LR-sequence of an element (our CLR(y)) as a means of
determining gλµν(p) in the context of p-modules. He shows that for any LR-sequence S
of type (µ′, ν′;λ′), the number of elements y with CLR(y) = S is a monic polynomial
in q with degree n(λ)−n(µ)−n(ν). Summing over all such LR-sequences, we obtain
that gλµν(q) is a polynomial of degree n(λ) − n(µ) − n(ν) with leading coefficient

cλ
′
µ′,ν′ = cλµν.

The following theorem was originally done for our CLR(y) by Green in the context
of p-modules, and later Macdonald [16, p. 91] in the context of modules over discrete
valuation rings. It illustrates how to recast proofs in semi-primary lattice notation,
and has additional minor differences that are discussed afterwards.

Theorem 4.83. Let L be a semi-primary lattice of type λ, and y be an element of
type µ and cotype ν. Then ALR(y) is an LR-sequence of type (µ′, ν′;λ′), and CLR(y)
is an LR-sequence of type (ν′, µ′;λ′).

Let x ≤ y ≤ z. Let λ = type[x, z], µ = type[x, y], and ν = type[y, z]. Then
ALR[x,z](y) is an LR-sequence of type (µ′, ν′;λ′) and CLR[x,z](y) is an LR-sequence
of type (ν′, µ′;λ′).

Proof. It suffices to prove this for ALR(y); it then holds for CLR(y) by applying the
theorem to the dual lattice, and for the interval [x, z] by applying the theorem to this
sublattice. We verify that the three conditions in the definition of an LR-sequence
hold. Let λ(i) = (typeAiy)′.

(1) (typeA0y)′ = (type y)′ = µ′, and when r is sufficiently large, Ary = 1̂ so
(typeAry)′ = λ′.

(2) The number of cells in λ(i)/λ(i−1) is ρ(Aiy) − ρ(Ai−1y) = ν′i. The interval
[Ai−1y, Aiy] is elementary, so typeAiy/ typeAi−1y is a vertical strip by Propo-
sition 4.67, whence its transpose λ(i)/λ(i−1) is a horizontal strip.

(3) The reverse row word of a tableau P is a ballot sequence iff the number of i’s
in the first k rows is at least the number of (i+ 1)’s in the first k+ 1 rows, for
all i, k ∈ P. This is because if there is any initial segment of the reverse row
word of P that has more (i+ 1)’s than i’s for some i, we can adjust the initial
sequence to be cut off after all the (i+ 1)’s in the last row partially contained
in the initial sequence, and since this weakly increases the number of (i+ 1)’s
and weakly decreases the number of i’s, we still have a violation.
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For P = ALR(y), the number of entries at most i in the first k rows is∣∣∣(typeAiy)[k]
∣∣∣ = ρ((Aiy)[k]) = ρ(Aiy ∧Ak0̂).

Thus, the number of i’s in the first k rows is the length of the interval [Ai−1y∧
Ak0̂, Aiy ∧ Ak0̂]. Similarly, the number of (i + 1)’s in the first k + 1 rows is
the length of the interval [Aiy ∧ Ak+10̂, Ai+1y ∧ Ak+10̂]. The latter interval
is obtained from the former one by applying A, so the latter one has smaller
length by Theorem 4.15(7).

The means used in the last sentence of this proof differs from Macdonald; he gives
a surjective homomorphism from the quotient module corresponding to the former
interval, to the one for the latter interval, thus showing the latter interval has smaller
length. We use less structure to obtain this in the wider context of semi-primary
lattices. Note also that this applies to all semi-primary lattices, not just regular ones.

Macdonald’s other results [16, §II.1] about the lattice of submodules of a module
over a discrete valuation ring do not all go through to arbitrary q-regular semi-primary
lattices. The construction of the dual of a module M may not apply to a semi-primary
lattice not derived from a submodule lattice, and in fact, semi-primary lattices do not
have to be self-dual. He computes the number of automorphisms of a module through
an analytic argument, which doesn’t apply if the lattice is not a submodule lattice.

4.10. The Littlewood-Richardson sequences of adjacent elements. We will
compare the tableau ALR[x,z](y) (or dually, CLR[x,z](y)) to the corresponding tableau
obtained by increasing one of x, y, or z by a single cover relation. The tableaux will
almost be the same, except along an insertion/deletion path.

Given a cell c ∈ P× P, and a skew tableau A of shape λ/µ, the entry in cell c of
A is denoted entry(A, c). An entry • has numerical value low(A) and denotes cells
in µ, while o denotes a cell outside λ, and is considered to be a greater value than all
numbers in the tableau.

Definition 4.84. Let A and B be skew tableaux, and let c1, . . . , cN be cells in P×P
such that the entries in A and B agree in all cells except the ck’s. The tableau B
is obtained by inserting e into A on the insertion path c1, . . . , cN , and that A is
obtained by deleting e from B on the deletion path cN , . . . , c1, when the entries in
c1, . . . , cN are e1, . . . , eN−1, o in A and e, e1, . . . , eN−1 in B, where ek are some entries.
The insertion path and deletion path have length N .

The tableau B is obtained from A by inserting e and deleting d on the path
c1, . . . , cN if the consecutive entries in these cells are e1, . . . , eN−1, d in A, and are
e, e1, . . . , eN−1 in B. Equivalently, A is obtained from B by inserting d and deleting
e on the path cN , . . . , c1. The insertion/deletion path has length N + 1.

These paths may be represented by diagrams such as the following ones. The two
tableaux shown are obtained from each other by means of the indicated paths. A
squiggly arrow } w indicates that an entry moves into or out of the tableau, and a
solid arrow indicates that an entry moves into a cell, bumping the entry there out
to another cell or out of the tableau (according to further arrows). The number of
arrows, both solid and squiggly, is the length of the path. For example, these two

64



tableaux are obtained from each other by the indicated paths of length 4.

1M
A
AAC

3 4

2

u

u 5

6 7

u

deletion path

1M
A
AAD2

u

3 4

5 w7
u

6

insertion path

Many of the insertion/deletion paths we encounter will have a similar form.

Proposition 4.85. Let A = (γ(i), . . . , γ(j)) and B = (µ(i), . . . , µ(j)) be skew tableaux
with γ(k) <· µ(k) for e ≤ k < d (for some d ≤ j) and γ(k) = µ(k) otherwise. Let
ck = µ(k)/γ(k) be a single cell for k = e, . . . , d − 1. Some consecutive ck’s may be
equal; select the subsequence of e, . . . , j consisting of the first k in each run of equal
ck’s, by defining the sequence e = k0 < k1 < . . . < kN so that ckm = ckm+1 = · · · =
ckm+1−1 6= ckm+1 and ckN = cd−1. Then B is obtained from A by inserting e and
deleting d on the path ck0 , . . . , ckN .

If we set d = j + 1 above, so that e ≤ i ≤ j and k = e, . . . , j, then B is obtained
from A by inserting e along the insertion path ck0, . . . , ckN , and A is obtained from
B by deleting e from the deletion path ckN , . . . , ck0.

In both cases, if ck−1 and ck are distinct cells on the same row, then all cells between
them contain k in both A and B.

Proof. The entries in A and B are the same in all cells except the ck’s, because the
k’s inA are in cells γ(k)/γ(k−1), and are inB in cells µ(k)/µ(k−1), and these differ only
in ck and ck−1. Consecutive ck’s may be equal, but if ck−1 6= ck then ck−1 is in both
A and B, so no later cell equals ck−1.

The value of entry(B, c) is the smallest k for which c is in µ(k), and similarly for
A, so entry(B, ckm) = km for m = 0, . . . , r, and entry(A, ckm) = km+1 for m =
0, . . . , r− 1. Since cN isn’t in γ(d−1), it follows that entry(A, cN ) is d when d ≤ j and
o when d = j + 1.

If ck−1 and ck are distinct cells on the same row, the cells between them all appear
in γ(k) and µ(k) and none appear in µ(k−1) or γ(k−1), so all contain k in both A and
B.

We will examine how ALR[x,z](y) changes in three situations with one of x, y, z
varying to an element covering it, and the other two staying constant:

(x) x <· x̃ ≤ y ≤ z;
(y) x ≤ y <· ỹ ≤ z;
(z) x ≤ y ≤ z <· z̃.

These three cases and the following definitions apply to the following lemma and
theorem. Let

wk = wk(x, y, z) = Aky ∧ z
wkr = wkr(x, y, z) = Arx ∧ Aky ∧ z

(so (type[x,Ak
zy])′r = ρ(wkr)− ρ(wk,r−1))
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P = ALR[x,z](y)

µ = type[x, y]

ν = type[y, z]

λ = type[x, z]

Define w̃k, w̃kr, P̃ , µ̃, ν̃, and λ̃ similarly by replacing x with x̃ in case (x); y with ỹ
in case (y); and z with z̃ in case (z).

We always have wkr ≤· w̃kr because A and ∧ both preserve ≤· , so we are interested
in determining for which k, r these are equal and for which they are not. Let S =
{ (k, r) : wkr = w̃kr }.
Lemma 4.86. If (k, r) ∈ S, then (k′, r′) ∈ S, where k′ ≥ 0 and r′ ≥ 0 depend on the
case:

(x) r′ ≥ r and k′ − k ≤ r′ − r; so (k + 1, r + 1) ∈ S and (k′, r) ∈ S for k′ ≤ k.
(y) k′ ≥ k and r′ − r ≤ k′ − k; so (k + 1, r + 1) ∈ S and (k, r′) ∈ S for r′ ≤ r.
(z) k′ ≤ k and r′ ≤ r.

Proof.

(x) Given (k, r) ∈ S, we have wkr = w̃kr, or

Arx ∧Aky ∧ z = Arx̃ ∧Aky ∧ z.
For r′ ≥ r, applying Ar′−r

z to both sides of the equality preserves the equality
and adds r′ − r to both k and r, yielding wk+r′−r,r′ = w̃k+r′−r,r′ . Next, for
k′ ≤ k + r′ − r, taking the meet of each side with Ak′y preserves the equality
and changes k + r′ − r to k′, so wk′,r′ = w̃k′,r′.

(y) This is similar to (x), but with various variables swapped.
(z) Given (k, r) ∈ S, if 0 ≤ k′ ≤ k and 0 ≤ r′ ≤ r then Ak′y ≤ Aky and

Ar′x ≤ Arx, so

wkr ∧Ak′y ∧Ar′x = (Arx∧Ar′x)∧ (Aky ∧Ak′y)∧ z = Ar′x∧Ak′y ∧ z = wk′,r′,

and similarly, w̃kr ∧ Ak′y ∧ Ar′x = w̃k′,r′.

Theorem 4.87. We obtain P̃ from P by insertion or deletion paths as follows; see
Figure 2.

(x) Delete • from P on a path CN , . . . , C0, where
(1) • = entry(P , C0) < · · · < entry(P , CN );
(2) row(C0) ≤· · · · ≤· row(CN);
(3) If row(Ci) <· row(Ci+1) then col(Ci) ≥ col(Ci+1), while

if row(Ci) = row(Ci+1) then col(Ci) < col(Ci+1).
(y) Insert • and delete e = col(ν/ν̃) from a vertical strip C0, C1, . . . , Ce−1 in P ,

where
(1) entry(P , Ci) = i+ 1;
(2) row(C0) < · · · < row(Ce−1);
(3) col(C0) ≥ · · · ≥ col(Ce−1).

(z) Insert e = col(ν̃/ν) into a “horizontal strip” C0, . . . , CN of P , where
(1) e < entry(P , C0) < · · · < entry(P , CN) = o;
(2) col(C0) < · · · < col(Ce).
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(3) row(C0) ≥ · · · ≥ row(Ce);

Proof.

(x) We have µ̃ <· µ, ν̃ = ν, λ̃ <· λ, and wk = w̃k for all k. Thus type[x, wk] ·>
type[x̃, w̃k], so ck = type[x, wk]

′/ type[x̃, wk]
′ is a single cell of λ′. By Proposi-

tion 4.85, P̃ is obtained from P by deleting • from a path consisting of the
distinct cells among . . . , c1, c0.

Let rk = row(ck) = min { r ≥ 0 : wkr = w̃kr }, so (k, r) ∈ S iff r ≥ rk. First
we show that rk+1 ·≥ rk, or equivalently, rk + 1 ≥ rk+1 ≥ rk. By Lemma 4.86,
(k + 1, rk + 1) ∈ S because (k, rk) ∈ S. Thus rk + 1 ≥ rk+1. Conversely, by
Lemma 4.86, (k, rk+1) ∈ S because (k + 1, rk+1) ∈ S. Thus rk+1 ≥ rk.

If ck and ck+1 are on the same row, ck+1 is weakly right of ck. Suppose
they are on consecutive rows r, r+ 1. Apply Az to the interval [wr−1,k, wr,k] to
obtain the interval [wr,k+1, wr+1,k+1] of weakly smaller length. The lengths are
col(ck) ≥ col(ck+1).

(y) We have µ̃ ·> µ, ν̃ <· ν̃, and λ̃ = λ. For each 0 ≤ k < e, we have wk <· w̃k,
while for k ≥ e, we have wk = w̃k. So ck = type[x, w̃k]

′/ type[x, wk]
′ is a single

cell for k = 0, . . . , e− 1. Since wk <· w̃k for k < e, we have wk+1 = Azwk ≥ w̃k,
so the cells ck are distinct. By Proposition 4.85, P̃ is obtained from P by
inserting • and deleting e on the path c0, . . . , ce−1. Cell ck contains k+ 1 in P

and k in P̃ .
Let rk = row(ck) = min { r ≥ 0 : wkr <· w̃kr } > 0. Since (k, rk − 1) ∈ S, we

have (k + 1, rk) ∈ S by Lemma 4.86, so that rk+1 > rk. Thus the rows of the
successive cells strictly increase. Since ck is an outer corner of type[x, w̃k]′, and
type[x, w̃k+1]′/ type[x, w̃k]′ is a horizontal strip, all cells on higher numbered
rows of this strip are in columns weakly smaller than the column of ck.

(z) We have µ̃ = µ, ν̃ <· ν̃, and λ̃ <· λ. For each k < e, we have wk = w̃k, while
for k ≥ e, we have wk <· w̃k. Let ck = type[x, w̃k]′/ type[x, wk]′ for k ≥ e. The

cells ck need not be distinct. By Proposition 4.85, P̃ is obtained from P by
inserting e along a path consisting of the distinct cells among the ck’s.

Let rk = row(ck) = min { r ≥ 0 : wkr <· w̃kr } > 0. So (k + 1, rk+1 − 1) ∈ S,
whence (k, rk+1 − 1) ∈ S by Lemma 4.86. Thus rk > rk+1 − 1, or equivalently,
rk ≥ rk+1, so the row numbers weakly decrease.

4.11. Applications of Littlewood-Richardson sequences.

Definition 4.88. The straightening of a weak composition λ is the partition S(λ)
obtained from it by sorting the parts into decreasing order. The straightening of a
tableau of weak composition shape whose rows and columns have weakly increasing
entries (ignoring the holes) is the Young tableau whose columns have the same entries
in the same order as in the corresponding columns of P , by pushing the entries
up into the holes left by short rows. In terms of the chain of weak compositions
P = (λ(l) ≤ λ(l+1) ≤ · · · ≤ λ(h)), this is

S(P )
def
=
(
S(λ(l)), S(λ(l+1)), . . . , S(λ(h))

)
.

Definition 4.89. Let µ ≤ λ be partitions. We define two LR-sequences in tableaux
of shape λ′/µ′:
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(x) · · ·
• • • • ? ? ? ? ? ? ? ? ?

• • •
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h
hj

• u e1 u e2 ? ? ? ? ?

? ? e3
'
'
'
'')

u e4 e4 e4 e5u u e6 e6 ?

? ? ? ? ? e7
'
'
'
'')

u e8 e8 u e9

· · ·
(y) · · · •

t
h
hk

? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? 1
u

?

? ? ? ? ? ? ? ? 2
h
h
hk

?

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? 3
[
[

[
[
[̂

?

? ? ? ? ? ? ? ?

? ? ? ? 4
t
h
hk

?

? ? ? ? ?

· · ·
(z) · · ·

? ? ? ? ? ? ? ? ? ? ? ? o

? ? ? ? ? ? ? ? ? e4 e4 w e5
��

? ? ? ? ? ? ? ? e3
��

? ?

? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?

? ? ? e1 e1 e1 w e2

N
N
N
N
NP

?

? ? ? ? ? ? ?

· · · e
t
h
hj

Apply the insertion/deletion path to P (shown) to obtain P̃ . The cells marked ?
have entries that do not change. The boxed cells Ck have entries ek in (x) and (z),
and k in (y). When an entry moves horizontally, all the cells it passes across must
contain that entry, since the entry weakly bounds them above and below.

Figure 2. Insertion/deletion paths for LR-sequences of adjacent elements.
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(1)

LR∗(µ
′;λ′)

def
=(µ′, (Aλµ)′, (A2

λµ)′, . . .)

is the LR-sequence of type (µ′, S(λ − µ)′;λ′) obtained by filling column j of
λ′/µ′ with entries 1, 2, . . . , λj − µj from top to bottom, for each j.

(2) LR∗(µ′;λ′) is the LR-sequence of type (µ′, S(λ′ − µ′);λ′) obtained as follows.
Start with the shape λ′/µ′. Place 1 in the upper rightmost empty cell, 2 in
the upper rightmost empty cell strictly below that, 3 in the upper rightmost
empty cell strictly below that, and so on, until there are no lower empty cells.
This fills the strip λ′/Cµ′λ′ with entries 1, 2, . . . from top to bottom. In the
cells remaining, do this again: place 1 in the upper rightmost empty cell, 2
in the upper rightmost empty cell strictly below that, and so on, thus filling
the strip Cµ′λ′/C2

µ′λ
′ with entries 1, 2, . . . from top to bottom. Continue in this

fashion until the whole tableau is filled.

These are both LR-sequences because they are semistandard tableau with an injection
from entries k > 1 to entries k − 1 on higher rows.

Example 4.90. Let µ = (5, 4, 4, 2) and λ = (8, 8, 6, 5, 3). Then

LR∗(µ
′;λ′) =

• • • • 1
• • • • 2
• • • 1 3
• • • 2
• 1 1 3
1 2 2
2 3
3 4

LR∗(µ′;λ′) =

• • • • 1
• • • • 2
• • • 1 3
• • • 4
• 1 2 5
2 3 6
4 7
5 8

have respective contents S(λ − µ)′ = S(3, 4, 2, 3, 3)′ = (4, 3, 3, 3, 2)′ = (5, 5, 4, 1) and
S(λ′ − µ′) = S(1, 1, 2, 1, 1, 3, 3, 2, 2) = (3, 3, 2, 2, 2, 1, 1, 1, 1).

Definition 4.91. The content of a tableau is the weak composition ν such that
there are νi i’s in the tableau for each i.

Theorem 4.92. Let µ ≤ λ be partitions. In q-regular semi-primary lattices, for
sufficiently large q, the least frequently occuring value of ALR[0̂,y](x) for pairs in the
set

{ (x, y) : x ≤ y and typex = µ and type y = λ }
is LR∗(µ′;λ′), and the most frequently occurring value is LR∗(µ′;λ′).

Proof. Fix y of type λ. The number of x ≤ y of type µ and cotype ν is gλµν(q), a

polynomial in q of degree n(λ)−n(µ)−n(ν) with leading coefficient cλµν . To determine

the least frequently occurring LR-sequence, we seek ν with cλµν 6= 0 that minimizes
n(λ) − n(µ) − n(ν), or equivalently, maximizes n(ν); the most frequently occurring
LR-sequence is similarly obtained by minimizing n(ν).

Let Q be an LR-sequence of shape λ′/µ′ and content ν′. Clearly, the entry in each
cell is weakly bounded below by that in LR∗(µ′;λ′) and above by that in LR∗(µ′;λ′).
Since LR∗(µ′;λ′) is obtained from Q by weakly lowering the entry in each cell, the
content is obtained from the partition ν′ by moving squares up to higher rows, which
increases n(ν). Similarly, LR∗(µ′;λ′) is obtained from Q by weakly raising the entry
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in each cell, thus altering the content ν′ by moving squares down to lower rows, de-
creasing n(ν). The extremes are uniquely obtained by LR∗(µ′;λ′) and LR∗(µ′;λ′).

A useful application of one of these LR-sequences is the following generalization of
part of Theorem 4.76.

Theorem 4.93. Let f = (fl, . . . , fh) be a saturated flag. Suppose ftype0̂ f = A+B,
where A is a standard tableau on entries l + 1, . . . k and B is a row and column
strict composition tableau on distinct entries k + 1, . . . h. Then ALR[0̂,fm](fk) =

LR∗((type fk)′; (type fm)′) for each m = k, . . . , h. Thus, ftype ∂k−lf = S(B).

Proof. The ALR sequence is as specified for m = k.

Let P = ALR[0̂,fm−1](fk), and assume this equals LR∗(µ′;λ′) where (µ′;λ′) =

((type fk)′; (type fm−1)′). We want to find P̃ = ALR[0̂,fm](fk), of inner shape µ′

and outer shape λ̃′ = (type fm)′. The outer shapes of P̃ and P differ in some cell c in
column k, where k = row(A +B,m) = row(B,m). By Theorem 4.87(z), we obtain

P̃ from P by inserting a number on a horizontal strip terminating in c. If there are
cells besides c in the insertion path, their entries in P are replaced by smaller entries
in P̃ . Since the columns of P consist of consecutive numbers, an entry cannot be
replaced by a smaller one without violating column strictness. Thus, only c is on the
insertion path, so P̃ is obtained from P by placing an entry at c and leaving all other
cells intact.

Now m occurs in B in cell (k, e) where e = λk − µk + 1. All rows of B below this
cell have fewer than e entries less than m, because B is column strict. The entry
in the cell above c in P (and thus P̃ ) is e − 1 (or c is at the top of the column if

λk = µk = 0), so the minimum entry possible in c in P̃ is e, and any occurrences

of e in P and P̃ on rows above c must be in columns right of c. The number of
occurrences of e in P in columns right of c is # { r > k : λr − µr ≥ e }. This equals
the number of rows of B below the cell with m with at least e entries less than m;
it has already been shown that there are no such rows. Thus, we cannot place a
number larger than e at c in P̃ because the reverse row word of P̃ would not be a
ballot sequence. Since e is both a lower and upper bound for entry(P̃ , c), this entry
equals e.

Since P̃ is obtained from P by placing e in cell c, it is LR∗(µ′; λ̃′).

We have type[fk, fm] = S(type fm−type fk) for m = k, . . . , h, because ALR[0̂,fm](fk)
is an LR-sequence of type ((type fk)′, S(type fm− type fk)′; (type fm)′). The partition
S(type fm−type fk) is computed by taking the shape of the subtableau of B of entries
at most m, and sorting the rows into decreasing order. Thus,

ftype∂k−lf = ftype(fk, fk+1, . . . , fh) =
(
type[fk, fm]

)h
m=k

=
(
S(type fm − type fk)

)h
m=k

= S(B).
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Example 4.94. Suppose

ftype0̂ f =

3 5 7
1 6 9 10

2 4 8
11 12 13

=

3
1

2 4
+

5 7
6 9 10
8
11 12 13

= A+B.

For each entry of ftype0̂ f that appears in B, put a subscript on it indicating its
column number in B, and then transpose the tableau.

2 111

1 4 122

3 61 81 133

51 92

72 103

To find ALR[f0,fm](f4) for 4 ≤ m ≤ 13, take the subtableau of entries at most m,
and replace each entry by its subscript if it has one, or • if it doesn’t. The successive
values of ALR[f0,fm](f4) from m = 4 through 13 are

• • •
• • •
• ,

• • •
• • •
•
1

,

• • •
• • •
• 1
1

,

• • •
• • •
• 1
1
2

,

• • •
• • •
• 1 1
1
2

• • •
• • •
• 1 1
1 2
2

,

• • •
• • •
• 1 1
1 2
2 3

,

• • • 1
• • •
• 1 1
1 2
2 3

,

• • • 1
• • • 2
• 1 1
1 2
2 3

,

• • • 1
• • • 2
• 1 1 3
1 2
2 3

and ftype ∂4f = ftype(f4, . . . , f13) = S(B) =

5 7 10
6 9 13
8 12
11

. Similarly,

ftype ∂2d8f = ftype(f2, . . . , f5) =
3 5
4

ftype ∂6d5f = ftype(f6, f7, f8) = 7
8

ftype ∂9f = ftype(f9, . . . , f13) =
9 10 13
11 12

ftype∂10f = ftype(f10, . . . , f13) =
10 12 13
11

ftype∂11f = ftype(f11, f12, f13) = 11 12 13
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Part III. Tableau games and flag configurations

5. Interval type tables in semi-primary lattices

5.1. Schützenberger’s evacuation algorithm. Schützenberger [25] developed an
involution ev on standard tableaux of any given shape, which Fomin [4, §8] has
described in terms of a triangular array of partitions. We present both versions below.
Also see Sagan [22, §3.11] for an exposition. Hesselink [10, §5] and van Leeuwen [31,
Theorem 2.3.2] showed that in an invariant subspace lattice over an infinite field,
in the Zariski topology, the cotype of a generic flag of type P is evP . Hesselink
also examines degenerate behavior. We will show an analogous genericity result for
q-regular semi-primary lattices, and will also analyze the degenerate behavior.

Definition 5.1. Let P be a skew tableau whose entries are distinct numbers, and
symbols ?, representing holes. We slide an entry e into a hole by placing e at that
hole, and replacing the former cell of e with ?.

Let P be a standard tableau of shape λ ` n. Define an operator ∆P as follows.

(1) Replace the top left corner of P (which has the minimum element of P ) with
?.

(2) If ? is not at an inner corner, slide the smaller or only of its right and lower
neighbors into ?, and then repeat this step.

(3) Finally, ? is at an inner corner. Delete the square with ?, obtaining a smaller
tableau, ∆P .

We illustrate this with

P =
1 3 4
2 5
6 7

First replace 1 with ?:
? 3 4
2 5
6 7

The right and lower neighbors of ? (shown with bold frames) contain 2 and 3, the
smaller of which is 2, so we next obtain

2 3 4
? 5
6 7

The right and lower neighbors of ? contain 5 and 6, the smaller of which is 5, so we
next obtain

2 3 4
5 ?
6 7

Now there is no right neighbor, but there is a lower neighbor, 7.

2 3 4
5 7
6 ?
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Finally there are no right or lower neighbors, so delete ? to obtain

∆P =
2 3 4
5 7
6

Apply ∆ to ∆P to obtain

∆2P =
3 4
5 7
6

and compute ∆0P ,∆1P , . . . ,∆7P :

1M
A
AAC

3 4

2

u

5u

6 7

u

2M
A
AAC

3u 4u

5 7

6

3M
A
AAC

4u

5 7

u

6

4M
A
AAC

7

5

u

6

u

5M
A
AAC

7

6

u 6M
A
AAC

7u 7M
A
AAC

∅ .

The chain sh ∆nP <· sh ∆n−1P <· · · · <· sh ∆0P in Young’s lattice yields a tableau
evP , which in this example is

evP =
1 2 6
3 5
4 7

.

A convenient way to compute evP is to embed all ∆iP in a tableau of shape λ, by
placing an entry i∗ in the cell that’s deleted when ∆ deletes i from the tableau. The
starred entries are not part of the tableau ∆iP , but are simply a bookkeeping device
to record the history of the successive shapes. When a tableau with only starred
entries is obtained, replace each i∗ by n+ 1− i to obtain evP .

1M
A
AAC

3 4

2

u

5u

6 7

u

2M
A
AAC

3u 4u

5 7

6 1∗

3M
A
AAC

4u 2∗

5 7

u

6 1∗

4M
A
AAC

7 2∗

5

u

3∗

6

u

1∗

5M
A
AAC

7 2∗

6

u

3∗

4∗ 1∗

6M
A
AAC

7u 2∗

5∗ 3∗

4∗ 1∗

7M
A
AAC

6∗ 2∗

5∗ 3∗

4∗ 1∗

7∗ 6∗ 2∗

5∗ 3∗

4∗ 1∗

Theorem 5.2. The operator ev is an involution, that is, ev evP = P for any stan-
dard tableau P .

An alternate method of computing evP due to Fomin [4, §8] yields an easier
proof of this theorem than the classical proof. We illustrate his method with the
previous example. Form an upper triangular grid Λ of partitions λ(ij), where for
0 ≤ i ≤ j ≤ n, the entry λ(ij) in row i, column j is the subshape of ∆iP consisting
of entries i+ 1, . . . , j; see Figure 3.

73



0 1 2 3 4 5 6 7 j

∅ 7 6
7

5 6
7

4 5 6
7

3 5 6
4 7

2 5 6
3 7
4

1 2 6
3 5
4 7

∆iP i

∅ 1 3 4
2 5
6 7

0

∅ 2 3 4
5 7
6

1

∅ 3 4
5 7
6

2

∅ 4 7
5
6

3

∅ 5 7
6

4

∅ 6 7 5

∅ 7 6

∅ ∅ 7

Figure 3. Fomin’s computation of evacuation.
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Not only do the rows of Λ form saturated chains in Young’s lattice, but the columns
do as well; comparing the contents of the cells of ∆iP and ∆i+1P , we see that each
cell of the former stays the same, increases, or is emptied in the latter. If the contents
had been at most j and are emptied or increased above j, the cell is in λ(ij) but not
λ(i+1,j), and otherwise is in both partitions. Thus, λ(ij) ≥ λ(i+1,j) in Young’s lattice.
Further, the number of cells in λ(ij) is j − i, so the columns of Λ also form saturated
chains. Notice in the figure that the chain represented by the last column is evP .

Now we show how to compute this table without first computing ∆iP and expand-
ing it into a chain. We are given P of shape λ ` n. Form an upper triangular grid Λ
with entries λ(ij), where 0 ≤ i ≤ j ≤ n. Set (λ(00), . . . , λ(0n)) to P and λ(jj) = ∅ for
0 ≤ j ≤ n. We use repeated applications of a local rule to compute the values of the
remaining entries of Λ. Consider a 2 by 2 section of Λ:

λ(ab) b = j − 1 b = j
a = i γ δ

a = i+ 1 α β

If we are given α, γ, δ, we want to compute β. Since the rows of the grid increase left to
right, and the columns increase top to bottom, β is between α and δ in Young’s lattice.
These differ by just two squares, in positions denoted x and y, where x, y ∈ P× P.

Definition 5.3. A brick is a skew partition consisting of two adjacent squares. A
horizontal brick is a brick with two horizontally adjacent squares, that is, λ/µ
where for some j, we have λj = µj + 2 and λi = µi for i 6= j. A vertical brick is a
brick with two vertically adjacent squares.

If δ/α is a brick, there is only one partition between α and δ, and both γ and β are
equal to it. If δ/α is not a brick, there are two intermediate partitions, one of which
is γ; for evacuation, we choose β to be the other one. These two situations appear as
follows; the notation α <·x β means α <· β and β 	 α = x.

(a) x, y adjacent
γ <· y δ
·∨x ·∨y
α <·x β

(b) x, y not adjacent
γ <·y δ
·∨x ·∨x
α <·y β

Now we compare Fomin’s algorithm with the classical evacuation algorithm. Given
a tableau P as the top row, produce the table Λ by the local rules just given. Define
the tableau P (ij) (with 0 ≤ i ≤ j ≤ n) as the following chain of partitions, with the
entry e to fill the square added between two partitions shown between them as e :

P (ij) = λ(i−1,j) <·
j+1
· · · <· n λ(i−1,n)

·∨ ?

λ(ii) <·
i+1

λ(i,i+1) <·
i+2
· · · <·

j
λ(ij)

Note that P = ∆0P is the top row of Λ. Given that ∆i−1P is the (i − 1)th row of
Λ, we want to show that ∆iP is the ith row of Λ. The tableau P (ii) is ∆i−1P with
the minimal entry replaced by ?, just as in the first step of the classical algorithm for
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computing ∆(∆i−1P ). The only place the chains P (i,j−1) and P (ij) may differ is in
the 2 by 2 section of Λ,

λ(i−1,j−1) λ(i−1,j)

λ(i,j−1) λ(ij)

So all entries except possibly for j and ? are in the same position in both P (i,j−1)

and P (ij). If this section is in configuration (a) then ? and j are swapped, while if
it is in configuration (b), they are in the same position in both tableaux. We are
in configuration (a) iff the cell y of P (i,j−1) containing j is adjacent, right or below,
the cell x with ?, and is smaller than the other cell adjacent to x if the other cell is
nonempty. So the rule for swapping ? with an adjacent entry is the same as in the
classical computation. Finally, ? is at an inner corner of P (in), and removing it yields
the ith row of Λ as ∆iP .

Since λ(in) = sh ∆iP , the chain represented by the last column of Λ is evP .
Now every 2 by 2 segment of this table obeys the rule, given partitions α and δ,

either a unique partition is between them, and both β and γ equal it, or there are
two partitions between them, and β is one and γ the other. So given initial values of
the final column instead of the first row, we could build the exact same table. Since
the rule is symmetric, ev evP = P , so ev is an involution.

5.2. The interval type table of a flag. The interval type table of a saturated flag
f in a semi-primary lattice is the triangular array itype f = (type[fi, fj])0≤i≤j≤n.

We first develop necessary (but not sufficient) conditions for a triangular array
(λ(ij))0≤i≤j≤n of partitions to be realizable as the interval type table of some flag.
Then we show that if L is q-regular of type λ, and shP = λ, most flags whose type
is P have the same interval type table as as the evacuation table of P .

For any saturated flag f , type[fi, fj] is increasing in Young’s lattice as i decreases
and j increases, and has rank j− i. Thus, the triangular array itype f is quite similar
to the array described above for Fomin’s version of evacuation.

type[fa, fb] b = j − 1 b = j
a = i γ <· δ

·∨ ·∨
a = i+ 1 α <· β

Given α < δ of ranks differing by 2, there are still either one or two elements between
them in Young’s lattice, and if there is only one, then both γ and β must equal it.
If there are two, while the evacuation algorithm specifies that β must be one and γ
the other, this needn’t be the case for the interval types of flags. We will show that
in a quantifiable sense, they usually are different, but also determine occasions when
they may be equal.

Let P i = ftype∂if denote the tableau associated to the partitions on the ith row
of itype f . We generalize the tableau operator ∆ to a nondeterministic game ∆̃, such
that P i+1 has form ∆̃P i for i = 0, . . . , n− 1. The notation P i+1 = ∆̃P i means that
P i+1 is one of the possible values of ∆̃P i.

Let P be a standard tableau.

(1) Replace the top left corner of P with ?.
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Consider the cell just below ? and the cells in the column right of ?. If a cell amongst
these has a larger entry than was initially at ?, and this entry can be slid into ? to
yield a tableau that is strictly increasing in rows and columns (ignoring ?), the cell
is eligible. Unless ? is an inner corner, there is at least one eligible cell because the
smaller or only of the right and lower neighbors of ? is eligible.

(2) If there are any eligible cells, choose one, slide it into ?, and then repeat this
step.

(3) Finally, ? is at an inner corner. Delete the square with ?, obtaining a smaller

tableau, ∆̃P .

We illustrate this with

P =
1 3 4
2 5
6 7

First replace 1 with ?; the eligible cells after the replacement are shown with bold
frames:

? 3 4
2 5
6 7

Only 2 is eligible, because if any number from the second column is slid into ?, the
first column will no longer be strictly increasing, since these numbers are larger than
2. So slide 2 into ?:

2 3 4
? 5
6 7

The evacuation algorithm would specify that we slide 5 into ?, but in this algorithm,
we may choose to slide 3 into ?.

2 ? 4
3 5
6 7

Only 4 is eligible, so slide it into ?. Then ? is an inner corner with no further eligible
cells, so ? is removed to obtain as one possible value of ∆̃P ,

2 4
3 5
6 7

This and ∆P are the only possible values of ∆̃P . Swapping the 4 and 5 in P leads
to more possibilities, which are shown in Figure 4.

We will show that all flags f of type P have ftype ∂f = ∆̃P , and show that in
a q-regular semi-primary lattice, the number of ways this happens for each possible
∆̃P is a nonzero monic polynomial in q.

Notation. For partitions α <· β, write α <· |r| β to mean that these partitions differ in
a square in column r, that is, α′i = β ′i for i 6= r, and α′r <· β ′r. Write α <·x β to mean
that x ∈ P× P is the cell in which the diagrams of α and β differ.
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1 3 5
2Q = 4
6 7

↓
? 3 5
2 4
6 7

↓
2 3 5
? 4
6 7

↙ ↘
2 3 5
4 ?
6 7

2 ? 5
3 4
6 7

↓ ↘ ↓
2 3 5
4 7
6 ?

2 3 ?
4 5
6 7

2 4 5
3 ?
6 7

↓ ↘
2 4 5
3 7
6 ?

2 4 ?
3 5
6 7

↓ ↓ ↓ ↓
2 3 5
4∆̃Q = 7
6

2 3
4 5
6 7

2 4 5
3 7
6

2 4
3 5
6 7

Begin with Q. Replace its top left corner with ?. At each step, the cells marked k
are eligible to be slid to ?. When ? reaches an inner corner, delete that cell to obtain
a possible value of ∆̃Q. The ordinary ∆Q is the left-hand path.

Figure 4. All possible degenerate elementary evacuation steps.
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Theorem 5.4. Let L be a semi-primary lattice. Let j − i > 1, and consider a flag
(fi <· fi+1 ≤ fj−1 <· fj) in L. The interval types between them have one of the
following forms, where the positions x or y of the square two partitions differ by is
noted between them.

(a) type[fa, fb] b = j − 1 b = j
a = i γ <· y δ

·∨x ·∨y
a = i+ 1 α <·x β

(b) j − 1 j
i γ <· y δ

·∨x ·∨x
i+ 1 α <· y β

If δ/α is a brick, we have form (a); if col(y) ·> col(x) but row(y) 6= row(x), we may
have either form; and otherwise, |col(y)− col(x)| > 1 and we have form (b).

Proof. The type of an interval increases as the lower boundary is lowered or the upper
boundary is raised, so we have one of forms (a) and (b). Now suppose we are given the
partial flag (fi <· fi+1 < fj) with type[fi, fj] = δ and type[fi+1, fj] = β, and we want
to choose a coatom fj−1 of [fi+1, fj] with type[fi, fj−1] = γ and type[fi+1, fj−1] = α.

Define zkab = Ak
fb
fa = Akfa ∧ fb.

Let the columns the partitions differ in be given by γ <· |s| δ and α <· |r| β. The con-
dition type[fi, fj−1] = γ is satisfied precisely when fj−1 is a coatom of I1 = [zs−1

ij , fj]
not also in I2 = [zsij, fj], while the condition type[fi+1, fj−1] = α is satisfied precisely

when fj−1 is a coatom of I3 = [zr−1
i+1,j, fj] not also in I4 = [zri+1,j, fj]. So we count the

coatoms of I1 ∩ I3, minus those of I1 ∩ I4, minus those of I2 ∩ I3, plus the doubly
subtracted ones in I2 ∩ I4. We tabulate all these intersections below in all cases.
Each intersection has the form [t, fj] ∩ [u, fj] = [t ∨ u, fj]. Note for all k ≥ 0 that
zk+1
ij ≥ zki+1,j

·≥ zkij: the second inequality expands to Akfi+1∧fj ·≥ Akfi∧fj , which is

true because A and ∧ both preserve weak cover relations, while zk+1
ij = Afjz

k
ij is the

join of all weak upper covers of zkij below fj, and zki+1,j is such a weak upper cover, so
the first inequality holds.

x in each case

sign [x, fj] x equation r < s− 1 r = s− 1 r = s r > s

+ I1 ∩ I3 zs−1
ij ∨ zr−1

i+1,j zs−1
ij zs−1

ij zr−1
i+1,j zr−1

i+1,j

− I1 ∩ I4 zs−1
ij ∨ zri+1,j zs−1

ij zri+1,j zri+1,j zri+1,j

− I2 ∩ I3 zsij ∨ zr−1
i+1,j zsij zsij zsij zr−1

i+1,j

+ I2 ∩ I4 zsij ∨ zri+1,j zsij zsij zri+1,j zri+1,j

net interval ∅ I1 − I4 I3 − I2 ∅
# coatoms if q-regular 〈δ′s〉 −

〈
β ′r+1

〉
〈β ′r〉 −

〈
δ′s+1

〉
There is no way to choose fj−1 unless r = s − 1 or s. If δ/α is a brick, we are in

form (a). If it is not a brick, we are in form (b), except that if col(x) <· col(y), we
may be in either (a) or (b).

Corollary 5.5. Let (fi <· fi+1 < fj) or (fi < fj−1 <· fj) be given. This may be
completed to (fi <· fi+1 ≤ fj−1 <· fj) with specified interval types, by choosing fj−1

(respectively, fi+1) as follows, and if the lattice is q-regular, the number of such choices
is as indicated.
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(1) type[fa, fb] b = j − 1 b = j
a = i γ <· |r+1| δ

·∨|r| ·∨|r+1|
a = i+ 1 α <· |r| β

fj−1 is a coatom of [Arfi ∧ fj, fj] not in [Arfi+1 ∧ fj, fj];〈
δ′r+1

〉
−
〈
β ′r+1

〉
choices.

fi+1 is an atom of [fi, Crfj ∨ fi] not in [fi, Crfj−1 ∨ fi];〈
δ′r+1

〉
−
〈
γ′r+1

〉
choices.

(2) type[fa, fb] b = j − 1 b = j
a = i γ <· |r| δ

·∨|t| ·∨|t|
a = i+ 1 α <· |r| β

fj−1 is a coatom of [Ar−1fi+1 ∧ fj, fj ] not in [Arfi ∧ fj, fj];
〈β ′r〉 −

〈
δ′r+1

〉
choices.

fi+1 is an atom of [fi, C t−1fj−1 ∨ fi] not in [fi, C tfj−1 ∨ fi];
〈γ′t〉 −

〈
δ′t+1

〉
choices.

Note. Configuration (1) of the corollary always has form (a) of the theorem; config-
uration (2) has form (a) for r = t and (b) for r 6= t.

Proposition 5.6. In a semi-primary lattice of type λ, if f is a flag of type P , then
ftype dkf = dkP .

Proposition 5.7. If f is a flag with ftype f = P in a semi-primary lattice, then
ftype ∂f = ∆̃P . Conversely, consider a q-regular semi-primary lattice of type λ ` n.

The number of atoms f1 of cotype µ <· |r| λ is
〈
λ′r−1

〉
− 〈λ′r〉. Pick any such atom.

Let P be a standard tableau of shape λ and Q = ∆̃P i have shape µ. The number of
ways to complete (0̂, f1, 1̂) to a flag f = (0̂, f1, f2, . . . , fn−1, 1̂) with ftype f = P and
ftype ∂f = Q is a monic polynomial in q, given as the product over each entry j of
Q of terms depending on how j moves between P and Q:

∏
j ∈ Q

〈row(Q, j)〉 − 〈row1(P , j)〉 if col(P , j) = col(Q, j);

〈row(P , j)〉 − 〈row1(Q, j)〉 otherwise.

This polynomial has degree

n(λ)−# of entries that move up one cell from P to Q.

As q →∞, all but a fraction O(q−1) of the flags f with ftype f = P have ftype∂f =
∆P , and all but a fraction O(q−1) of the flags (f1, . . . , fn) with f1 an atom and
ftype(f1, . . . , fn) = ∆P have ftype(0̂, f1, . . . , fn) = P .

Proof. Let f = (f0, . . . , fn) be a flag of type P . The first part of the theorem is
obtained from Theorem 5.4 by expressing it in terms of tableaux. We begin with
the tableau P , and then essentially follow the proof of Section 5.1 that Fomin’s
computation of ∆P agrees with the classical one. Place ? in the upper left corner
of P , and then for each j = 1, . . . , n successively, if we are in form (a), j is in the
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column just right of ?, and we swap ? and j; while if we are in form (b), we leave the
tableau intact. At the end, remove ?. This is exactly the algorithm for ∆̃P .

For the converse, in a q-regular semi-primary lattice of type λ, let f0 = 0̂, fn = 1̂,
and choose an atom f1 of cotype µ in the indicated number of ways. If fn, fn−1, . . . , fj
have been chosen so that ftypef0

(fj, . . . , fn) and ftypef1
(fj, . . . , fn) respectively agree

with P and Q in entries j + 1, . . . , n, then the number of ways to choose fj−1 to
extend this to entry j is as stated in the theorem, by plugging into Corollary 5.5:
when j is in the same column of P and Q, use form (2), and when it is in different
columns, use form (1). Denote the product in the theorem by a(q).

If col(P , j) = col(Q, j), the degree of the jth factor is row(Q, j)− 1, which equals
row(P , j)− 1 if j is in the same cell of both P and Q, and equals row(P , j)− 2 if it
moves up one cell. Let u be the number of j’s that move up one cell. The degree of
a(q) is the sum of row(P , j)− 1 over all j ∈ Q, minus u. Since 1 is the only entry in
P not in Q, and row(P , 1) − 1 = 0, this sum is the sum over all cells of P of their
row number minus 1, totaling n(λ).

Multiply a(q) by the initial number of choices of f1, to obtain the total number
b(q) of flags f with ftype f = P and ftype∂f = Q. It is a monic polynomial of
degree n(λ) + (row(λ/µ) − 1) − u. In the deletion path for the game ∆, we have
u = row(λ/µ) − 1 because the deletion path from λ/µ to the upper left corner only
moves left one cell or up one cell at each step. In all other games ∆̃, there are entries
that move to lower rows, so that u > row(λ/µ) − 1. Thus, the maximum degree
n(λ) of b(q) is uniquely obtained by the game Q = ∆P . The total number of flags f
with ftype f = P is F P (q), which also is a monic polynomial of degree n(λ), so the
quotient b(q)/F P (q) is 1 − O(q−1) as q → ∞, so nearly all flags with ftype f = P
satisfy ftype ∂f = Q. The degree of a(q) in the game ∆P is n(λ) − u = n(µ), so
also a(q)/F∆P (q) = 1 − O(q−1). Thus, nearly all flags g = (f1, . . . , fn), where f1 is
an atom and ftype g = ∆Q, satisfy ftype(0̂, f1, . . . , fn) = P .

We will extend this to show that k = 0, . . . , n, all but a fraction O(q−1) of the flags
f with ftype f = P satisfy ftype ∂kf = ∆kP . First we develop notions of asymptotic
enumeration and composition of operators on flags.

5.3. Generic behavior in regular semi-primary lattices. For some problems,
we can do exact enumerations, and for others, we can do asymptotic enumerations
showing what “usually” happens. Given ftype f but not f , we will compute the
“usual” flag type ftype or ftype0̂ of ∂f , df , (φ(fl), . . . , φ(fh)) for certain latticial
growths φ; various other flag operators; the flag cotype of f ; and compositions of
these.

For logical statement S(s) with parameters s = (x1, . . . , xk), we write s ∈ S to
mean that S(s) is true.

Definition 5.8 (topological). Let S(s) and T (s) be logical statements about in-
determinates s = (x1, . . . , xk) in an invariant subspace lattice over an infinite field.
Then T (s) is generically true of S(s) if

{ s : S(s) and T (s) are true } ⊇ { s : S(s) is true } ,

where the closure is taken in the Zariski topology.
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We obtain an analogue of this notion for q-regular semi-primary lattices by replacing
closure in a specific lattice with a limit over all finite lattices. For a logical statement
S(s) and a finite semi-primary lattice L, let NS = NS(L) denote the number of s for
which S(s) is true.

Definition 5.9 (q-regular). Let S(s) and T (s) be logical statements about indeter-
minates s in semi-primary lattices. Then T is generically true of S if

lim
q→∞

# { s ∈ S : T (s)}
NS

= 1

where the limit is taken over all q-regular semi-primary lattices as q →∞. Note that
the counts in the numerator and denominator may be different for different q-regular
semi-primary lattices that have the same value of q.

Let s and t be indeterminates; S(s) be a logical statement about indeterminates
s; and T (t) be a logical statement about indeterminates t. Let φ be a map from the
space in which s lies to the space in which t lies.

Definition 5.10. We say that φ generically maps S to T when T (φ(s)) is generi-
cally true of S(s). Equivalently, there is a function γφ(q) (of q, not L) taking on real
values from 0 to 1, vanishing as q →∞, such that

# { s ∈ S : T (φ(s)) } ≥ (1− γφ(q))NS

in all q-regular semi-primary lattices.

Definition 5.11. φ uniformly maps S to T when

(1) φ generically maps S to T ;
(2) There is a function ε(q) that vanishes as q →∞, such that

lim
q→∞

#
{
t ∈ T :

∣∣∣#{ s∈S :φ(s)=t }
NS/NT

− 1
∣∣∣ < ε(q)

}
NT

= 1.

Equivalently, there are functions δφ(q) and εφ(q) taking on real values from 0
to 1 and vanishing as q →∞, such that

#

{
t ∈ T :

∣∣∣∣∣# { s ∈ S : φ(s) = t }
NS/NT

− 1

∣∣∣∣∣ < εφ(q)

}
≥ (1− δφ(q))NT

for all q-regular semi-primary lattices.

In other words, (1) most variables s ∈ S also satisfy φ(s) ∈ T , and (2) conversely,
most variables t ∈ T have approximately the same number NS/NT of inverses under
φ that satisfy S.

Theorem 5.12. If φ uniformly maps S to T , and θ generically maps T to U , the
composition ψ = θ ◦ φ generically maps S to U . If θ is uniform then so is ψ.

Proof. Let φ be generic and θ be uniform. Choose γφ, δφ, εφ, and γθ as in the
definitions of genericity and uniformity above. All γ, δ, and ε’s in this proof, with
any subscripts, are functions of q, while all set cardinalities are functions of L (and
hence not solely functions of q).
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For genericity, we must prove

lim
q→∞

# { s ∈ S : U(ψ(s)) }
NS

= 1.

Consider any q-regular semi-primary lattice. We have

# { t ∈ T : U(θ(t)) } ≥ (1− γθ)NT

#

{
t ∈ T :

∣∣∣∣∣# { s ∈ S : φ(s) = t }
NS/NT

− 1

∣∣∣∣∣ < εφ

}
≥ (1− δφ)NT

so the cardinality of the intersection I of the two sets on the left is at least (1− γθ −
δφ)NT . Thus,

NS ≥ # { s ∈ S : U(ψ(s)) } ≥
∑
t∈T

# { s ∈ S : φ(s) = t and U(θ(t)) }

≥
∑
t∈I

# { s ∈ S : φ(s) = t and U(θ(t)) }

=
∑
t∈I

# { s ∈ S : φ(s) = t }

≥ #I · NS

NT
(1− εθ)

≥ (1− γθ − δφ)(1− εθ)NS

Divide through by NS to obtain

1 ≥ # { s ∈ S : U(ψ(s)) }
NS

≥ (1− γθ − δφ) (1− εφ).

The left and right expressions depend only on q, not on L, and are 1 in the limit
q →∞; thus the middle expression, which depends on L, also has limit 1 as q →∞.
Thus ψ generically distributes S over U .

For uniformity, we will make a number of approximations to S, T , and U .
Let

T1 =

{
t ∈ T :

∣∣∣∣∣# { s ∈ S : φ(s) = t }
NS/NT

− 1

∣∣∣∣∣ < εφ

}
.

Note #T1 ≥ (1− δφ)NT .
For u ∈ U , let Bu = { t ∈ T : θ(t) = u }. At least (1− δθ)NU different u’s satisfy∣∣∣ #Bu

NT /NU
− 1

∣∣∣ < εθ. Let Cu = { t ∈ T1 : θ(t) = u }. Then

δφNT ≥ #T −#T1 =
∑
u∈U

(#Bu −#Cu) .

Each term of the sum is nonnegative since Bu ⊇ Cu. At most
√
δφNU values of u have

#Bu − #Cu >
√
δφ

NT
NU

because if more did, the rightmost expression would exceed

the leftmost. So

U1 =
{
u ∈ U : #Bu −#Cu ≤

√
δφ
NT

NU

}
has cardinality at least (1−

√
δφ)NU .
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Now let

δ2 = δθ +
√
δφ

ε2 = εθ +
√
δφ

U2 =

{
u ∈ U :

∣∣∣∣∣# { t ∈ T1 : θ(t) = u }
NT/NU

− 1

∣∣∣∣∣ < ε2

}
.

Then U2 contains the intersection of θ(T ) and U1, whose respective sizes are at least

(1−δθ)NU and (1−
√
δφ)NU . Thus their intersection has size at least (1−δθ−

√
δφ)NU ,

so #U2 ≥ (1− δ2)NU .
For each u ∈ U , let

Du = { s ∈ S : φ(s) ∈ T1 and ψ(s) = u }
Eu = { s ∈ S : ψ(s) = u } .

For at least (1− δ2)NU different u’s, there are at least (1− ε2)NT /NU inverses of u in
T under θ that in turn have at least (1− εφ)NS/NT inverses each in S under φ. So at
least (1− δ2)NU different u’s have #Du ≥ (1 − εφ)(1 − ε2)NS/NU . Thus, the union
of all Du’s has cardinality at least (1− δ2)(1− εφ)(1− ε2)NS. Let

δ3 = 1− (1− δ2)(1− εφ)(1− ε2).

We have Du ⊆ Eu so #Du ≤ #Eu. At most
√
δ3NU different u’s can have

#Eu ≥
NS

NU

(
(1− εφ)(1− ε2) +

√
δ3

)
because if more do, we have∑

u∈U
#Eu >

NS

NU
·
(

(1− δ2)(1− εφ)(1− ε2) +
√
δ3 ·

√
δ3

)
NU = NS,

but the union of the disjoint sets Eu’s is a subset of S, so the sum is at most NS.
So at least (1− δ2 −

√
δ3)NU different u’s have

(1− εφ)(1− ε2) +
√
δ3 ≥

#Eu
NS/NU

≥ (1− εφ)(1− ε2).

So

δψ = 1− δ2 −
√
δ3

εψ = max
{

1− (1− εφ)(1− ε2),
√
δ3 + (1− εφ)(1− ε2)− 1

}
satisfy the definition of ψ being uniform.

Definition 5.13. The dual of a flag f = (f0, . . . , fn) is f∗ = (g0, . . . , gn) where
gi = f∗n−i combines inclusion of L into the dual lattice L∗ with relabeling the indices.

We now present an asymptotic analogue for finite q-regular semi-primary lattices of
the result of Hesselink [10, §5] and van Leeuwen [31, Theorem 2.3.2] that the generic
cotype of a flag of type P in an invariant subspace lattice over an infinite field is
evP .

84



Theorem 5.14. Let P be a standard tableau of shape λ ` n. In a q-regular semi-
primary lattice of type λ, all but a fraction O(q−1) of the flags f with ftype f = P
satisfy ftype∂k = ∆kP for k = 0, . . . , n. Consequently, all but a fraction O(q−1) of
flags f with ftype f = P satisfy ftype f∗ = evP .

Proof. By Proposition 5.7, ∂ uniformly maps flags f with ftype f = P to flags g from
f1 to 1̂ with ftype g = ∆P . By Theorem 5.12, the composition ∂k uniformly maps
flags f with ftype f = P to flags g = (gk, . . . , gn) such that ftype g = ∆kP and there
is a sequence 0̂ <· g1 <· g2 <· · · · <· gk with cotype gi = sh ∆iP for i = 0, . . . , k.

Thus, all but a fraction O(q−1) of the flags f with ftype f = P have ftype ∂kf =
∆kP for k = 0, . . . , n. Since cotype fk = sh(ftype ∂kf) for all k, the generic co-
type of fk is sh ∆kP . Thus, the tableau ftype f∗ encoding the cotypes is generically
(sh ∆n−0P , sh ∆n−1P , . . .) = evP .

Similarly, flags g in the dual lattice with ftype g = evP generically have ftype g∗ =
ev evP = P . So the uniform cotype of flags of type P is evP .

5.4. Counting the number of flags achieving a partial interval type table.
Consider semi-primary lattices of type λ ` n. An interval type table is a speci-

fication of partitions Λ = (λ(ij))0≤i≤j≤n, with
∣∣∣λ(ij)

∣∣∣ = j − i, and λ(ij) increasing in

Young’s lattice as j increases or i decreases. A partial interval type table has only
some of the values of λ(ij) specified, but their rank and order is still the same, and
the entry λ(0n) must be specified. The shape of an interval type table is the partition
λ(0n).

When for some i, all of λ(ii), . . . , λ(in) are defined, let P i be the tableau (with
entries i+ 1, . . . , n) corresponding to this chain. If λ(ij), λ(i,j+1), . . . , λ(in) are defined,
we let P i be the skew tableau (with entries j + 1, . . . , n) corresponding to these. Let
k∗ = n−k, and if λ(i∗ ,j), λ((i+1)∗,j), . . . , λ(n∗ ,j) are defined, let P ∗j be the (skew) tableau
(with entries i+ 1, . . . , n) corresponding to them.

A (partial) interval type table is realizable if there is a semi-primary lattice L
with a flag f for which type[fi, fj] = λ(ij) whenever λ(ij) is defined. We are interested
in what interval type tables are realizable, and in q-regular semi-primary lattices,
determining the number of flags achieving particular (partial) interval type tables. Let
rij = col(P i, j) be the column in which λ(i,j−1) and λ(ij) differ, and r∗ij = col(P ∗j , i

∗)

be the column in which λ(ij) and λ(i+1,j) differ, provided the relevant partitions are
in the partial interval type table.

The condition P i+1 = ∆̃P i may be expressed as follows: P i is a tableau on
i + 1, . . . , n, while P i+1 is a tableau on i + 2, . . . , n; shP i+1 <· shP i; and 0 ≤
col(Pi, j) − col(Pi+1, j) ≤ 1 for all j. A transposed version of this for the P ∗j ’s is
equivalent. These conditions generalize as follows.

Theorem 5.15. If an interval type table is realizable, then for all 0 ≤ i ≤ j ≤ k ≤ n,

we have 0 ≤ rik − rjk ≤ λ(ij)
1 , and dually, 0 ≤ r∗ik − r∗ij ≤ λ

(jk)
1 .

Proof. We show the first statement. Since the types of [fj, fk] and [fj, fk−1] differ in
column rjk, we have Arfj∧fk−1 = Arfj∧fk iff r < rjk, and Arfj∧fk−1 <· Arfj∧fk iff
r ≥ rjk. Similar statements hold for i, j and i, k in place of j, k. So Arjk−1fj ∧ fk−1 =
Arjk−1fj ∧ fk. Meet both sides of this with Arjk−1fi (which is weakly smaller than
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Arjk−1fj) to obtain Arjk−1fi∧fk−1 = Arjk−1fi∧fk. Thus rjk−1 < rik, or equivalently,
rik − rjk ≥ 0.

Next, let t = λ
(ij)
1 . If rik − t − 1 < 0 then rik − t − 1 < rjk so rik − rjk ≤ t. If

rik−t−1 ≥ 0, consider the equality Arik−1fi∧fk−1 = Arik−1fi∧fk. We have Atfi ≥ fj
so we obtain an inequality Arik−1fi ≥ Arik−t−1fj . Meet both sides of the equality with
Arik−t−1fj to obtain Arik−t−1fj ∧ fk−1 = Arik−t−1fj ∧ fk, whence rik− t− 1 < rjk, and
finally, rik − rjk ≤ t.
Example 5.16. No flag can have interval type table

1 4 5 6
2
3

2 4 5 6
3

3 5 6
4

4 6
5

5 6 6 ∅

because 5 moves left col(P1, 5)− col(P3, 5) = 2 columns from P 1 to P 3, but the top
row of type[f1, f3] = has width 1, and 1 < 2.

Theorem 5.17. If the interval type table Λ is realizable, then for 0 ≤ i ≤ j ≤ k ≤ n,
if dn−kP i = A +B where A is a standard tableau on {i+ 1, . . . , j} and B is a row
and column strict composition tableau on {j + 1, . . . , k}, then dn−kP j = S(B).

Proof. Let f realize Λ. By Theorem 4.93 applied to ∂idn−kf = (fi, . . . , fk), if
ftype ∂idn−kf = A + B then ftype ∂jdn−kf = S(B). Since ftype ∂if = P i and
ftype ∂jf = P j , the result follows.

Example 5.18. If P 0 =
1 3 4 8
2 5
6 7

then

P 2 =
3 4 8
5 7
6

dP 3 =
4 7
5
6

dP 4 =
5 7
6

dP 5 = 6 7 .

See Hesselink [10, §6] for stronger necessary conditions for an interval type table
to be realizable.

Now we enumerate the number of flags realizing certain partial interval type tables.
Initially, we are given f0 = 0̂ and fn = 1̂. Given a partial flag and certain of the
interval types in it, we want to know how to select other elements satisfying other
interval types. Throughout, f is a partial flag, with fi the component of rank i, if
present.

Let fΛ(q) be the number of flags realizing partial interval type table Λ in a q-regular
semi-primary lattice, when this is well defined for sufficiently large q.

Proposition 5.19. Let Λ = (λ(ij))0≤i≤j≤n and M = (µ(ij))0≤i≤j≤m be partial interval
type tables of respective shapes λ = λ(0n), µ = µ(0m). Let ν ` m + n. Let N be a
partial interval type table with indices 0 through m+ n and components ν(ij) = λ(ij)

(when defined) for 0 ≤ i ≤ j ≤ n; ν(i+n,j+n) = µ(ij) (when defined) for 0 ≤ i ≤ j ≤ m;
and ν(0,m+n) = ν. Then fN (q) = gνλµ(q)fΛ(q)fM(q) when fΛ(q) and fM (q) exist.

Proof. Choose fn of type λ and cotype ν in one of gνλµ(q) ways. Then choose
(f0, . . . , fn) in fΛ(q) ways and (fn, . . . , fn+m) in fM(q) ways.
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Definition 5.20. The transpose of interval type table Λ is Λ′ = (λ(n−j,n−i))0≤i≤j≤n.

Proposition 5.21. If either fΛ(q) or fΛ′(q) exists, both do and are equal.

Proof. If either exists for sufficiently large q, all q-regular semi-primary lattices of
shape λ(0n) have the same number of flags satisfying the partial interval type table
Λ. Each such flag satisfies the partial interval type table Λ′ in the dual lattice.

Suppose f0 <· . . . <· fk ≤ fn satisfies a partial interval type table, and we want to
extend this to fn−1. For now, abbreviate r = r0n and ri = rin. By Theorem 5.15,
r0 ·≥ r1 ·≥ · · · ·≥ rk. This splits {0, . . . , k} into intervals according to where the ·≥ is
·>: ri = r − j on tu−1 < i ≤ tj, where t−1 = −1 and tm = k (with m = rk − r0).

For each i, the interval [fi, fn−1] has type λ(i,n−1) precisely when fn−1 is a coatom
of Ii = [Ari−1fi, fn] not in Ji = [Arifi, fn]. For i with tj−1 < i ≤ tj, we have ri = r−j,
so Ii = [Ar−j−1fi, fn] and Ji = [Ar−jfi, fn]. The lower bound of each interval weakly
increases as i increases from tj−1 + 1 up to tj, so we have Itj−1+1 ⊆ · · · ⊆ Itj and
Jtj−1+1 ⊆ · · · ⊆ Jtj . Thus, the condition that fn−1 is in all the Ii’s is equivalent
to being in all of It0, It1, . . . , Itm, while the condition that it is in none of the Ji’s is
equivalent to it being in none of Jt−1+1, . . . , Jtm−1+1.

Thus, fn−1 is any lower cover of fn in

(It0 ∩ · · · ∩ Itm) \ (Jt−1+1 ∪ · · · ∪ Jtm−1+1)

= [Ar−0−1ft0 ∨ · · · ∨Ar−m−1ftm, fn] \
m−1⋃
j=−1

[Ar−j−1ftj+1, fn]

 .
Note that in all lattices, [a, b]∩ [c, d] = [a∨ c, b∧ d], but in general, [a, b]∪ [c, d] is not
an interval.

Now we apply inclusion-exclusion. The number of choices of fn−1 is

∑
S⊆{−1,...,m−1}

(−1)|S| ·# of coatoms in

 m∨
j=0

Ar−j−1ftj

 ∨
∨
j∈S

Ar−j−1ftj+1

 , fn
 .

For each j with 0 ≤ j < m, if j ∈ S then the term Ar−j−1ftj+1 in the right join
absorbs the term Ar−j−1ftj in the left join. Let αj = 1 if j ∈ S and 0 otherwise. The
sum simplifies to

∑
S⊆{−1,...,m−1}

(−1)|S| ·# of coatoms in

 m∨
j=−α−1

Ar0−j−1ftj+αj , fn

 .(1)

Once we have chosen fn−1 to satisfy the specified types of [f0, fn−1], . . . , [fk, fn−1],
we can then choose fn−2 to satisfy specified types of [f0, fn−2], . . . , [fk, fn−2] in a
similar fashion, by replacing n with n − 1 throughout, and interpreting A as Afn,
which we replace with Afn−1. We could continue, choosing all of fn, . . . , fk+1 to satisfy
specified types with f0, . . . , fk (note we haven’t imposed any types on intervals within
fk+1, . . . , fn). However, this equation is generally not computable from the partial
interval type table; the terms of this equation usually depend on the specific values
of f0, . . . , fk, not just on types in the partial interval type table. When [f0, fk] is
elementary, we can compute it.
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Lemma 5.22. Pick 0 ≤ k ≤ n. Consider a partial interval type table with λ(ij) =
(1j−i) for 0 ≤ i ≤ j ≤ k, and also with partitions λ(i,n−1) and λ(in) specified for
0 ≤ i ≤ k, so that these all satisfy Theorem 5.15. Consider a partial flag f0 <·
. . . <· fk ≤ fn in L such that type[fi, fn] = λ(in) for i = 0, . . . , k, and [f0, fk] is
elementary. The number of extensions of f by a coatom fn−1 of [fk, fn] such that
type[fi, fn−1] = λ(i,n−1) for i = 0, . . . , k is

〈
λ(kn)′
r

〉
−
〈
λ(0n)′

r+1

〉
if rkn = r0n;〈

λ(t0,n)′
r

〉
−
〈
λ(t0+1,n)′
r

〉
if rkn <· r0n,

where r = r0n.

Proof. Since [f0, fk] is elementary, we have r0n ·≥ rkn by Theorem 5.15. First consider
r = r0n = rkn. Then m = 0 and tm = k. The number of choices of fn−1 is

# of coatoms in [Ar−1fk, 1̂]−# of coatoms in [Arf0 ∨ Ar−1fk, 1̂]

and since [f0, fk] is elementary, we have Af0 ≥ fk so Arf0 ≥ Ar−1fk, so this reduces
to

# of coatoms in [Ar−1fk, 1̂]−# of coatoms in [Arf0, 1̂] =
〈
λ(kn)′
r

〉
−
〈
λ(0n)′

r+1

〉
.

Next, if r = r0n ·> rkn, then m = 1, and the number of choices of fn−1 is obtained
from Equation (1):

∑
S⊆{−1,0}

(−1)|S| ·# of coatoms in

 1∨
j=−α−1

Ar−j−1ftj+αj , fn

 .
Now [f0, fk] is elementary, so the subinterval [ftj+αj , ftj+1+αj+1 ] is too. Thus

Ar−j−1ftj+αj ≥ Ar−j+1−1ftj+1+αj+1

whence the j = 1 term of the join is always absorbed by the j = 0 term, so we may
let j run up to 0 instead of 1. Also, if −1 ∈ S, the j = −1 term absorbs the j = 0
term, so the terms for S = {−1, 0} and S = {−1} are equal except for sign, and
hence cancel. We are then left with the terms S = ∅ and S = {0}, yielding

# of coatoms in [Ar−1ft0, fn]−# of coatoms in [Ar−1ft0+1, fn]

=
〈
λ(t0,n)′

r

〉
−
〈
λ(t0+1,n)′

r

〉
.

We now generalize Proposition 5.7.

Proposition 5.23. Given partial interval type table P 0, . . . ,P k where P i+1 = ∆̃P i

and 1, . . . , k are all in the first column of P 0, the number of flags f in a q-regular
semi-primary lattice with ftype∂if = P i (for i = 0, . . . , k) is

k−1∏
j=0

(
〈l1〉 − 〈l2〉

)
·

n∏
j=k+1

〈row(P k, j)〉 − 〈row1(P 0, j)〉 if col(P k, j) = col(P 0, j);

〈row(P t, j)〉 − 〈row1(P t+1, j)〉 if col(P k, j) <· col(P 0, j),
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where for each j,

t is the unique value for which col(P 0, j) = col(P t, j) ·> col(P t+1, j);

l1 = # row-ends of P ∗n weakly right of k containing any of j∗, . . . , (n− 1)∗, •;
l2 = # row-ends of P ∗n strictly right of k containing any of j∗, . . . , (n− 1)∗, •.

Proof. Because 1, . . . , k are in the first column of P 0, the interval [f0, fk] is elementary.
To obtain the first product, choose f1, . . . , fk in the number of ways given by the dual
to Theorem 4.69. To obtain the second, choose fn−1, fn−2, . . . , fk in the number of
ways given by Lemma 5.22.

5.5. Counting the number of flags achieving a full interval type table. The
previous section provides necessary but insufficient conditions for partial interval type
tables to be realizable, and provides means of counting the number of flags achieving
certain partial interval type tables. A conjectured extension to full interval type tables
is as follows.

Definition 5.24. Consider an interval type table Λ = (λ(ij))0≤i≤j≤n of shape λ ` n.
If there is q0 depending on Λ such that for all q ≥ q0, the number of flags realizing
Λ in q-regular semi-primary lattices is a only function of q and not of the particular
lattice, let fΛ(q) be this number of flags. If there is no such q0, let q0 =∞.

Conjecture 5.25. The functions fΛ(q) have the following properties.

(1) fΛ(q) ∈ Z[q].
(2) As a polynomial, fΛ(q) is divisible by Mλ(q), and when the polynomial is

nonzero, the degree is in the range n(λ)− n0(λ) ≤ deg(fΛ) ≤ n(λ).
(3) The maximum degree n(λ) is attained exactly in the circumstance that Λ is the

evacuation table of a standard tableau, that is, for some standard tableau P ,
we have P i = ∆iP for i = 0, . . . , n.

(4) When fΛ(t) is identically 0, no semi-primary lattice with at least q0 + 1 atoms
in each interval of type realizes Λ, including irregular semi-primary lattices.

Partial proof. When (1) holds for some Λ, (2) and (3) do as well:

(2) By Theorem 4.42, the orbit of a flag under the automorphism group of certain
q-regular semi-primary lattices has cardinality divisible byMλ(q). The interval
type table of a flag is invariant under lattice automorphisms, so the set of flags
with itype f = Λ is a union of orbits of flags. Thus, fΛ(q) is divisible by Mλ(q).
The degree of Mλ(q) is n(λ)− n0(λ), and the maximum degree of fΛ(q) is the
degree of the number of flags of type P 0, namely n(λ).

(3) By Theorem 5.14, all but a fraction O(q−1) of flags with ftype f = P have
interval type table P i = ∆iP , so given P 0 = P , only this interval type table
achieves the same degree n(λ) as F P (q).

The polynomials for all interval type tables with n ≤ 8, and for some larger cases,
were computed using Mathematica by the method to be described in this section.
In the computed cases, all parts of the conjecture hold, and q0 = 1. A summary
of the results is in Appendix A. In most of the computed cases, the polynomial is
monic and is of the form, Mλ(q) times a power of q times products of falling factorials
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(q − 1) · · · (q −m). However, for lattices of type (3, 2, 2, 1), there is one polynomial
with leading coefficient 2, and for lattices of certain other types, there are sometimes
a few polynomials that do not factor in this fashion. There is a refinement of the
decomposition of flags into interval type tables that decomposes these classes even
further, and it is possible that these finer classes have polynomials that are of this
form; see Section 8.5 for a description.

The method is as follows. Fix a partition λ ` n. We will consider all the possible
interval type tables and the number of flags realizing them in semi-primary lattices
of type λ. Let L be a superset of the realizable type tables of shape λ. For the
computations summarized in the appendix, L was obtained by taking all interval
type tables of shape λ that satisfy Theorems 5.15 and 5.17, and whose transpose
Λ′ also satisfies these. These conditions are necessary but not sufficient for a type
table to be realizable; thus, all realizable type tables are in L, but there may be
nonrealizable ones as well. A smaller collection of possibly realizable interval type
tables could be obtained by finding stronger necessary conditions for a type table to
be realizable, but in the cases computed, the further steps in this method weeded out
all the nonrealizable ones.

For each interval type table Λ in L, introduce a variable NΛ, which will represent
the number of flags achieving Λ in a semi-primary lattice of type λ. We develop
equations in the NΛ’s from the assumption that we are working in a q-regular semi-
primary lattice. Some of the equations will fail to hold for small q, but they will
all hold for all q-regular semi-primary lattices with q sufficiently large. Hence, if it
happens that there are enough equations to solve for some of the unknowns NΛ, we
will have a count of how many flags achieve those Λ depending only on q and Λ,
and not on any further structure of the semi-primary lattice. This NΛ is the fΛ(q)
described in the conjecture. If Λ is not realizable, then NΛ = 0. Beyond the possible
constraint on small q, the equations in NΛ’s to be developed are true for all q-regular
semi-primary lattices, even if two different semi-primary lattices with the same q have
different values of a particular NΛ. It is tempting to introduce equations NΛ = NΛ′,
but we can not, because a q-regular semi-primary lattice needn’t be self-dual, and the
proof in Proposition 5.21 that fΛ(q) = fΛ′(q) has the caveat that this is true provided
fΛ(q) exists, meaning it depends only on q, not the particular q-regular lattice. Since
we do not know whether the polynomials exist, we cannot apply this.

Given a partial interval type table Γ of shape λ, if we can count how many saturated
flags achieve Γ (for example, by applying the theorems of the previous section), we
can obtain an equation in the NΛ’s by setting this equal to the sum of NΛ over all
extensions Λ of Γ in L. For example, given a tableau P , the number of flags of type
P is F P (q), so

F P (q) =
∑

{Λ ∈ L : P 0 = P }
NΛ.

We now develop equations relating flags that differ in only one element. Choose k
with 0 < k < n. Let Γ be a partial interval type table in which λ(ij) is defined for all
0 ≤ i ≤ j ≤ n unless i = k or j = k, and in which λ(k−1,k+1) = . It is sometimes
possible to generate equations involving all extensions of Γ to full interval type tables.
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Definition 5.26. Two saturated flags f and f ′ are k-adjacent if fi = f ′i whenever
i 6= k. The relation of being k-adjacent is an equivalence relation on the set of all
flags in a lattice. Each k-adjacency class of flags has a partial interval type table Γ
associated to it, namely γ(ij) = type[fi, fj] for i 6= k and j 6= k. Two interval type
tables (λ(ij)) and (γ(ij)) in L are k-adjacent if λ(ij) = γ(ij) whenever i 6= k and j 6= k,
and each k-adjacency class of interval type tables has a partial interval type table Γ
associated to it.

A k-partial flag is a flag (f0 <· · · · <· fk−1 < fk+1 <· · · · <· fn) where ρ(fi) = i for
i 6= k. A k-partial interval type table is a partial interval type table Γ = (γ(ij))
defined for all 0 ≤ i ≤ j ≤ n with i 6= k and j 6= k. Let f be a k-partial flag with
type[fk−1, fk+1] = . Let Γ be the k-partial interval type table of f . Let Λ1, . . . ,Λm

be the k-adjacency class of Γ in L. For some (but not all) Γ, the number of extensions
of f to a saturated flag achieving each of Λ1, . . . ,Λm is the same for all f realizing
Γ. If for all f realizing Γ, exactly nt extensions of f have interval type table Λt for
t = 1, . . . ,m, we have the equation NΛ1/n1 = · · · = NΛm/nm.

Lemma 5.27. Fix k. Let f be a k-partial flag with type[fk−1, fk+1] = . Let 0 ≤ i <
k and set α = type[fi, fk−1] and γ = type[fi, fk+1].

(1) γ/α is not a horizontal brick. It consists of two squares, x and y, with row(x) <
row(y) and col(x) ≥ col(y).

(2) Choose fk ∈ (fk−1, fk+1) and let β = type[fi, fk]. If x and y are vertically
adjacent then β ·>x α. Otherwise, all but one fk ∈ (fk−1, fk+1) yield β ·>x α,

and the unique fk with β ·>y α is fk = fk−1 ∨Acol(y)
fk+1

fi.

Now let k < i ≤ n. Similar statements hold with α = type[fk+1, fi], β = type[fk, fi]

and γ = type[fk−1, fi], and the unique fk with β ·>y α is fk = fk+1 ∧ Ccol(y)
fk−1

fi.

Proof. First we consider 0 ≤ i < k. If we extend f to a saturated flag by choosing
some fk ∈ (fk−1, fk+1), what can β = type[fi, fk] be? Let the two squares of γ/α
be denoted x and y. Either β ·>x α, or β ·>y α. By Corollary 4.72, if γ/α were
a horizontal brick, we would have type[fk−1, fk+1] = , so it is not a horizontal
brick. So assume row(x) < row(y) (and hence col(x) ≥ col(y)). If γ/α is a vertical
brick, then all saturated extensions of f by a choice of fk have β ·>x α. If γ/α is

not a brick, exactly one choice of fk has β ·>y α, namely fk = fk−1 ∨ Acol(y)
fk+1

fi. For

suppose type fk ·>y α. Let z = A
col(y)
fk+1

fi. Since type fk and type fk+1 agree in the

first col(y) columns, fk ≥ z; and since type[fi, fk−1] and type[fi, fk+1] do not agree in
these columns, fk−1 6≥ z. Since fk ≥ fk−1, we get fk ≥ fk−1 ∨ z. Since [fk−1, fk+1] is
elementary, we may, by Theorem 4.62 or Corollary 3.10, compute

type[fi, fk−1 ∨Acol(y)
fk+1

fi] = type[fi, fk−1] ∨ Acol(y)
γ ∅ = α ⊕ y.

Next, let k < i ≤ n and α = type[fk+1, fi] and γ = type[fk−1, fi]. If we extend f
to a saturated flag by choosing some fk ∈ (fk−1, fk−1), what can β = type[fi, fk] be?
Again, γ/α consists of two squares x and y with row(x) < row(y). If col(x) = col(y)
then all such extensions have β ·>x α, while if col(y) < col(x), there is exactly one

extension with β ·>y α, namely fk = fk+1 ∧ Ccol(y)
fk−1

fi, and all other extensions have
β ·>x α.
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Definition 5.28. Let Λ be a interval type table, and fix k = 1, . . . , n− 1 and i 6= k.
When 0 ≤ i < k, say i is specializable when k and k + 1 are not in adjacent
cells in P i; that Λ is i-special when col(P i, k) < col(P i, k + 1); and that Λ is
i-generic when col(P i, k) ≥ col(P i, k + 1). Dually, when n ≥ i > k, say i is
specializable when n − k and n − k + 1 are not in adjacent cells in P ∗i ; that Λ is
i-special when col(P ∗i , n − k) < col(P ∗i , n − k + 1); and that Λ is i-generic when
col(P ∗i , n − k) ≥ col(P ∗i , n − k + 1). In the notation of the preceding lemma, i
is specializable when γ/α is not a brick, while Λ is i-special when β ·>y α and is
i-generic when β ·>x α.

A k-partial interval type table has at most one extension that is i-generic for all i;
such an extension is called generic and is denoted Λ0.

See Figure 5 for an example.
We consider several possibilities about the distribution of i-special and i-generic

extensions of Γ. Throughout, Γ and k are fixed, and γ(k−1,k+1) = . In terms of the
tableau representation of an interval type table, P k−1 has k k + 1 in its upper left

corner iff γ(k−1,k+1) = , while it has
k
k + 1

in its upper left corner iff γ(k−1,k+1) = .

Proposition 5.29. Let i 6= k, and L be a list of interval type tables of shape λ that
includes all realizable ones, and possibly some unrealizable ones. Consider the k-
adjacency class of Γ in L. The following hold for all semi-primary lattices (including
irregular ones).

(1) If i is specializable but there are no i-special extensions of Γ in L, then all
extensions of Γ in L are nonrealizable, and so should be removed from L.

(2) If no extensions of Γ are i-generic, then again, no extensions of Γ in L are
realizable, and so all such extensions should be removed.

Proof.

(1) If Γ is realized by flag f , then by Lemma 5.27, fk can be replaced so as to
achieve an i-special extension of Γ. Since L is a superset of all realizable
interval type tables, itype f is in L. Thus, if L has no i-special extensions of
Γ, no flag realizes Γ, so no flag realizes any extension of Γ, and all extensions
of Γ can be removed from L.

(2) If Γ is realized by a flag f , the interval [fk−1, fk+1] has type , so it has more
than one element on the middle level, but at most one element yields an i-
special interval type table, so all the others must yield an i-generic interval
type table.

Let Λ0 be the unique extension of Γ that is i-generic for all i 6= k. Given any
k-partial flag f realizing Γ, at most n − 2 choices of fk ∈ (fk−1, fk+1) are i-special
for some i’s, and the rest are i-generic for all i; thus, all but at most n− 2 elements
in (fk−1, fk+1) achieve Λ0. The bound n − 2 can be lowered on a case by case basis,
because sometimes, the special elements for different i coincide. We now show that if
any extensions of Γ are realizable, then Λ0 is realizable, except in pathological cases.

Pathological case. Suppose the k-adjacency class of Γ does not contain Λ0, but
does contain an i-special extension of Γ for each specializable i, and an i-generic
extension of Γ for every i 6= k. Then it is conceivable that some q-regular lattice
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0 1 2 3 4 5 6 7 j

∅ 7 6
7

5 6
7

4 6
5 7

3 6
4 7
5

2 3 6
4 7
5

1 3 6
2 4 7
5

P ∗j

P i i

∅ 1 3 6
2 4 7
5

0

∅ g
s

2 3 6
4 7
5

1

∅ 3 6
4 7
5

2

∅
g

s

4 6
5 7

3

∅ 5 6
7

4

∅ 6
7

5

∅ 7 6

∅ ∅ 7

Both 1 and 7 are specializable. Choose the square marked g for a generic partition,
or the one marked s for a special partition. For the tableaux, the generic value is
shown, and the special value is obtained by swapping the contents of the highlighted
cells. When i < k is specializable, there are two possibilities for P i; if there are c
specializable values of i < k, there are 2c possibilities for P k; and in all other cases,
there is only one value of P i. Dual statements hold for P ∗j . It turns out that all four
combinations of special and generic choices in this example are realizable.

Figure 5. An interval type table adjacency class with k = 3.
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with q ≤ n− 2 exists in which Γ is realizable. It is also conceivable that an irregular
lattice exists in which some interval [fk−1, fk+1] of type happens to have fewer than
n atoms, and that Γ is realized with this fk−1 and fk+1.

Usual case. For all q > n−2, if Γ is realizable, it is necessary that Λ0 be realizable,
so if Λ0 6∈ L, the class is not realizable. So assume Λ0 is realizable. Then for each
specializable i, there is a unique i-special extension of each k-partial flag realizing
Γ. However, the i-special extensions of two different flags realizing Γ do not have to
have the same interval type tables, as in Example 5.36 at the end of this section. If
the i-special extensions of all flags realizing Γ happen to have the same interval type
table, we can generate an equation in the NΛ’s.

Theorem 5.30. Suppose the k-adjacency class of Γ in L has Λ0, and has exactly
one i-special member for each i 6= k (these can coincide for different i). Let the class
be Λ0, . . . ,Λm. If L is q-regular with q ≥ m, then

NΛ0

q + 1−m = NΛ1 = · · · = NΛm ;

if q = m − 1 then NΛ0 = 0 while NΛ1 = · · · = NΛm , and if q < m − 1, then
NΛ0 = · · · = NΛm = 0.

Proof. Each of Λ1, . . . ,Λm may be i-special for multiple values of i, but by assumption,
no two of them are special for the same value of i. Then every k-partial flag f realizing
Γ has one extension realizing each of Λ1, . . . ,Λm, and the remaining extensions realize
Λ0. If the lattice is q-regular, then q + 1−m extensions realize Λ0. The equation for
q ≥ m and the q = m− 1 case both follow.

If q + 1 < m, we see there are not enough elements in (fk−1, fk+1) to realize each
of Λ1, . . . ,Λm, but if any extension of Γ can be realized, all of these can. Thus, none
of them are realizable, so NΛ0 = · · · = NΛm = 0.

Note.

(1) This theorem is true even when none of Λ0, . . . ,Λm are realizable; if they are
not realizable, NΛ0 = · · · = NΛm = 0, which is consistent with all the cases in
the theorem.

(2) It is possible that we may usually not need to consider q < m as a special case;
in the known cases, summarized in Appendix A, the NΛ’s are polynomials in q,
and the polynomials in this theorem have NΛ0 divisible by (q−1) · · · (q−m+1)
and NΛ1 , . . . , NΛm divisible by (q − 1) · · · (q − m + 2), so they vanish when
required without introducing q < m as a special case in the equations.

We will work out some examples, according to the following procedure.

Procedure 5.31. Fix a partition λ.

(1) Create a superset L of all realizable interval type tables of shape λ. This can be
done by taking all interval type tables of shape λ which satisfy Theorems 5.15
and 5.17, and whose transpose also satisfies these.

(2) For each k = 1, . . . , n − 1, consider the interval type tables from step (1)
that satisfy λ(k−1,k+1) = (or equivalently, the interval type tables for which

P k−1 has
k
k + 1

in the upper left corner). Split these into k-adjacency
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classes: two of these interval type tables are k-adjacent provided their respec-
tive P 0, . . . ,P k−1 agree in all cells except possibly have some k and (k + 1)’s
reversed, and their respective P k+1, . . . ,P n are equal. They may differ on P k.

(3) For each k-adjacency class formed in step (2), consider
(a) Does the class contain an i-generic and at least one i-special interval type

table for each specializable i? If not, then by Proposition 5.29, none of
the interval type tables in this class ever occur, so they should be removed
from L.

(b) Does the class contain a generic interval type table? If not, the interval
type tables in it never occur for sufficiently large q, but may occur for
small q in certain pathological cases.

(c) Does the class contain exactly one i-special interval type table for each
specializable i? If so, denote the generic interval type table by Λ0 and
the others by Λ1, . . . ,Λr. We then obtain N0/(q+1−r) = N1 = . . . = Nr

by Theorem 5.30.
(d) When there is a generic interval type table; at least one i-special table

for each specializable i; and more than one for some i, we do nothing
with the class.

(4) Combine the equations in step (3c) from different adjacency classes to express
as many different NΛ’s as possible as a rational function of q times a particular
NΛ.

(5) When P is the superstandard tableau of shape λ, all flags of type P have a
hereditary decomposition by Theorem 4.70. Thus the interval type tables of
all such flags are the same, say Λ̃. We thus have NΛ̃ = F P (q), and now all
other NΛ’s that can be expressed as multiples of NΛ̃ can be computed as well.

(6) For most λ listed in Appendix A, all NΛ are computed by the previous step. In
most of the computed cases, even when a Λ is in a class of form (3d) for some
k, it usually is also in a class of form (3c) for other k’s, so there are equations
in it. However, there are cases when Λ only occurs in adjacency classes of form
(3d), and cases when the equations generated by (3c) do not express all NΛ

as multiples of NΛ̃. Additional equations can sometimes be generated to deal
with this; see Example 5.36.

Theorem 5.32. In a semi-primary lattice of type (n), there is only one flag, and it
has interval type table λ(ij) = (j− i). In a semi-primary lattice of type (1n), there are
〈n〉! flags, all with interval type table λ(ij) = (j − i).

Proof. For either λ = (n) or λ = (1n), there is only one subpartition of λ of each
rank, so the type tables are as indicated. For λ = (n), the only flag is fi = 1̂[i] (for
0 ≤ i ≤ n). For λ = (1n), we set fn = 1̂, and choose fi−1 to be a coatom of [0̂, fi] in
one of 〈i〉 ways, for i = n, n− 1, . . . , 1.
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Example 5.33. Let λ = (2, 1). The interval type tables satisfying P i+1 = ∆̃P i are
as follows.

Λ1 = Λ′2 1 2
3

2
3

3 ∅

Λ2 = Λ′1 1 3
2

2 3 3 ∅

Λ3 = Λ′3 1 3
2

2
3

3 ∅

Let Ni = NΛi denote the number of flags with interval type table Λi. For each
k = 1, . . . , n − 1, we partition the interval type tables with λ(k−1,k+1) = into k-
adjacency classes, and apply Theorem 5.30 when possible to compute the ratios of
the Ni’s within each class.

First consider k = 1. The interval type tables with P 0 having 1
2

in the upper left

corner are Λ2 and Λ3. These are k-adjacent to each other because they only differ in
P k. The partition λ(13) is in Λ2 and in Λ3, so Λ2 is generic while Λ3 is 3-special.
Thus the ratio N2 : N3 is (q + 1)− 1 : 1 = q : 1.

Next consider k = 2. The interval type tables with P 1 having
2
3

in the upper

left corner are Λ1 and Λ3. These differ only in the positions of 2’s and 3’s, so they
are 2-adjacent. Note that Λ1 is generic while Λ3 is 0-special, so the ratio N1 : N3 is
(q + 1) − 1 : 1 = q : 1.

Thus, the ratio N1 : N2 : N3 is q : q : 1. All flags of type 1 2
3

have type table Λ1,

and by Theorem 4.38, the number of flags of this type is(
〈2〉 − 〈1〉

)
·
(
〈1〉 − 〈0〉

)
·
(
〈1〉 − 〈0〉

)
= q.

Thus N1 = N2 = q and N3 = 1.

Example 5.34. Let λ = (2, 2). The interval type tables satisfying P i+1 = ∆̃P i are
as follows. Again, let Ni be the number of flags with type table Λi.

Λ1 = Λ′1 1 2
3 4

2 4
3

3 4 4 ∅

Λ2 = Λ′4 1 2
3 4

2 4
3

3
4

4 ∅

Λ3 = Λ′3 1 3
2 4

2 3
4

3
4

4 ∅

Λ4 = Λ′2 1 3
2 4

2 4
3

3 4 4 ∅

Λ5 = Λ′5 1 3
2 4

2 4
3

3
4

4 ∅
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If

P 0 = 1 2
3 4

= 1 2 +
3 4

then P 2 = 3 4 by Theorem 4.93, so Λ2 is not realizable. Also, if

P 0 = 1 3
2 4

= 1
2

+ 3
4

then P 2 =
3
4

, so Λ4 is not realizable. Thus N2 = N4 = 0.

Next, we partition the remaining interval type tables into k-adjacency classes, and
apply Theorem 5.30. For k = 1 we have N3 : N5 = q : 1; for k = 2 we have
N1 : N5 = q : 1; for k = 3 we have N3 : N5 = q : 1. So N1 : N3 : N5 = q : q : 1. Also,

N1 is the total number of flags of type
1 2
3 4

, which is(
〈2〉 − 〈0〉

)
·
(
〈2〉 − 〈1〉

)
·
(
〈1〉 − 〈0〉

)
·
(
〈1〉 − 〈0〉

)
= (q + 1)q,

so N1 = N3 = q(q + 1) and N5 = q + 1.

Example 5.35. Let λ = (2, 2, 1). We list all interval type tables satisfying the
various theorems listed in step (1) of our procedure, but omit the constant values
P 4 = 5 and P 5 = ∅ from each.

Λ1=Λ′6 1 2
3 4
5

2 4
3
5

3 4
5

4
5

Λ2=Λ′2 1 2
3 5
4

2 5
3
4

3 5
4

4 5

Λ3=Λ′8 1 2
3 5
4

2 5
3
4

3 5
4

4
5

Λ4=Λ′11 1 3
2 4
5

2 3
4
5

3
4
5

4
5

Λ5=Λ′12 1 3
2 4
5

2 4
3
5

3
4
5

4
5

Λ6=Λ′1 1 3
2 5
4

2 3
4 5

3 5
4

4 5

Λ7=Λ′13 1 3
2 5
4

2 3
4
5

3
4
5

4
5

Λ8=Λ′3 1 3
2 5
4

2 5
3
4

3 5
4

4 5

Λ9=Λ′9 1 3
2 5
4

2 5
3
4

3 5
4

4
5

Λ10=Λ′15 1 3
2 5
4

2 5
3
4

3
4
5

4
5

Λ11=Λ′4 1 4
2 5
3

2 4
3 5

3 4
5

4
5

Λ12=Λ′5 1 4
2 5
3

2 4
3 5

3 5
4

4
5

Λ13=Λ′7 1 4
2 5
3

2 4
3
5

3 4
5

4
5

Λ14=Λ′14 1 4
2 5
3

2 4
3
5

3
4
5

4
5

Λ15=Λ′10 1 4
2 5
3

2 5
3
4

3 5
4

4
5

Λ16=Λ′16 1 4
2 5
3

2 5
3
4

3
4
5

4
5
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Next, for each k = 1, 2, 3, 4, we form the k-adjacency classes. In the table below, Λi

is abbreviated i. The column lists those Λi for which λ(k−1,k+1) = (so these
Λi are in singleton k-adjacency classes). The generic member of each class is listed
first. The classes listed in “Bad classes” either don’t have a generic member, or don’t
have precisely one i-special member for each specializable i. The classes listed in
“Good classes” have a generic member, and for each specializable i, precisely one
member is i-special. In general, for i1 6= i2, we could have the i1-special and i2-
special members being different, but this example is sufficiently small that the same
nongeneric member is i-special for all specializable i.

k Bad classes Good classes
1 1, 2, 3 (9) (4, 5), (6, 8), (7, 10), (11, 13), (12, 15), (14, 16)
2 4, 6, 7 (3, 9, 10) (1, 5), (2, 8), (11, 12), (13, 14), (15, 16)
3 1, 11, 13 (8, 9, 15) (2, 3), (4, 5), (6, 12), (7, 14), (10, 16)
4 2, 6, 8 (9) (1, 3), (4, 7), (5, 10), (11, 12), (13, 15), (14, 16)

First we explain the bad classes. For k = 2, both Λ9 and Λ10 are 0-specializations of
Λ3. Since there is more than one 0-specialization, we cannot compute anything from
this class. For k = 3, both Λ9 and Λ15 are 5-specializations of Λ8, so again, we cannot
compute anything from this class.

For k = 4, the generic interval type table that corresponds to Λ9 is obtained from
Λ9 by examining each P i with i < 4 and swapping 4 and 5 if 4 is strictly below and
left of 5. In general, we might also have to modify P 4, but P 4 = 5 is forced in this
case. So the generic interval type table corresponding to Λ9 is

1 3
2 4
5

2 4
3
5

3 4
5

4
5

5 ∅

which is not in the list of interval type tables that passed all the necessity tests of

step (1) of the procedure; specifically, since P 0 =
1
2 +

3
4
5
, we must have P 2 =

3
4
5

by Theorem 5.17. So the class with 9 does not have a generic interval type table, and
hence we cannot use it to compute any ratios.

The transpose of Λ9 is itself Λ9, and the trouble with k = 1 is the transpose of the
k = 4 problem.

We can actually show that Λ9 is never realized in any semi-primary lattice, including
irregular ones. The 4-partial interval type table corresponding to Λ9 is

Γ = 1 3
2 ?
?

2 ?
3
?

3 ?
?

4
5

5 ∅

The only interval type table in the list that extends Γ is Λ9. Thus, there is no 0, 1,
or 2-generic extension of Γ, so by Proposition 5.29, no extension of Γ is realizable in
any semi-primary lattice. Thus, N9 = 0, and Λ9 should be removed from the list.
Once it is removed, (3, 10) becomes a good class for k = 2 and (8, 15) becomes a good
class for k = 3, but we will see that we have enough equations to solve for all the Ni

without these two good classes.
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The good classes all have the form (x, y) where x is a generic interval type table
and y is a special one. Since there is just one special interval type table in each
class, we obtain Nx = q · Ny. By looking at the last class for each k, we see that 16
happens always to be special, so we can relate the ratios with N16 for the different
k’s, obtaining N10 = N14 = N15 = q · N16. We next see that 10, 14, 15 occur as
special elements in conjunction with generic elements 5, 7, 12, 13 for various k, so we
get N5 = N7 = N12 = N13 = q · N10 = q2 · N16. Next, 5, 7, 12, 13, occur as special
elements in conjunction with generic elements 1, 4, 6, 11, so N1 = N4 = N6 = N11 =
q · N5 = q3 · N16. From (1, 3), we obtain N3 = N1/q = q2N16, and from (6, 8) we
obtain N8 = N6/q = q2N16. From (2, 3) we obtain N2 = q ·N3 = q3N16, and now we
have expressed all but N9 as multiples of N16.

Next we note that all flags of type P =
1 2
3 4
5

have interval type table Λ1, since

this tableau is superstandard. Thus, N1 = F P (q) = q3(q + 1), so N1 = N2 =
N4 = N6 = N11 = q3(q + 1); N3 = N5 = N7 = N8 = N12 = N13 = q2(q + 1);
N10 = N14 = N15 = q(q + 1); and N16 = q + 1.

With larger λ, we will generally find that the good classes have different numbers
of elements in them, so that the ratios are not always of the form N0 = qN1, but more
generally of the form N0/(q+ 1− r) = N1 = · · · = Nr. Also, in this example we were
able to express all the Ni as multiples of a single Ni, because the graph determined by
{x, y} is an edge iff x and y are in a good class together, has a single component. In
general, the graph may have multiple components, and within each component, we can
express the ratios of the Ni’s by Theorem 5.30, but then we need additional equations
to completely solve the problem. For the lattice types computed in Appendix A, the
graph had multiple components for types (3, 3, 1), (3, 3, 2), (3, 3, 3), (4, 2, 2), (4, 3, 1),
(3, 2, 2, 1), (3, 3, 1, 1), and (4, 2, 1, 1); there was one large component with almost all
of the type tables, and several small components with just a handful of type tables.
The large component contained the type table for the superstandard tableau of shape
λ, so most values of NΛ could be computed as described above. We illustrate how to
choose additional equations by considering (3, 3, 1).

Example 5.36. Let λ = (3, 3, 1) and perform Procedure 5.31 to determine all the
interval type tables and the values of NΛ. At the end, it turns out there is a single
type table, Λ0 below, which has neither been shown to be realizable or not realizable,
and which always occurs in adjacency classes of the form (3d) of the procedure. The
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k = 3 adjacency class of Λ0 is as follows, and is also shown in Figure 5.

Λ0 1 3 6
2 4 7
5

2 3 6
4 7
5

3 6
4 7
5

4 6
5 7

5 6
7

6
7

7 ∅ generic

Λ1 1 3 6
2 4 7
5

2 4 6
3 7
5

3 6
4 7
5

4 6
5 7

5 6
7

6
7

7 ∅ 1-special

Λ2 1 3 6
2 4 7
5

2 3 6
4 7
5

3 6
4 7
5

4 6
5
7

5 6
7

6
7

7 ∅ 7-special

Λ3 1 3 6
2 4 7
5

2 4 6
3 7
5

3 6
4 7
5

4 6
5
7

5 6
7

6
7

7 ∅ 1,7-special

The values of NΛ are known from the procedure for all Λ of shape (3, 3, 1) except Λ0.
Here are two different ways to find NΛ0 .

(1) The number of flags of type P =
1 3 6
2 4 7
5

is F P (q). In the equation

F P (q) =
∑

{Λ ∈ L : P 0 = P }
NΛ,

the only unknown is NΛ0 , so

NΛ0 = F P (q)−
∑

{Λ ∈ L : P 0 = P and Λ 6= Λ0 }
NΛ.

This is similar to step (5) of the procedure.
(2) A 3-partial flag either has one extension to Λ3 and q to Λ0, or one to Λ1, one

to Λ2, and q − 1 to Λ0. Thus NΛ1 = NΛ2 and

NΛ0 = qNΛ3 + (q − 1)NΛ1 .

This is similar to step (3c) of the procedure.

For the other exceptional partitions listed before the example, there were sometimes
several interval type tables not in the large component of the graph. In all such cases,
the first method above was used to find some NΛ within each component, and then
the ratio of this to other NΛ within the component was used to find the remaining
ones.

Note. Hesselink [10] analyzes necessary and sufficient conditions for the realizability
of “typricies,” which are equivalent to interval type tables, but with a different for-
malism. He has several interesting pathological examples, on which some light may
be shed by our enumerative approach.

(1) In [10, §5.7,§9.3], he gives typricies that are realized in all invariant subspace
lattices over fields of characteristic greater than 2, but not in fields of charac-
teristic 2. At least one of these is not a pathological case in our formalism,
but rather, an interval type table whose polynomial fΛ(q) is divisible by q−2.
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The polynomial for the example in [10, §5.7], where λ = (4, 2), turns out to
be (q− 1)(q − 2). The example in [10, §9.3] has n = 21, which is much larger
than the polynomials that were computed with Mathematica.

(2) Also in [10, §9.3], there is a typrix that is only realized in fields of character-
istic 2. In our treatment, it is a pathological case, and may correspond to a
polynomial fΛ(q) = 0 when q ≥ q0 = 3, provided other q-regular semi-primary
lattices with q ≥ 3 also do not realize it. Again, n = 21, so it was too large to
compute.

(3) Finally, in [10, §9.4], there is a typrix that is realizable in an invariant subspace
lattice over the field C but not R, and a similar construction for certain other
pairs of fields in [10, §9.5–9.6]. These correspond to the “escape clause” q0 =
∞ of Definition 5.24. In the graph relating the ratios of NΛ’s, described above
Example 5.36, such an interval type table is not in the main component, or in
any other component where the polynomials are known to exist.

5.6. Semi-primary flags indexed by set partitions.

Definition 5.37. A partition π of a set S is a set {B1, . . . , Bk} of nonempty subsets
of S, with B1 ∪ · · · ∪Bk = S and Bi ∩Bj = ∅ when i 6= j. An ordered partition π
of S is a tuple (B1, . . . , Bk) of subsets (which may be empty) of S whose union is S
and whose pairwise intersections are ∅. In both cases, each Bi is called a block of π.

Partitions have been well studied; see, for example, [27].

Definition 5.38. The type of a set partition π = {B1, . . . , Bk} is the integer parti-
tion

(#B1, . . . ,#Bk),

where we arrange the blocks so these numbers are in weakly decreasing order. For an
n-element set, the number of partitions of type λ is

cλ =
n!

λ1!λ2! · · ·m1!m2! · · ·
.

The total number of partitions of an n-element set is the nth Bell number B(n).
The type of an ordered partition π = (B1, . . . , Bk) is the weak composition

(#B1, . . . ,#Bk).

For a weak composition λ ` n, the number of ordered partitions of type λ of an n-set
is the multinomial coefficient (

n

λ1, λ2, . . .

)
=

n!

λ1!λ2! · · · .

Definition 5.39. A standard (skew) composition tableau is a row strict tableau
P of (skew) weak composition shape, with distinct entries. Almost equivalently, it
is a multichain (λ(l) ≤· · · · ≤· λ(h)) of weak compositions. When entry j is in row i
of P , the composition λ(j) is obtained from λ(j−1) by adding a square to row i, and
when j does not appear, λ(j) = λ(j−1). The shape of P is λ(h)/λ(l), which is skew
when λ(l) 6= ∅. The parameters l = low(P ) and h = high(P ) are a minor additional
structure we require that is not ordinarily present in a tableau.
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We encode the ordered partition (B1, . . . , Bk) by a standard composition tableau
P of shape λ whose ith row has the entries of Bi written in increasing order from left
to right.

Notation. For a composition λ, the partition obtained by sorting the parts into de-
creasing order is called the straightening of the composition, and is denoted S(λ).
For compositions λ and µ, write λ ≡ µ to mean S(λ) = S(µ). The straighening
of a skew composition tableau P = (λ(l) ≤· · · · ≤· λ(h)) is the skew Young tableau
S(P ) = (S(λ(l)), . . . , S(λ(h))). For composition tableaux, write P ≡ Q to mean
S(P ) = S(Q).

Definition 5.40. Let P = (λ(l) ≤· · · · ≤· λ(h)) be any standard composition tableau,
with l = low(P ) and h = high(P ). The interval type table of P is

itypeP =
(
S(λ(j) − λ(i))

)
l≤i≤j≤h

.

Two standard composition tableau have the same interval type table iff they encode
the same unordered set partition, that is, if we permute the order of the rows of one
to obtain the other. Thus, the numbers of these interval type tables are enumerated
by cλ and B(n).

These interval type tables were introduced by Hesselink [10, p. 103], under the
name “elementary typrices,” and with a different formalism. He showed that all such
interval type tables are realized in all invariant subspace lattices of shape S(shP ).
We will enumerate how many flags realize each one in q-regular semi-primary lattices.

Definition 5.41. Let L be a semi-primary lattice, ~x be a join decomposition of 1̂, and
P = (λ(l), . . . , λ(h)) be a skew composition tableau, with oshP = (ρ(x1), ρ(x2), . . .) ≡
typeL. The flag f(P , ~x) with components fi = ~x[[λ(i)]] for i = l, . . . , h is a heredi-
tary flag.

These flags are interesting because all (multisaturated) flags in a lattice that is a
product of chains are hereditary flags; all flags in a semi-primary lattice whose type
has two columns are hereditary flags; and the computed data in Appendix A shows
empirically that at least for small n, the interval type tables of hereditary flags form
a large class of the realized interval type tables.

Proposition 5.42. Let ~x be a decomposition of 1̂ into independent join-irreducibles
and P be a standard composition tableau, with shP = (ρ(x1), ρ(x2), . . .). Then
itypeP = itype f(P , ~x).

Proof. This follows from Corollary 4.53.

Definition 5.43. A special composition tableau is a standard skew composition
tableau of shape λ/µ with µ = λ[k] for some k; in other words, no entries occur in
columns 1, . . . , k, and no •’s appear in columns k + 1, k + 2, . . . .

Definition 5.44. Let f = (fl, . . . , fh) be a flag. Recall that ∂f = (fl+1, . . . , fh) and
df = (fl, . . . , fh−1). Define Af = (Afhfl, . . . , Afhfh). For an integer k = l, . . . , h,
define Akf = (Afkfl, . . . , Afkfk) = Adh−kf .
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Definition 5.45. For a skew composition tableau P = (λ(l), . . . , λ(h)), define dP =
(λ(l), . . . , λ(h−1)), CP = (Cλ(l), . . . , Cλ(h)) and AP = (Aλλ(l), . . . ,Aλλ(h)), where λ =
λ(h). For k = l, . . . , h, define AkP = Adh−kP = (Aλλ(l), . . . ,Aλλ(k)) where λ = λ(k).
The tableau dP deletes all h’s from P . The tableau CP is P with the first column
deleted. The tableau AP is obtained from P by performing the following operation
on each nonempty row: if there are no numeric entries, the row stays intact, and if
there are, insert • at the left, slide the row one cell right, and delete the rightmost
entry. For AkP , first delete all cells whose entries are larger than k, and evaluate A
on the tableau so obtained. Note that if P is special, then so are CP , AP , and AkP .

Example 5.46.

P =
2 5 6
1 4 7 8
3

CP =
5 6
4 7 8 AP =

• 2 5
• 1 4 7
•

A5P =
• 2
• 1
•

dP =
2 5 6
1 4 7
3

if h = 8, or dP =
2 5 6
1 4 7 8
3

if h > 8.

Since our tableaux are actually chains of compositions rather than fillings of subsets of
P×P with entries, there is an ambiguity in evaluating dP and some other operators.
There is no ambiguity in the chain form, but in the pictorial form, the hidden values
of low(P ) and high(P ) must be tracked through careful bookkeeping. Note C and A
affect neither the low nor high value, and d lowers the high value by 1. Be very careful
in evaluating compositions of these operators pictorially: since high(P ) = high(AP ),
but high(P ) 6∈ AP , the composition dAP has the same pictorial appearance as AP ,
rather than removing the highest occurring entry in it. The chain form of these two
are different, because AP has one more term than dAP .

Proposition 5.47. If P is a special composition tableau, f is a flag, and itypef =
itypeP , then itypeAf = itypeAP .

Proof. We may assume that P is a tableau of ordinary composition shape: if shP =
λ/µ with µ = λ[k], then apply this proposition to the flag f and tableau CkP , and
note that itypeP = itypeCkP and itypeAP = itypeACkP .

Without loss of generality, the flag is indexed f = (f0, . . . , fn), and since A will
only be applied to flags whose top element is fn, yielding the operator Afn, we assume

fn = 1̂. We induct on the length of the flag. For flags of length 0 or 1 it is trivially
true. Now consider any flag f with itype f = itypeP for some P = (λ(0), . . . , λ(n)),
and assume the theorem holds for all flags of smaller length. Let λ = λ(n). Let
Q = (λ(j) − λ(1))1≤j≤n and ν = λ(n) − λ(1). The smaller flag ∂f has itype∂f =
(λ(j) − λ(i))1≤i≤j≤n = itypeQ, so inductively applying the proposition to ∂f ,

itypeA∂f = itypeAQ
≡

(
Aν(λ(j) − λ(1))−Aν(λ(i) − λ(1))

)
1≤i≤j≤n

=
(
Aλλ(j) −Aλλ(i)

)
1≤i≤j≤n

.
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It remains to show that ftypeAf ≡ (Aλλ(j) − Aλλ(0))0≤j≤n, which is equivalent to
showing ftypeAf ≡ CAP because λ(0) = ∅ so that Aλλ(0) is the first column of Aλλ(j)

for all j.
If Af0 = Af1 then ftypeAf and ftypeA∂f agree (prepend ∅ to the latter as the

0th term to obtain the former). When this happens, type[f0, fn] ≡ λ(n) − λ(0) and
type[f1, fn] ≡ λ(n) − λ(1) are either equal, so 1 6∈ P , or differ in their first column, so
1 is the only entry in its row of P .

So assume 1 is in P on a row of length at least two; without loss of generality, it
is the first row.

By restricting the flag, itype ∂f = itypeQ, and inductively, itypeA∂f = itypeAQ.
Consider the following ordinary Young tableaux:

P (1) = ftype f ≡ P
P (2) = ftype ∂f ≡ Q
P (3) = ftypeA∂f ≡ CAQ
P (4) = ftypeAf

?≡ CAP

A standard Young tableau is uniquely determined by specifying its entries and their
columns (though not all such specifications yield standard Young tableau). The
entries in P (4) are the entries of P (3) and a 1, because in the two flags A∂f = (Af1 ≤·
f2 ≤· . . . ≤· Afn) and Af = (Af0 <· Af1 ≤· Af2 ≤· . . . ≤· Afn), the cover relations and
equalities are the same, except for the addition of Af0 <· Af1; an entry e occurs in
the tableau when Afe−1 <· Afe. The proposed value of P (4) has the correct entries,
and has the correct shape because type[Af0, Afn] = C(typeL) ≡ Cλ.

Let e(m) = col(P (m), e), and ae = 1 if row(P , e) = 1 and ae = 0 otherwise. The
entry 1 does not occur in P (2), and for other entries e of P (1), we have e(2) = e(1)−ae.

By inductively applying the proposition to ∂f , we have ftypeA∂f = CAP , so
e(3) = e(2) when 1 6= e ∈ AP , and no other values of e occur in P (3).

Since ∂Af = A∂f holds for all flags of positive length, P (3) = ftype ∂Af = ∆̃P (4).
See Section 5.2 for a description of ∆̃. One way to describe the tableau game P (3) =
∆̃P (4) is that the columns of all entries stay the same, except for some sequence
of entries e1 < e2 < . . . < ek, where ei is in column i of P (4) for 1 ≤ i ≤ k; in
column i − 1 of P (3) for 2 ≤ i ≤ k; and e1 = 1 isn’t in P (3). The column in which
shP (4) = cotypeAf0 and shP (3) = cotypeAf1 differ is λ1 − 1, so k = λ1 − 1. Let
be = 1 if e ∈ {e2, . . . , ek} and 0 otherwise. Then e(4) = e(3) + be when 1 < e ∈ AP ,
and 1(4) = 1. So e(4) = e(1) − ae + be when 1 < e ∈ AP .

The tableaux P (4) and AP have the same entries. Let e ∈ AP . Then

e(4) = min { r : Ar(Af0) ∧ Afe ·> Ar(Af0) ∧Afe−1 }
= min

{
r : A(Ar0̂ ∧ fe) ·> A(Ar0̂ ∧ fe−1)

}
≥ min

{
r : Ar0̂ ∧ fe ·> Ar0̂ ∧ fe−1

}
= e(1)

Thus, for e > 1, we must have be = 1 whenever ae = 1. Since exactly k values of
e > 1 have ae = 1 and the same number have be = 1, this determines the values of all
ae and be, so e(4) = e(1) for all e ∈ AP , whence P (4) ≡ CAP .
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Proposition 5.48. Suppose (f,P ) satisfies f is a multisaturated flag; P is a spe-
cial composition tableau; ftype0̂ f ≡ P ; and itypef = itypeP . Then (df, dP ) and
(Af,AP ) do too.

Proof. Let l = low(f) = low(P ) and h = high(f) = high(P ). If f is a multisaturated
flag, so are df and Af . We always have ftype0̂ df = d(ftype0̂ f), and we delete column
h of the arrays itype f = itypeP to obtain itypedf = itype dP .

By the preceding proposition, itypeAf = itypeAP . Let A = Afh. Let k be the
maximum component of λ(l). Since ftype0̂ f ≡ P where P is a special composition
tableau, we have fl = fh[k], so Afl = fh[k+1]. Also, type[0̂, fi] = type fl+type[fl, fi]
and type[0̂, Afi] = typeAfl+type[Afl, Afi] for each i = l, . . . , h. So we form ftype0̂Af
by prepending the partition typeAfl to the left side of the tableau ftypeAf . This
partition is formed from P by taking its outer shape, restricting each row to length
k + 1, and sorting the lengths into decreasing order. The result agrees with AP .

Definition 5.49. Let A = {a1 < · · · < ar} and B = {b1 < · · · < bs} be sets of inte-
gers, with either A = B or with A and B disjoint. When A = B, let dom(A,A) = 0.
When A ∩ B = ∅, let dom(A,B) be the largest number t ≤ min{r, s} for which
ar−h > bt−h for h = 0, . . . , t− 1, i.e., the last t entries of A are consecutively greater
than the first t entries of B. Clearly all numbers less than t have this property and
no number larger than t does, for if t′ possesses this property and we replace t′ by
t′−1, the right side of each inequality is lowered (and the last inequality is dropped).
Finally, for a standard composition tableau P whose set of entries on the ith row is
Bi, let dom(P ) =

∑
i,j dom(Bi, Bj).

Example 5.50.

P =

1 5 7 10
2 8 9
3
4 6 11

dom(Bi, Bj)

i�j 1 2 3 4
1 0 2 1 2
2 3 0 1 2
3 1 1 0 0
4 3 2 1 0

The sum of all dom(Bi, Bj) is dom(P ) = 19. For instance, the entry dom(B1, B4) = 2
is computed as follows.

dom = 3 fails
1 5 7 10
∨ ∨ ∨−
4 6 11

dom = 2 works
1 5 7 10

∨ ∨
4 6 11

Lemma 5.51. Let P be a standard composition tableau, and the set of entries on
the jth row be Bj. Fix an integer k, and denote the entries on the kth row Bk =
{a1 < · · · < ar}. Let µ be the composition µj = dom(Bk, Bj) when j 6= k, and µk = r.
In a semi-primary lattice, for any flag f with itypef = itypeP , we have

type far ∧Afar−1 ∧ · · · ∧ Ar−1fa1 ∧Arf0 ≡ µ.

If we replace one or more of the ai’s by ai − 1 on the left side, we replace µk with
r − 1 on the right side.
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Proof. Let zm = far ∧ Afar−1 ∧ · · · ∧ Ar−mfam. Using the relations A(x ∧ y) =
Ax ∧ Ay and Ayx = Ax ∧ y for elements x, y of a modular lattice, it is easy to
verify that AamAam+1 · · ·Aarf = (Ar−m+1f0 ∧ zm, . . . , Ar−m+1fam ∧ zm), and that
the amth component of this is zm and the am−1th component is zm−1. We seek
ν = type z0, which by Proposition 5.48, is the straightening of the inner shape of
ftype0̂ g = Aa1Aa2 · · · AarP .

Let t = dom(Bk, Bj). In the expression for ftype0̂ g, the effect of Aai on a row is
to delete all entries larger than ai, and if any numerical entries remain, insert a • on
the left, slide all entries right one cell, and delete the highest remaining entry. Write
Bj = {b1 < · · · < bs}. Since ar−h ≥ bt−h for 0 ≤ h < t, when we apply Aar−h, row j
has h + 1 •’s followed by at least b1, . . . , bt−h. Thus, row j of ftype0̂ g has at least t
•’s, so νj ≥ t.

If t = r or t = s, this row is exactly t •’s, so νj = t. We now consider t < min{r, s}.
For some h = 0, . . . , t we have ar−h < b(t+1)−h. When we apply Ar−h, we first delete
all entries larger than ar−h, leaving at most b1, . . . , bt−h, then delete one more entry,
and insert •. So after applying Ar−h, the entries on row j are h + 1 •’s followed by
at most b1, . . . , bt−1−h, for a maximum length of t. The maximum length of the row
after applying the remaining operators Aar−h−1

, . . . ,Aa1 is t, so νj ≤ t. As the reverse
inequality was already shown to hold, νj = t in all cases when j 6= k.

When j = k, applying Aar−h yields h+1 •’s followed by a1, . . . , ar−h−1 when h < r,
and yields r •’s when h ≥ r. So νk = r.

Now replace one or more ai’s by ai − 1 in the expression z′ = far ∧ Afar−1 ∧ · · · ∧
Ar−1fa1∧Arf0, and evaluate type z′ similarly to the evaluation of type z1 above. When
j 6= k, we have bm ≤ ai iff bm ≤ ai − 1 for all m and i because ai 6= bm (they’re on
different rows). Since all comparisons of entries on row j with either ai or ai − 1 are
the same, the rows besides the kth in ftype0̂ (Aa1 . . .Aarf) are the same upon any
substitutions ai → ai − 1 in the subscripts of A’s. But row k shrinks by one • when
one or more such substitutions are made.

We now classify and enumerate how many flags realize each type table of the form
itypeP for each standard composition tableau P .

Theorem 5.52. If itypef = itypeP for some standard composition tableau P , the
flag is hereditary. The number of hereditary decompositions of a given hereditary flag
is qdom(P ), and the number of flags with interval type table itypeP is

fitypeP (q) = q2n(λ)−dom(P )Mλ(q−1).

Synthetic proof. Let f be a flag and P be a standard composition tableau of shape λ
such that itype f = itypeP . Let Bi be the set of entries on the ith row of P .

We seek a join decomposition ~y of f . Fix i and let the entries on the ith row
of P be a1 < a2 < · · · < ar where r = λi. If such a decomposition exists, the
cycle yi is complemented, as the join of the other cycles is its complement, and it
satisfies Cr−myi ≤ fam but Cr−myi 6≤ fam−1 for m = 1, . . . , r. Conversely, a simple
induction on the successive elements f0, . . . , fn shows that all independent selections
of y1, . . . , yk satisfying these conditions are hereditary decompositions of f .

We have Cr−myi ≤ fa iff yi ≤ Ar−mfa by Theorem 3.3(6), so we need yi ≤ Ar−mfa
and yi 6≤ Ar−mfa−1 for i,m, a as given above. Also, yi is a cycle of rank r, so yi ≤ Arf0.
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Let

z = A0fam ∧ · · · ∧Ar−1fa1 ∧Arf0

z′ = A0fam−1 ∧ · · · ∧Arfa1−1 ∧Arf0

It is necessary that yi ≤ z, and it is sufficient, though not a priori necessary, that
yi 6≤ z′. Let µj = νj = dom(Bi, Bj) for 1 ≤ j ≤ k, except µi = λi and νi = λi − 1.
By the preceding lemma, type z ≡ µ and type z′ ≡ ν, so that z′ <· z, and also,
type(z ∧ Ar−mfbm−1) ≡ ν for m = 0, . . . , r, so that z ∧ Ar−mfbm−1 = z′. Thus in all
cases when yi ≤ z and yi ≤ Ar−mfa−1, we do in fact have yi ≤ z′ as well.

Thus, we require yi to be a complemented cycle in [0̂, z] not in [0̂, z′]. By Corol-
lary 4.64, there are q|µ|−λi ways to choose such a cycle when the lattice is q-regular;
when plugging into the corollary, note that µ has exactly λi columns, so that the cells
in the first λi columns are all of the squares.

The exponent is |µ| − λi =
∑
j dom(Bi, Bj). Choose all of y1, . . . , yk in this fashion

to yield

q
∑

i,j
dom(Bi,Bj) = qdom(P )

different hereditary decompositions of f . Since there are q2n(λ)Mλ(q−1) join decompo-
sitions ~y of 1̂, which split into classes according to the value of f(P , ~y), the quotient
of these is fitypeP = q2n(λ)−dom(P )Mλ(q−1).

Analytic proof of the enumeration only. Let f be a saturated hereditary flag and P =
(λ(0), . . . , λ(n)) a standard composition tableau with itype f = itypeP . Let V be a
vector space with a nilpotent action N of type λ = S(λ(n)). Any hereditary decom-
position of f gives rise to bases of V with elements and action

eij with 1 ≤ j ≤ λi Nei1 = 0 Neij = ei,j−1 for j > 1.

For convenience, we also set eij = 0 when j < 1, but these of course do not contribute
to a basis.

By the synthetic proof above, any flag f with interval type table itypeP can be
represented by some such basis, with fm the span of all eij with (i, j) ∈ shP . For a
given f , how many such canonical bases are there? If m is in cell (i, j), then the coset
eij+fm−1 of V spans fm modulo fm−1. So we can find the most general form of another
such basis of f as follows. The ith row of P has entries Bi = {bi1 < bi2 < . . . < bi,λi}.
For i = 1, . . . , k, let

e′ij = Nλi−j

ei,λi +
∑

(i′,j′)∈Ii
c(i)
i′,j′ ei′,j′


= eij +

∑
(i′,j′)∈Ii

c
(i)
i′,j′ ei′,j′+j−λi

yi = span e′i1, . . . , e
′
i,λi

where the Ii and c(i)(i′,j′) are to be determined so that fm = span
{
e′ij : (i, j) ∈ λ(m)

}
in some canonical fashion. In general, the eij term could have any nonzero coefficient
besides 1, but we will normalize so that it is 1. The following conditions ensure we
obtain distinct bases in a canonical fashion.
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(1) Ii ⊂ λ[λi] because e′ij is annihilated by N j . The coefficient 1 on eij both

ensures it is not annihilated by N j−1, and provides a normalization.
(2) Ii has no points (i′, j′) with i′ = i, for by subtracting a linear combination

of Ne′ij, N
2e′ij, . . . from e′ij, we can erase any apparent coefficient of ei′,j′ with

i′ = i and j′ < j from e′ij.
(3) (i′, j′) ∈ Ii requires bi′,j′+j−λi < bij whenever λi ≥ j > λi − j′. For pick i, and

consider m = bij ∈ Bi. Assume that fm−1 = f(P , ~y )m−1 holds. The span of
fm−1 and e′ij is fm provided that all the nonzero ei′,j′ occurring with nonzero
coefficients in e′ij have bi′,j′ < m = bij, i.e, when (i′, j′) ∈ Ii and j′+ j−λi > 0,
we have bi′,j′+j−λi < bij.

Conditions (1)–(3) are succinctly summarized by

Ii = { (i′, j′) : j′ ≤ dom(Bi, Bi′) } ,
because (1) is equivalent to dom(Bi, Bi′) ≤ min {λi, λi′}, which always is true; (2) is
equivalent to dom(Bi, Bi′) = 0 when i′ = i; and these conditions with (3) essentially
define dom(Bi, Bi′).

We can independently choose c(i)
i′,j′ ∈ K for (i′, j′) ∈ Ii. Thus, there are qdom(P )

canonical bases yielding f .
There are q2n(λ)Mλ(q−1) join decompositions of V , each of which yields a canonical

basis of the above form, and so we obtain the result in the theorem.

Theorem 5.53. In a semi-primary lattice whose type is a two column partition, all
flags are hereditary.

Proof. Let f be a saturated flag in the lattice. By Theorem 5.52, it suffices to show
that itypef = itypeP for some standard composition tableau P . Let P i = ftype ∂if
for 0 ≤ i ≤ n. Let e be an entry in the second column of P 0. Let i be minimal with e
in the first column of P i; at most one entry from P i−1 moves into column 1 of P i, so
each i has at most one e associated to it. We will show that P e is obtained from P e−1

by deleting e and sliding the first column up to fill the hole; no entry moves from the
second column to the first. Because this is true for all e in the second column of P 0,
we thus have that P has rows i e for each e in the second column of P 0, and rows
i for each remaining i in the first column of P 0.

The tableaux P e−1 and P e have the same second column iff Afe−1 ∧ fj = Afe ∧ fj
for all j ≥ e iff this holds for maximum j (when fj = 1̂) iff Afe−1 = Afe. Since e

is in the second column of P 0, we have A0̂ ∧ fe−1 = A0̂ ∧ fe. Apply A to this to
obtain A20̂ ∧ Afe−1 = A20̂ ∧Afe. Since typeL has two columns, substitute A20̂ = 1̂
to obtain Afe−1 = Afe.

Definition 5.54. Let σ be a permutation and P a composition tableau. Then σP
is the composition tableau of the same shape as P whose entries on a row are
{σ(a1), . . . , σ(ak)} arranged in order, where a1, . . . , ak are the entries on that row
of P . Below, (i, i+ 1) denotes the permutation exchanging i and i+ 1.

Theorem 5.55. Let λ be an integer partition. Let P be a standard composition
tableau of type λ.

(1) n(λ) ≤ dom(P ) ≤ 2n(λ) − n0(λ).

(2)
∣∣∣dom(P )− dom

(
(i, i+ 1)P

)∣∣∣ ≤ 1.
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(3) As P ranges over all standard composition tableaux of shape λ, dom(P ) takes
on every value in the interval given in (1).

Proof.

(1) Let A = {a1 < · · · < ar} and B = {b1 < · · · < bs} be disjoint sets of integers
with r ≥ s. We will show that

s ≤ dom(A,B) + dom(B,A) ≤ 2s− δrs.

First we establish the lower bound. Let t = dom(A,B) and u = dom(B,A).
We want to show that t+u ≥ s. If t = s, we are done. Otherwise, t < s ≤ r, so
we have bt+1−h > ar−h for some h ∈ {0, . . . , t}, so that bt+1 ≥ bt+1−h > ar−h ≥
as−t (as r ≥ s and h ≤ t, so r − h ≥ s − t). Then for k = 0, . . . , s − t − 1,
we have bs−k ≥ bs−(s−t−1) = bt+1 > as−t ≥ as−t−k so dom(B,A) ≥ s− t. Thus
u ≥ s− t so u+ t ≥ s.

Now we establish the upper bound. Each of dom(A,B) and dom(B,A) is less
than both r and s, the smaller of which is s, so dom(A,B) + dom(B,A) ≤ 2s.
Now suppose r = s = t. Then ai > bi for all i = 1, . . . , r, so we do not have
bs > ar; thus, t′ < t, so dom(A,B) + dom(B,A) ≤ 2s − 1.

Now let λ be a partition and P be a standard composition tableau of shape
λ whose set of entries on the ith row is Bi. The lower bound on dom(P ) is
obtained by summing the lower bound for each pair of rows.

dom(P ) =
∑

(i,j): 0<i<j≤λ′1

dom(Bi, Bj) + dom(Bj, Bi)

≥
∑

(i,j): 0<i<j≤λ′1

λj =
∑
j

(j − 1)λj = n(λ)

The upper bound is similarly obtained by summing the upper bound for pairs
of rows.

dom(P ) =
∑

(i,j): 0<i<j≤λ′1

dom(Bi, Bj) + dom(Bj, Bi)

≤
∑

(i,j): 0<i<j≤λ′1

2λj − δλi,λj

= 2n(λ) −
∑
r>0

(
mr

2

)
= 2n(λ) − n0(λ)

The sum of 2λj is double the sum computed for the lower bound. The sum of
the δ terms is the number of pairs of parts of λ of equal length, which is as
indicated.

(2) Let P have rows B1, . . . , Bk, and Q = (i, i + 1)P have rows B′1, . . . , B
′
k. If

neither or only one of i and i+1 occurs in P , then dom(P ) = dom(Q) because
all comparisons with i and with i+ 1 are equivalent. If both are on the same
row then Q = P , so dom(P ) = dom(Q).

We are left with i and i + 1 occurring in P on different rows. Assume
without loss of generality that i is in B1 and i+ 1 is in B2. Then

dom(P )−dom(Q) = dom(B1, B2)+dom(B2, B1)−dom(B′1, B
′
2)−dom(B′2, B

′
1)
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because all comparisons of an element from the other rows with i or with
i+ 1 are the same; only when i and i + 1 are compared can the sense of the
comparison be reversed.

Let B1 = {a1 < a2 < · · · < ar} and B2 = {b1 < b2 < · · · < bs}, and t =
dom(B1, B2). Let B′1 = {a′1 < a′2 < · · · < a′r} and B2 = {b′1 < b′2 < · · · < b′s},
and t′ = dom(B′1, B

′
2). Let aj = i and bk = i + 1, so that a′k = i + 1 and

b′j = i and in all other cases, ah = a′h and bh = b′h. We have ar−h > bt−h
for h = 0, . . . , t− 1, but this fails if t is replaced by t + 1. If the only failure
in the latter case is of the form i > i + 1, then when we swap i and i + 1
to obtain B′1 and B′2, this failure vanishes, so that t′ ≥ t + 1. The failure
i > i + 1 is replaced by success i + 1 > i, or rather a′k > b′j. We cannot
have t′ > t + 1, because we would either exceed the length of B′2, or would
obtain a comparison i + 1 = a′k > b′j+t′−(t+1) > i (for if t′ > t + 1 then

j + t′ − (t + 1) > j so b′j+t′−(t+1) > b′j = i); but that requires there to be an

integer strictly between i and i+ 1, and there isn’t one. Thus, t′ = t or t+ 1,
i.e., dom(B1, B2)− dom(B′1, B

′
2) = 0 or −1.

Similarly, dom(B2, B1) − dom(B′2, B
′
1) = 0 or +1; the opposite sign arises

from the fact that the rows i and i+ 1 are reversed.
Thus, dom(P )− dom(Q) = −1, 0, or 1.

(3) Let P 1 be the superstandard tableau of shape λ. Then dom(Bi, Bj) = 0 when
i < j, and λi when i > j. There are i − 1 values of j less than each i, so
dom(P ) =

∑
i(i− 1)λi = n(λ).

Now let P 2 be transpose of the superstandard tableau of shape λ′. Then
for i 6= j,

dom(Bi, Bj) =


λj if λi > λj (so i < j);

λj − 1 if λi = λj and i < j;

λi if i > j.

The sum of these over all i and j is the same as the upper bound given in part
(1) of this theorem.

Any permutation σ for which P 1 = σP 2 can be decomposed as a product
of elementary transpositions (i, i + 1), and so we can obtain a sequence of
composition tableaux from P 1 to P 2 differing by transpositions; by (2), the
successive tableaux in this sequence have values of dom that either are equal
or go up or down by 1, so all the values from the lower bound to the upper
bound are obtained.

Recall the polynomial fΛ(q) and parameter q0 of Conjecture 5.25; the polynomial
is the number of flags with type table Λ in a q-regular semi-primary lattice when
q ≥ q0.

Corollary 5.56. Let λ be an integer partition. Type tables Λ with fΛ(q) = qdMλ(q)
exist for each 0 ≤ d ≤ n(λ) − n0(λ).

Proof. This follows from Theorems 5.52 and 5.55, and the fact that Mλ(q−1) =
q−n0(λ)Mλ(q).

Theorem 5.57. Let Λ be an interval type table of shape λ for which the polynomial
fΛ(q) and parameter q0 of Conjecture 5.25 exist. If there is no standard composition
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tableau P for which Λ has the form itypeP , then either q0 > 1, or fΛ(q) does not
have the form qdMλ(q).

Proof. Consider the 1-regular semi-primary lattice which is the direct product of
chains of lengths λ1, λ2, . . . . All its flags are hereditary flags, and so if Λ is not of the
form itypeP for some P , there are no flags with interval type table Λ. Thus, either
q0 > 1, or q − 1 is a divisor of fΛ(q).

Note. For all the polynomials listed in Appendix A, q0 = 1 and q − 1 is a divisor of
all polynomials except those of the form Λ = itypeP .

6. Tableaux games describing operations on flags

6.1. Operations on flags. We now consider a number of operations on multisat-
urated flags. We will work in the generality of multisaturated flags rather than
saturated flags because certain operations, such as A and C, turn saturated flags into
multisaturated flags, and we want to look at compositions of operations. The indexing
of the elements of flags and tableaux is important as well. For a flag f = (f0, . . . , fn),
we have ∂f = (f1, . . . , fn), whose components are indexed 1, . . . , n, not 0, . . . , n − 1;

the tableau game ftype ∂f = ∆̃(ftypef) is nicer this way, as it can be expressed
by moving numbers along a single path and leaving the rest of the tableau intact,
rather than also decrementing every entry of the tableau, and a similar phenomenon
occurs with other games. The price to pay for these saturation and indexing issues is
bookkeeping to track the indices used in flags and tableau, as already seen in Exam-
ple 5.46. For multisaturated flags, there are only two numbers that must be tracked:
the low index and the high index of a flag or tableau. The indices between them
do not change. For nonsaturated flags (Section 6.8), the intermediate indices will be
changed as well.

Here are all the operations on multisaturated flags.

flag g low(g) high(g)
f=(fl, fl+1, . . . , fh) l h
∂f=(fl+1, . . . , fh) l + 1 h
df=(fl, . . . , fh−1) l h− 1
Cf=(Cflfl, . . . , Cflfh) l h
Cxf=(Cxfl, . . . , Cxfh) l h
Af=(Afhfl, . . . , Afhfh) l h
Axf=(Axfl, . . . , Axfh) l h
f∗=(f∗h , . . . , f

∗
l ) n− h n− l

f ∨ x=(fl ∨ x, . . . , fh ∨ x) l h
f ∧ x=(fl ∧ x, . . . , fh ∧ x) l h

Certain pairs of operators commute: ∂, d; ∂, Cx; ∂,A; ∂,Ax; d, C; d, Cx; d,Ax. The
pairs ∂, d; C,A; Cx, Ax∗; ∨x,∧x∗ are dual, in the sense that (∂(f∗))∗ = df and
(d(f∗))∗ = ∂f , and similarly for the others.

The value of n must be specified, but generally, we start with a flag f = (f0, . . . , fn)
and apply some sequence of operators to it; the high index may no longer be n when
dualizing, but we still use the initial n rather than the new high index.
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For each operator, we would like to determine the following, to the extent possible.
We may ask the same questions with ftype replaced by ftypey.

(1) What are the possible values of ftype g given ftype f , and which value, if any,
is generic or uniform?

(2) How many flags f (or pairs f and x) achieve specified values of ftype f and
ftype g?

(3) Inversely, given g and a tableau P , how many flags f are there with ftype f =
P such that applying the operator yields g?

For the various operations, we will develop the tableau game G transforming
P = ftype f = (λ(l) ≤· · · · ≤· λ(h)) to GP = ftype g = (µ(l′) ≤· · · · ≤· µ(h′)). Either or
both ftype’s may be replaced by ftypey, as indicated in the particular game. There
are two equivalent formulations of each game: there are rules describing how to
manipulate the numbers and cells of the tableau P to form GP , and there are rules
describing how to compute the partitions µ(k) from the partitions λ(k). In the latter
formulation, we write the partitions λ(l), . . . , λ(h) in columns l through h on one
line, and then apply rules that ultimately yield partitions µ(l′), . . . , µ(h′) in columns l′

through h′ on the line below it. We can compose operations by using that line as the
input to yet another operator, whose result is written beneath it; the evacuation of
Figure 3 shows the computation of successive powers of ∆ in this format.

The tableau and partition formulations of each game are equivalent, provided we
keep track of low(P ), high(P ), low(GP ), and high(GP ) through careful bookkeeping
in the tableau formulation of the game; in the partition formulation, we keep track
of these quantities automatically.

Depending on the operation, the value of ftype g may not be uniquely determined by
the value of ftype f . If multiple values are possible, we define two similar games: G̃P
is a nondeterministic game yielding all possible values of ftype g given P = ftype f ,
and GP is a deterministic game, usually yielding the generic value. For most games
(the Robinson-Schensted games being the important exception), the generic value is
uniform, so that the uniform value of a composition of operators on a flag is described
by composing the generic games.

6.2. The backwards jeu de taquin slide, jc(P ). Let shP = λ/µ; the parameter
c is an inner corner of µ.

Let 0̂ <· x ≤ fl. Uniformly,

jc, ̃c : ftype0̂ f 7−→ ftypex f c = type[0̂, fl]/ type[x, fl].

(That is, the game jc uniformly maps { f : ftype0̂ f = P } to { f : ftypex f = jc(P ) },
and in all degenerate cases, ftypex f = ̃c(ftype0̂ f).)

Tableau Rules. The items tagged with j or ̃ are performed only in one or the other
game, and the untagged items are done in both games.

(1) Place ? at c and let e = • be the value that was there.

(2j) If ? is at an inner corner, delete it, and we are done. Otherwise, choose the
smaller or only of the cells just below and just right of ?, and slide that entry
into ?. Repeat step (2).

(2̃) Choose one of these alternatives, when the provision allows.
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(a) Slide the entry e′ below ? into ?, provided the numeric entries on the
rows continue to increase left to right.

(b) Slide any entry e′ > e from the column left of ? into ?, provided the rows
continue to increase left to right and the columns top to bottom.

(c) Delete ? and we are done, provided ? is at an inner corner.
Then let e := e′ and repeat step (2̃) until alternative (c) is chosen.

See Figure 6.

Local Rules. Place λ(l) 	 c in column l. Then for k = l + 1, l+ 2, . . . , h, propagate as
follows.

column l k − 1 k
P λ(l) γ δ

̃cP (λ(l) 	 c) α (β)
−→

The nonparenthesized values are given, and the parenthesized values are computed,
according to which of several cases occurs.

α = γ: Let β := δ.
δ = γ: Let β := α.
δ/α is a brick: Let β be the unique partition between α and δ.
δ/α is two nonadjacent squares (jc): There are two partitions between α
and δ, and β is the one that’s not γ.
δ/α is two nonadjacent squares (̃c): If col(δ/γ) ·> col(γ/α), choose ei-
ther partition between α and δ to be β, and otherwise, choose the partition
unequal to γ to be β.

Theorem 6.1. Let P be a tableau of shape λ/µ. Let ν <· µ and c = µ/ν. For all
flags f with ftype0̂ f = P , and all atoms x of [0̂, fl] with type[x, fl] = ν, we have
ftypex f = ̃c(ftype0̂ f).

Fix Q = ̃cP . Let r = col(λ/µ(h)). In a q-regular semi-primary lattice of type λ,
the number of pairs (x, f) where f is a flag with ftype0̂ f = P and x is an atom of
[0̂, fl] with type[x, fl] = ν, and ftypex f = Q, is

(
〈λ′r〉 −

〈
λ′r+1

〉)
·
∏

k ∈ P

〈row(Q, k)〉 − 〈row1(P , k)〉 if col(P , k) = col(Q, k);

〈row(P , k)〉 − 〈row1(Q, k)〉 if col(P , k) ·> col(Q, k).

This is a polynomial of degree

n(shP ) + n(oshP / oshQ)−# of entries that move up one cell from P to Q,

which is uniquely maximized in the uniform game P = jc(P ).

Proof. See Proposition 5.7, which counts the number of flags f with specified values of
ftype f and ftype ∂f . The proof is essentially the same, except that here we allow the
flag to be multisaturated by setting fk−1 := fk when k 6∈ Q (which simply introduces

factors of 1 that can be ignored), and we included the number 〈λ′r〉−
〈
λ′r+1

〉
of choices

of x. Also, the final cell c of the deletion path was fixed at (1, 1) in the proposition,
but is given here as a parameter.
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Figure 6. All possible degenerate jeu de taquin slides.
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Note. The following conventions explicitly described in this game will be adopted for
all games without further explicit descriptions.

(1) The notation

G, G̃ : ftypex f 7−→ ftypey φ(f)

means G̃ is a nondeterministic game with ftypey φ(f) = G̃(ftypex f) for all
flags f , and that the game G is a deterministic version of it, usually giving a
uniform or generic value, as noted.

(2) Differences in the rules for G and G̃ are noted by tagging the rules that differ

with G or G̃; untagged rules are the same in both.
(3) In the local section shown of the grid of partitions for a game, the unparen-

thesized partitions are given, and the parenthesized ones are computed as a
(possibly nondeterministic) function of them. If there is a simple formula for
a parenthesized one, it is given, and otherwise, it is given a name, such as “β,”
and then rules for computing β are presented.

6.3. The jeu de taquin, j(P ). Uniformly,

j, ̃ : ftype0̂ f 7−→ ftype f.

Tableau Rules. Let P be a skew tableau. Choose any inner corner c of the inner
shape of P and apply the backwards slide jc (for j), or the degenerate backwards
slide ̃c (for ̃), and repeat again with another inner corner of the resulting tableau,
until a tableau of ordinary shape is achieved.

The tableau j(P ) is independent of the sequence of inner corners chosen! For a
detailed analysis of this game and a combinatorial proof of the uniqueness of j(P ),
see the original source [26] or an exposition [22, §3.9]. We provide the following
algebraic proof.

Definition 6.2. For a standard tableau R on 1, . . . ,m with i in cell ci, let jR =
jc1 · · · jcm .

Theorem 6.3.

(1) Let µ be a partition. The tableau operator jR is the same for all standard
tableau R of shape µ. Simply denote this operator by j.

(2) Generically, ftype f = j(ftype0̂ f) in q-regular semi-primary lattices.

Proof. Let P be a standard skew tableau of shape λ/µ and R be a standard tableau
of shape µ ` m. Let A be the set of flags f with ftype0̂ f = P , and let Xf be

the set of flags x with 0̂ = x0 <· x1 <· · · · <· xm = fl and ftypex∗ = R. For
all flags f ∈ A, there are FR(q) flags in Xf . By genericity of the composition jR

of uniform games, all but a fraction O(q−1) of pairs { (x, f) : f ∈ A and x ∈ Xf }
satisfy ftype f = ftypexm f = jR(P ). This expression does not depend on which
x ∈ Xf was chosen, and the size of Xf is independent of f ∈ A, so in fact, all but
a fraction O(q−1) of flags f ∈ A satisfy ftype f = jR(P ). Since this holds for any
standard tableau R of shape µ, in fact, jR(P ) is independent of R.

Corollary 6.4. Let µ be a partition and P be a standard tableau. Then j(µ+P ) =
S(P ).
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Proof. All flags f with ftype0̂ f = µ+ P have ftype f = S(P ) by Theorem 4.93, and
generically have ftype f = j(P ) by the preceding theorem, so j(P ) = S(P ).

This can also be proved without the machinery of flags by showing jc(µ + P ) =
(µ	 c) + P , i.e., that the slide jc simply slides c’s row one cell left, deleting • from
c, and does nothing to any other row.

6.4. The elementary evacuation step, ∆P . Uniformly,

∆, ∆̃ : ftype f 7−→ ftype ∂f.

Tableau Rules. If the top left corner of P is larger than l+ 1 then ∆̃P := P , and we
are done. Otherwise, let c = (1, 1) be the upper left corner of P , place • there, and

perform the backwards slide jc (for ∆) or ̃c (for ∆̃) into it.

Local Rules. Place ∅ in column l + 1. Then for k = l + 2, . . . , h, propagate by the
same rule as in jc (for ∆) or ̃c (for ∆̃).

column l l + 1 k − 1 k
P ∅ λ(l+1) γ δ

∆̃P (∅) α (β)
−→

The game ∆ is uniform; see Proposition 5.7 for further details, including an enu-
meration of the number of flags achieving ftype f = P and ftype ∂f = Q. The proof
there is for saturated flags, but is trivially extended to multisaturated flags, with the
same enumerative formulas.

6.5. Remove the low entry, ∂P = (λ(l+1), . . . , λ(h)). Uniformly (in fact, identi-
cally),

∂ : ftype0̂ f 7−→ ftype0̂ ∂f
∂ : ftype f 7−→ ftypefl ∂f.

Tableau Rules. Replace any occurrence of l + 1 in P by •. See Figure 7.

Local Rules. Place partitions λ(l+1), . . . , λ(h) in columns l + 1 through h.

column l k
P λ(l) λ(k)

∂P (λ(k))
for l + 1 ≤ k ≤ h

All flags f with ftype0̂ f = P have ftype0̂ ∂f = ∂P . In a regular semi-primary
lattice whose type is oshP , all flags g with ftype0̂ g = ∂P have the same number
of extensions to a flag f = (fl, gl+1, . . . , gh) with ftype0̂ f = P ; if λ(l) = λ(l+1), then
fl := gl+1 in one way, and if λ(l) <· λ(l+1) then fl is any coatom of [0̂, fl+1] of type λ(l).

All flags f with ftype f = P have ftypefl ∂f = ∂P . In a lattice whose type is shP ,

all flags g up to 1̂ with with ftype0̂ g = ∂P have one extension, f = (0̂, gl+1, . . . , gh),
with ftype f = P .
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P =
• • 4
2 5 6
3 9

∂P =
• • 4
• 5 6
3 9

if l = 1, ∂P =
• • 4
2 5 6
3 9

if l < 1.

dP =
• • 4
2 5 6
3

if h = 9, dP =
• • 4
2 5 6
3 9

if h > 9.

CP =
• 4
5 6
9

Figure 7. Deterministic games ∂, d, C.

6.6. Remove the high entry, dP = (λ(l), . . . , λ(h−1)). Uniformly (in fact, identi-
cally),

d : ftype f 7−→ ftype df
d : ftype0̂ f 7−→ ftype0̂ df.

Tableau Rules. Delete any cell with h from P . See Figure 7.

Local Rules. Place partitions λ(l), . . . , λ(h−1) in columns l through h− 1.

column k h
P λ(k) λ(h)

dP (λ(k))
for l ≤ k ≤ h− 1

All flags f with ftype f = P have ftypedf = dP , and all with ftype0̂ f = P have
ftype0̂ df = dP .

In a semi-primary lattice whose type is oshP , all flags g with ftype0̂ g = dP have

exactly one extension f = (gl, . . . , gh−1, 1̂) to a flag with ftype0̂ f = P , and all flags
g from 0̂ with ftype g = dP have exactly one extension f = (gl, . . . , gh−1, 1̂) to a flag
with ftype f = P .

6.7. Delete the left column, CP = (Cλ(l), . . . , Cλ(h)). Uniformly,

C : ftype f 7−→ ftypeCf
C : ftype0̂ f 7−→ ftype0̂C0̂f.

Tableau Rules. Delete the first column of P . See Figure 7.

Local Rules. Place partitions Cλ(l), . . . , Cλ(h) in columns l through h.

column k
P λ(k)

CP (Cλ(k))
for l ≤ k ≤ h
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We will examine ftype0̂, and ftype is treated by setting 0̂ to fl.
All flags f with ftype0̂ f = P yield ftype0̂ f = CP .

For the inverse problem, we show that all flags g to C 1̂ with type CP can be
expressed g = Cf where f has type P . Since fn = 1̂, it is mandatory that gn = C 1̂.
So select any flag g to C 1̂ with ftype0̂ g = CP . Given

←− type
(fk−1) ≤· fk
Cfk−1 ≤· Cfk

=
γ ≤· δ
α ≤· β

(that is, the partitions α, β, γ, δ are given; fk, Cfk, and the desired value of Cfk−1 are
given; but fk−1 is not given), we want to find all possible fk−1. Let w be the given
desired value of Cfk−1.

If γ = δ then fk−1 := fk so gk−1 := gk and α := β.

γ = δ
∨∨ ∨∨
Cγ = Cδ

1 choice

So let γ <· |r| δ. The intervals [0̂, Cfk] and [A0̂, fk] are isomorphic by Theorem 4.17.
Since w ≤ Cfk, the type of Afkw is (δ′1, α

′
1, α

′
2, α

′
3, . . .)

′, which agrees with γ in all
columns except possibly the first. Any fk−1 with Cfk−1 = w must have fk−1 ≤ Afkw
because the interval [w, fk−1] is elementary. If r = 1 then α = β and w = Cfk; set
fk−1 to be any lower cover of fk whose type is γ.

γ <· |1| δ
∨∨ ∨∨
Cγ = Cδ

〈δ′1〉 − 〈δ′2〉 =
〈row(P , k)〉 − 〈row1(P , k)〉

choices

If r > 1 then typeAfkw = γ so fk−1 = Afkw.

(r > 1)
γ <· |r| δ
∨∨ ∨∨
Cγ <· |r−1| Cδ

1 choice

Written in terms of tableaux, given a flag g up to C 1̂ with ftype0̂ g = CP , the number
of flags f with ftype0̂ f = P and Cf = g is

F P (q)

F CP (q)
=

∏
k : col(P , k) = 1

(
〈row(P , k)〉 − 〈row1(P , k)〉

)
.

6.8. Saturating a flag, SP . Let f = (fl ≤ · · · ≤ fh), but no longer assume each
≤ is ≤· . The rules given previously for tableau games ∂, d, C do not change, and give
the same transformations of flag types: for ∂P , drop the low partition from P , or
equivalently, replace low(P )+1 by •; for dP , drop the high partition, or equivalently,
delete all cells whose entry is high(P ); and for CP , apply C to each partition in P ,
or equivalently, delete the first column of P . The situation for most other games is
more complicated, but can be handled in a systematic fashion.

Saturate the flag f by adding additional elements, as follows. For some i, let
r = ρ(fi−1, fi), and introduce additional indicies ordered i− 1 = i0 < i1 < i2 < · · · <
ir = i. Choose an extension of (fi−1 < fi) to a saturated flag (fi−1 = fi0 <· fi1 <·
fi2 <· · · · <· fir = fi); there is always some way to do this, and usually there are many.
After doing this for all l < i ≤ h, let fs be the flag so obtained. We introduce a game
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that uniformly determines the type of the saturated flag when P is semistandard.
When P is row and column weak but not necessarily semistandard, we shall see that
something close to uniformity is obtained.

S, S̃ : ftype f 7−→ ftype fs

S, S̃ : ftype0̂ f 7−→ ftype0̂ f
s

Tableau Rules. For each symbol i in P , do the following. Suppose P has a total of r
entries equal to i.

S: Traverse P by going down the first column, then down the second column,
and so on, and replace the occurrences of i by i1, . . . , ir in the order they are
encountered.
S̃: Replace the symbols i by i1, . . . , ir in any fashion so that the subtableau
formed by i1, . . . , ir is a standard skew tableau.

Example 6.5.

P =
• • 1 1
1 1 1 2
2 2

SP =
• • 13 15

11 12 14 23

21 22

There are 5 ways to place subscripts on the 1’s so that the subscripts are row and
column strict, and 3 ways to similarly place them on the 2’s, so there are 15 possible
values of S̃P .

In ftypex f
s, the cell of type[x, fik]/ type[x, fik−1

] is filled with the symbol ik, and
the cells of type[x, fi]/ type[x, fi−1] are a standard skew tableau on entries i1, . . . , ir.
Not all fi−1 and fi allow saturations permitting any given skew tableau filling, but
given a filling, we can begin with arbitrary fi and form a descending chain of elements
terminating in some fi−1 so that the filling is achieved.

Theorem 6.6.

(1) Given tableaux P and Q = S̃P , the number of pairs of flags (f, fs) with
ftype0̂ f = P , ftype0̂ f

s = Q, and fs a saturation of f is FQ(q).
(2) Let ftype0̂ f = P and nij be the number of entries in column j of P equal to

i. There are ∏
l<j≤h

〈nij〉!

saturations fs of f with ftype0̂ f = SP .
(3) When P is semistandard, S uniformly maps flags with ftype0̂ f = P to satu-

rations fs with ftype0̂ f
s = SP .

Proof.

(1) Choose any of FQ(q) flags fs with ftype0̂ f
s = Q. The only possible choice of

f is the subflag f = (fsl , f
s
l+1, . . . , f

s
h).

(2) Choose i with l < i ≤ h. Let Nj = ni1 + · · ·+ nij and Ij = iNj . Let µ = λ(i−1)

and λ = λ(i). Since the desired type of fIj is µ ∨ λ[j] and fi−1 ≤ fIj ≤ fi, we
have fIj = fi−1 ∨ fi[j] for all j. Choose a saturation of the type (1nij ) interval
[fIj−1, fIj ] to a flag (fIj−1 <· fIj−1+1 <· · · · <· fIj) in any of 〈nij〉! ways. Multiply
the number of choices over all i and j to obtain the total in the theorem.
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(3) If P is semistandard, each λ(i)/λ(i−1) is a horizontal strip. We show that
generically, [fi−1, fi] is a chain, so that there is only one saturation of it. Let
y have type λ(i) and let µ = λ(i−1). The number of x ≤ y with type µ and
cotype ν is the Hall polynomial gλµν(q), of degree n(λ)−n(µ)−n(ν); we seek to
maximize this degree, or equivalenty, minimize n(ν). Since λ/µ is a horizontal
strip of some length r, the value ν = (r) with n(ν) = 0 uniquely minimizes
n(ν).

So generically, [fi−1, fi] is a chain for each i, and f has only one saturation,
whose type is therefore SP . Every saturated flag of type SP has exactly one
inverse of type P , so the map is uniform.

When P is not semistandard, there need not be a generic value of ftype0̂ f
s. For

example, in q-regular semi-primary lattices of type λ ` r, if f0 = 0̂ and f1 = 1̂,
there are FQ(q) saturations of type Q for each standard tableau Q of shape λ on
11, . . . , 1r. These polynomials all have degree n(λ), so asymptotically, each tableau
has probability 1/fλ of occurring as the type of a saturation.

More generally, by Theorem 4.92, if type fi/ type fi−1 = λ/µ, then generically,
type[fi−1, fi] = ν, where ν = (S(λ′ − µ′))′. Let r = |ν|. Let

T = {Q : Q is standard on i1, . . . , ir, with shQ = λ/µ and sh j(Q) = ν } .
As q → ∞, over all saturations fs of flags f of type P , each tableau in T has
probability (#T )−1 + O(q−1) of being the subtableau replacing the i’s, while any
tableau not in T has probability o(q−1). Every flag fs of type Q arises from a single
flag f of type P , so we have a condition similar to uniformity.

Note that SP ∈ T because applying j to the subtableau of i1, . . . , ir simply deletes
the •’s at the top of each column, pushes the columns up to be aligned at the top, and
then pushes the entries on each row horizontally left to fill any holes, thus obtaining
a tableau of shape ν (this is transpose to Corollary 6.4).

In the following, the type of a flag may be interpreted as ftypef or ftypex f , as
appropriate.

Theorem 6.7. Let φ : L1 → L2 be a growth on semi-primary lattices, and extend
it to an operator on flags by φ(fl, . . . , fh) = (φ(fl), . . . , φ(fh)). Suppose φ generically
(respectively, uniformly) transforms multisaturated flags of type P to flags of type GP .
If P is row and column weak but not necessarily standard, φ generically (uniformly)
maps flags of type P to flags of type S−1GS(P ), where S−1 drops the subscripts from
the entries. The degenerate possibilities are all of the form S−1G̃S(P ).

A similar statement holds for order-reversing growths, that is, φ : L1 → L2 such
that if x ≤· y then φ(y) ≤· φ(x). Set φ(fl, . . . , fh) = (φ(fh), . . . , φ(fl)) in the above.

Proof. Since there are always saturations of type SP , the possible outcomes of a
game on a nonsaturated flag may be determined by saturating it with type SP ,
applying further operators, and later “unsaturating” by dropping the subscripts from
the entries; the value of φ(f) does not depend on the saturation, so the added elements
can be removed.

Every flag of type P has the same number of saturations of type SP , and every
saturated flag of type SP has a single unsaturated inverse flag f of type P . This
is quite similar to uniformity, but with a multivalued saturation function instead
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of a singly valued function, so saturation composes with other generic or uniform
operators in a fashion similar to Theorem 5.12 by essentially the same proof.

All operators we describe on semi-primary lattices have the form described in the
theorem, except for dP and ∂P , which already have been described for nonsaturated
flags. The theorem does not hold for dP , for suppose ρ(fh−1, fh) = r > 1. We
saturate f to obtain fs = (. . . , fhr−1, fhr). Then dfs = (. . . , fhr−1), and so the type of
this still has subscripted h’s, which turn to ordinary h’s when we apply S−1. However,
df = (fl, . . . , fh−1), so there are no h’s in ftype df . A similar problem occurs for ∂f .

6.9. The dual of a flag, evP . Uniformly,

ev, ẽv : ftype f 7−→ ftype f∗.

By Theorem 5.14, the uniform cotype of saturated flags of type P is evP when P
is a standard tableau on 1, . . . , n. This is trivially extended to multisaturated flags
via evP = (sh ∆n−kP )lk=n−h, with degenerate possibilities given by using ∆̃ instead
of ∆.

Tableau Rules. Let P be a standard tableau on distinct entries. Repeatedly apply
the operator ∆ (for ev) or ∆̃ (for ẽv) to the subtableau of unstarred entries, and
when an entry k is deleted, place an entry k∗ in the cell that is concurrently deleted.
Finally, a tableau with only starred entries is obtained, and each k∗ is replaced by
n+ 1− k.

Local Rules. This does not have a representation in the form of two lines of partitions,
but rather, has the form of a triangular array of partitions; see Section 5.2.

This can also be extended to flags that aren’t from 0̂ to 1̂. The following map is
uniform on flags in semi-primary lattices of type λ.

evλ, ẽvλ : ftype0̂ f 7−→ ftype0̂∗ f
∗

Tableau Rules. Let P be a standard skew tableau of shape µ/ν with µ ≤ λ. Let
r = |ν| and s = |λ| − |µ|. Fill ν with entries l1, l2, . . . , lr by traversing its cells down
the first column, then down the second column, and so on. Fill λ/µ with entries
(h + 1)1, (h + 1)2, . . . , (h + 1)s in a similar fashion. Apply the ordinary ev or ẽv as
described above, but replace all (h+ 1)∗i ’s by •’s and remove all cells with l∗i ’s.

This map is uniform: extend the flag f = (fl, . . . , fh) to the flag (0̂, fl, . . . , fh, 1̂)
(filling ν with l’s and λ/µ with (h+ 1)’s), saturate it with a canonical saturation (S),
dualize it (apply ev), unsaturate it (S−1), and remove the leading 1̂∗ (replacing the
(h+ 1)i’s by •’s) and the trailing 0̂∗ (removing the cells with li’s).

Example 6.8. Let λ = (3, 3, 2) and n = 7. In semi-primary lattices of type λ,
consider flags f = (f3, f4, f5) with ftype0̂ f = P , whose saturation to shape λ is P s:

P =
• • 4
• 5

P s =
31 33 4
32 5
61 62

.
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This is a relabeling of the tableau used throughout Section 5.1. Do repeated applica-
tions of ∆, keeping track of the vacated cells by replacing them with starred deleted
entries:

31
M
A
AC

33 4

32

u

5u

61 62

u

32
M
A
AC

33u 4u

5 62

61 3∗1

33
M
A
AC

4u 3∗2

5 62

u

61 3∗1

4
M
A
AC

62 3∗2

5

u

3∗3

61

u

3∗1

5
M
A
AC

62 3∗2

61

u

3∗3

4∗ 3∗1

61
M
A
AC

62u 3∗2

5∗ 3∗3

4∗ 3∗1

62
M
A
AC

6∗1 3∗2

5∗ 3∗3

4∗ 3∗1

6∗2 6∗1 3∗2

5∗ 3∗3

4∗ 3∗1

Replace 6i’s by •’s and remove 3i’s to obtain that uniformly, we expect

ftype0̂∗ f
∗ = evλP =

• •
5∗

4∗
=
• •
3
4

.

7. The Robinson-Schensted correspondence

7.1. The Robinson-Schensted correspondence. Let Sn be the group of permu-
tations on 1, . . . , n. Robinson [3] and Schensted [24] created an algorithmic bijection
between ordered pairs of standard tableaux of the same shape with entries 1, . . . , n,
and Sn. See Sagan [22] for a comprehensive account. There have been many general-
izations of it, including for repeated entries (Knuth [15]), skew tableaux (Sagan and
Stanley [23]), bijections of a similar nature with other structures (Fomin [4]), and
oscillating chains in Young’s lattice (Roby [21]). The basic algorithm is as follows.

Robinson-Schensted Row Insertion. Let P be a standard tableau on distinct
entries, and k be a number not in P . Insert k in the first row by either replacing the
smallest number on the row larger than k with k, or by appending k to the end of the
row if it is larger than all entries on it. If a number was replaced, insert it into the
second row in the same fashion. Continue this on successive rows until the process
terminates by appending a number to a row. The final tableau is the result of row
inserting k into P .

Robinson-Schensted Algorithm. Let σ ∈ Sn. Let P 0 = ∅, and for k =
1, . . . , n, form P k by row inserting σ(k) into P k−1. Define P (σ) = P n, called the
insertion tableau. Form a tableau Q(σ) on 1, . . . , n, called the recording tableau,
by placing k at the cell where inserting σ(k) into P k−1 terminates, so that Q(σ) =
(shP 0, . . . , shP n).

The inverse map is given by a deletion process.
Robinson-Schensted Deletion. Let P be a standard tableaux on distinct en-

tries, and c be an inner corner of P . The deletion step beginning at c is as follows.
Let e be the entry at c. Remove cell c. If e is on the top row, we are done. Otherwise,
go up one row. Replace the largest entry smaller than e with e and let e be the
number that was replaced. If we’re on the top row, we’re done, and otherwise, go
up another row, and replace the largest entry smaller than e with e. Continue in
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this fashion until a number is removed from the top row. That number is said to be
deleted from the tableau.

Inverse Robinson-Schensted Algorithm. Let (P ,Q) be a pair of standard
tableaux of equal shape with entries 1, . . . , n. Let ck ∈ P × P be the cell containing
k in Q. Let P n = P , and for k = n, . . . , 1, form P k−1 from P k by a deletion step
beginning at cell ck, resulting in some entry σ(k) being deleted from the tableau.
Denote the permutation σ obtained in this fashion by σRS(P ,Q).

Theorem 7.1 (Robinson-Schensted Correspondence). The maps

σ 7→ (P (σ),Q(σ)) and (P ,Q) 7→ σRS(P ,Q)

are inverse bijections between Sn and pairs of standard tableaux of the same shape on
1, . . . , n.

See Robinson [3] and Schensted [24] for the original proof.

Example 7.2. The one-line form of a permutation σ is the sequence of numbers
σ(1)σ(2) · · · . Let σ = 4 1 5 3 2 6 . The sequence of tableaux P 0, . . . ,P 6 and the
insertion paths are as follows. The outer corner in which the path will terminate is
shown in bold.

4
{u
∅

1
{u
4

u

5
{u

1

4

3
{u

1 5
u

4

2
{u

1 3
���

4
u

5

6
{u

1 2

3 5

4

1 2 6

3 5 = P (σ)

4

Q(σ) =

1 3 6

2 4

5

The inverse Robinson-Schensted algorithm is performed via deletion paths obtained
by translating the arrows one tableau right and reversing their direction.

7.2. Bruhat order. Let σ ∈ Sn and A(σ) = (aij)0≤i,j≤n be the matrix with entries
aij = # { j′ : j′ ≤ j and σ(j′) ≤ i′ }. Note that σ(j) = min { i : aij > ai,j−1 } and
σ(j) = i iff aij > ai,j−1 but ai−1,j = ai−1,j−1.

The Bruhat order is a graded partial order on Sn given by σ ≤ τ iff A(σ) ≥ A(τ )
entrywise. See [29, p. 528] and [31, p. 83] for discussion of the Bruhat order in this
form, and [17, pp. 5–8] for an in-depth discussion of other descriptions and properties
of the order.
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7.3. Relative positions of flags in modular lattices. Throughout this section,
f = (f0 <· · · · <· fn) and f ′ = (f ′0 <· · · · <· f ′n) are saturated flags from 0̂ to 1̂ in a
modular lattice.

Definition 7.3. This relative position of flags f and f ′ is the permutation σ(f, f ′)

given by σ(k) = min
{
i : fi ∧ f ′k ·> fi ∧ f ′k−1

}
for k = 1, . . . , n.

We can also replace fi∧f ′k ·> fi∧f ′k−1 by ρ(fi ∧ f ′k) ·> ρ(fi ∧ f ′k−1) in the above. The
relative position is completely determined by the ranks ρ(fi ∧ f ′k) for 0 ≤ i, k ≤ n.

Another construction of σ(f, f ′) is as follows. For each 0 ≤ k ≤ n, consider
g(i) = (fi ∧ f ′0 ≤· · · · ≤· fi ∧ f ′n) = f ′ ∧ fi. The bottom element of g(i) is 0̂ and
the top element is f ′n ∧ fi = fi, so of the weak cover relations, i are strict. Clearly
g(i−1) = g(i) ∧ fi−1. Consider the ≤· relations in g(i) and in g(i−1). One <· in g(i)

becomes = in g(i−1), and all other <· or = remain the same. If fi ∧ f ′k−1 <· fi ∧ f ′k
but fi−1 ∧ f ′k−1 = fi−1 ∧ f ′k, define σ(k) = i. This associates a unique k to each

i = n, . . . , 1, and since all relations are <· in g(n) and = in g(0), there is for each k a
unique i when the kth relation switches from <· to =. So σ(f, f ′) is a permutation.

Theorem 7.4 (Steinberg [29]). In the invariant subspace lattice over an infinite
field, the generic relative position of saturated flags (f, f ′) with ftype f = P and
ftype f ′ = Q is σRS(P ,Q).

See also van Leeuwen [31].

Conjecture 7.5. Let P and Q be standard tableaux of shape λ. In q-regular semi-
primary lattices of type λ, as q →∞, all but O(q−1) pairs (f, f ′) of flags with ftype f =
P and ftype f ′ = Q have σ(f, f ′) = σRS(P ,Q).

The tableaux P = (λ(0), . . . , λ(n)) and Q = (µ(0), . . . , µ(n)) are chains of partitions
in Young’s lattice, which is modular. Their relative position σ(P ,Q) in Young’s
lattice is the permutation σ(j) = i where the cell with i in P has j in Q: comparing
the tableaux representing the chains P ∧µ(j) and (P ∧µ(j))∧µ(j−1) = P ∧µ(j−1), we
see that the cell with j in Q is deleted from the former and all other cells stay intact.
The deleted entry is whatever was in that cell in P .

Conjecture 7.6. Let (f, f ′) be a pair of saturated flags in a semi-primary lattice with
ftype f = P and ftype f ′ = Q. Then σ(P ,Q) ≤ σ(f, f ′) ≤ σRS(P ,Q) holds in the
Bruhat order.

We will see later, in Corollary 9.20, that this holds in all semi-primary lattices
whose type has two rows. For arbitrary types, The upper bound holds for invariant
subspace lattices over infinite fields (see [31, Theorem 2.5.4]), and the lower bound
is a consequence of the following.

Theorem 7.7. Let L and M be modular lattices, and φ : L 7→ M be a rank and
order preserving map. Let f and f ′ be saturated flags in L from 0̂ to x. Then

σ
(
φ(f), φ(f ′)

)
≤ σ(f, f ′).
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Proof. The map φ preserves order, but not necessarily meets and joins. We have
fi∧f ′j ≤ fi, f ′j so φ(fi∧f ′j) ≤ φ(fi), φ(f ′j), whence φ(fi∧f ′j) ≤ φ(fi)∧φ(f ′j). Take the

ranks of both sides: ρ(fi ∧ f ′j) ≤ ρ
(
φ(fi)∧ φ(f ′j)

)
. Thus, σ(f, f ′) ≥ σ

(
φ(f), φ(f ′)

)
in

the Bruhat order.

We consider an enumeration problem for pairs of flags of specified types in specified
relative positions, similar to the enumeration problem for the interval type table of a
flag considered in Section 5.5.

Conjecture 7.8. Given standard tableaux P and Q of equal shape λ on 1, . . . , n,
and a permutation σ ∈ Sn, the number of pairs (f, f ′) of flags with ftype f = P ,
ftype f ′ = Q, and σ(f, f ′) = σ is often a polynomial in q, depending only on P ,
Q, and σ, and on no further structure of the lattice. The polynomial is divisible by
Mλ(q). As a function of σ, its degree increases as σ increases in the Bruhat order
from σ(P ,Q) to σRS(P ,Q).

We consider three square arrays of partitions that each refine the notion of relative
position. Their components λ(ij) for 0 ≤ i, j ≤ n are as follows.

λ(ij) ρ(fi ∧ f ′j)

(1) type(fi ∧ f ′j) |λ(ij)|

(2) type[fi, fi ∨ f ′j ] j − |λ(ij)|

(3) type(fi ∨ f ′j) i+ j − |λ(ij)|

The relative position of (f, f ′) can be computed from any of these, because the val-
ues of ρ(fi ∧ f ′j) can be determined. In subsequent sections it is shown that given
ftype f = P and ftype f ′ = Q, computation of (1) is similar to Robinson-Schensted
deletion; (2) is similar to a transposed deletion operating on columns instead of rows;
and (3) is similar to insertion in skew tableaux.

Conjecture 7.9. For all but O(q−1) pairs (f, f ′) with ftype f = P and ftype f ′ = Q,
in (1) the tableaux P n, . . . ,P 0 obtained by Robinson-Schensted deletion from (P ,Q)
are P k = (λ(0k), . . . , λ(nk)), and in (2) the same, but with the transposed deletion
process.

We will later see that (3) does not have a generic value.
In the next section, we will consider enumeration of the number of pairs (f, x)

where x <· 1̂ and the desired values of ftype0̂ f = P and ftype0̂(f ∧ x) are given.
Subsequent sections will consider similar problems for (2) and (3), and will encounter
similar difficulties. Let P n−1 be the tableau obtained from a Robinson-Schensted
deletion step in P beginning at cell (shP )/ typex. The most common value of
ftype0̂(f ∧ x) given P and typex is P n−1. To compute the relative position, we look
at flags f ∧ f ′k. Since f ∧ f ′k−1 = (f ∧ f ′k) ∧ f ′k−1, it would be tempting to repeat
the process to obtain a series of Robinson-Schensted deletion steps. The uniformity
condition in Theorem 5.12 that we use elsewhere to compose steps is not met here:
f 7→ f ∧x generically, but not uniformly, maps flags with ftype0̂ f = P to flags g with
ftype0̂ g = P n−1; topologically, { f ∧ x : ftype0̂(f ∧ x) = P n−1 and ftype0̂ f = P } is
not dense in { g : gn = x and ftype0̂ g = P n−1 }, while enumeratively, the cardinality
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of the former set is a fraction O(q−1) of the latter, rather than 1−O(q−1). Some other
technique is required to continue. Steinberg [29] resolves this for invariant subspace
lattices over infinite fields by using properties of the Zariski topology and a larger
lattice (all pairs of saturated flags in the vector space V , without the condition of
invariance under N) that concurrently embeds invariant subspace lattices of all types
of order dimV .

7.4. Robinson-Schensted deletion, DcP . Let λ/µ = shP ; the parameter c is
either ∅ or an inner corner of λ not in µ.

Pick x ≤· fh. The following map is generic but not uniform.

Dc, D̃c : ftype f 7−→ ftype(f ∧ x) c = λ/(type[fl ∧ x, fh ∧ x])

Dc, D̃c : ftype0̂ f 7−→ ftype0̂(f ∧ x) c = λ/ type x

Tableau Rules. See Figure 8. Let P be a standard skew tableau on distinct entries,
and c be an inner corner of oshP or c = ∅. If c = ∅ then D̃cP = P . Otherwise,
proceed as follows.

We insert an entry e into a row by replacing its largest entry (possibly •) smaller
than e with e; the number it replaces is bumped from the row.

(Dc): Begin by letting e be the entry at c and removing cell c from the tableau.
Insert e into the row above c, bumping out a number. Insert that number
one row higher, bumping out another number. Continue this until either an
entry is bumped out from the top row, or • is bumped out.

(D̃c): Begin by letting e be the entry at c and removing cell c from the tableau.
Either choose any higher up row and insert e on it (provided the column e
lands in continues to increase from top to bottom), or choose to stop. Take
the bumped out number, and either choose a still higher row to insert it into,
provided the column remains increasing, or choose to stop. Continue in this
fashion until optionally stopping; bumping out •; or bumping out an entry
from the top row.

The final value bumped out is said to be deleted from the tableau.

Local Rules. If c = ∅, let µ(h) := λ(h), and if c is a single cell, let µ(h) be λ(h) with c
deleted. Then for k = h, h − 1, . . . , l + 1, propagate as follows.

←−

k − 1 k h column
γ δ λ(h) P

(α) β (λ(h) 	 c) D̃cP

β = γ <· δ does not hold: Let α := β ∧ γ.
β = γ <· δ holds: Let c := δ/β.

row(c) = 1: Let α := γ.
row(c) > 1 (Dc): Delete the last cell of γ on the row above c to obtain
α.

row(c) > 1 (D̃c): Choose either to let α := γ, or to delete any inner
corner of γ whose row is less than row(c) to obtain α.

The unique k such that λ(k) ·> λ(k−1) and µ(k) = µ(k−1) is the entry deleted from
the tableau.
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Figure 8. All possible degenerate skew Robinson-Schensted deletion games.

We will show that the tableau interpretation and the local rule interpretation of
the games Dc and D̃c are the same, and that they describe f ∧ x.

Proposition 7.10. The tableau rules and local rules given above for Dc and D̃c de-
scribe the same game.

Proof. Let P = (λ(l), . . . , λ(h)) and D̃cP = (µ(l), . . . , µ(h)) (as given by the tableau

rules). Since each cell of P either vanishes, stays the same, or increases in D̃cP , we
have µ(k) ≤ λ(k) for l ≤ k ≤ h. If e is the entry bumped out, then µ(k) = λ(k) for
l ≤ k < e because no cells with entries less than e are changed. Also, µ(k) <· λ(k) for
e ≤ k ≤ h because the number of entries less than or equal to k in P is exactly one
more than in D̃cP since e was bumped out.

For k = l, . . . , h, let P (k) = (λ(l) ∧ µ(k), . . . , λ(k) ∧ µ(k), µ(k+1), . . . , µ(h)), which we
picture as follows:

λ(l) ≤·
l+1

λ(l+1) ≤·
l+2
· · · ≤·

k
λ(k)

·∨ e
M
AC
= c

P (k) = µ(k) ≤·
k+1

µ(k+1) ≤·
k+2
· · · ≤·

h
µ(h)

Reading left to right, the cells added in successive partitions are filled with the
boxed entries, except that the entry e ≤ k placed in the square (if any) of λ(k)/µ(k) is
removed, possibly to be filled later in the chain with an entry larger than k.

The tableau P (h) is P with the initial cell c, containing an entry e, deleted. Now
compare P (k) and P (k−1), successively for k = h, h − 1, . . . , l + 1. The two chains
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differ only in the partitions

λ(k−1) λ(k)

µ(k−1) µ(k)

Let c0 = λ(k)/µ(k) and c1 = λ(k−1)/µ(k−1). If these are the same, the tableaux P (k−1)

and P (k) are equal. We will show that the local rules for D̃c mimic the changes in
these tableaux when c0 and c1 are unequal. When c0 and c1 are different squares, we
have

λ(k−1) <· c0 λ(k)

·∨c1 ·∨c0
µ(k−1) <· c1 µ(k)

Thus, the cell c0 that was deleted in P (k) to make way for a larger entry contained
k. To form P (k−1), bump the entry e < k out of c1 and place k in c1.

By the local rules, c1 is any inner corner of λ(k−1) on an earlier row than c0, and by
the tableau rules, k displaces the rightmost entry on an earlier row than c0, provided
the column remains increasing; these correspond to each other. In the generic game
Dc, this is restricted by 1 ≤ row(c1) <· row(c0).

When c0 is a square but c1 is ∅, the value k is bumped from the tableau. In D̃c,
choosing c1 = ∅ is permitted at any step, while in Dc, it is only permitted when
row(c0) = 1.

Lemma 7.11. In a q-regular semi-primary lattice, the number of solutions to

type
(fk−1) <· fk
·∨ ·∨

(gk−1) <· gk

=
γ <· δ
·∨ ·∨
α <· β

fk−1 6= gk

(that is, α, β, γ, δ are given partitions, fk ·≥ gk are given elements of respective types
δ ·≥ β, and we seek elements fk−1, gk−1 to satisfy the remaining relations) depends on
the partitions, as follows.

(1) (β 6= γ)
γ <· |r| δ
·∨ ·∨
α <· |r| β

〈δ′r〉 −
〈
δ′r+1

〉

(2) (r 6= s)
γ <· |s| δ
·∨|r| ·∨|s|
α <· |r| β

(
〈β ′r〉 −

〈
β ′r+1

〉)
(q − 1)

further, in this case, r > s,
even when the lattice is not q-regular.

(3)
γ <· |r| δ
·∨|r| ·∨|r|
α <· |r| β

(
〈β ′r〉 −

〈
β ′r+1

〉)
q

Proof.

(1) Let fk−1 be any lower cover of fk of type γ, in one of 〈δ′r〉−
〈
δ′r+1

〉
ways. Since

gk ≤· fk, also fk−1 ∧ gk ≤· gk. This meet is an upper bound for gk−1. We have
β ∧ γ <· β, so type(fk−1 ∧ gk) ≤ type fk−1 ∧ type gk = γ ∧ β. Thus fk−1 ∧ gk
has rank at least one lower than gk, but also it has rank at most one lower, so
gk−1 := fk−1 ∧ gk in one way.
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(2) In the remaining cases, |α| <· |β| = |γ| <· |δ|, and fk−1 ∧ gk = gk−1 and
fk−1 ∨ gk = fk, since fk−1, gk are distinct elements in the rank two interval
[gk−1, fk].

For any fk−1 <· fk of type γ, we have fk[s − 1] ≤ gk, fk−1 by Theorem 3.8
as the types of fk, gk, fk−1 agree in the first s − 1 columns. Thus fk[s − 1] ≤
gk∧fk−1 = gk−1, so α = type gk−1 also agrees with β, γ, and δ in the first s−1
columns, whence r ≥ s.

Pick any gk−1 <· gk with type gk−1 = α, in one of 〈β ′r〉 −
〈
β ′r+1

〉
ways.

Next we determine which elements of (gk−1, fk) are suitable choices for fk−1.
We have type[gk−1, fk] = by applying Corollary 4.72 to ftype0̂(gk−1, gk, fk) =
(α, β, δ) because the cell β/α is weakly right and strictly above δ/β.

If r > s, there are two partitions between α and δ. The element gk−1 ∨ fk[s]
has type α ∨ δ[s] (add the left square of δ/α to α) but the other q elements
(including gk) have type γ, so there are q − 1 choices of fk−1 distinct from gk.

(3) Continuing the analysis of the previous case, if r = s, then δ/α is a vertical
brick, so all q + 1 elements in (gk−1, fk) have type γ, and there are q choices
of fk−1 (since it is distinct from gk, which is also in this interval).

Theorem 7.12. Consider a q-regular semi-primary lattice of type λ. Let µ <· λ and
c = λ/µ. Let P be a skew tableau of outer shape λ, and fix Q = D̃cP .

Pick x <· 1̂ of type µ. The number of flags f with ftype0̂ f = P and ftype0̂(f ∧x) =
Q is a product of terms that depend on how entries move from P to Q:

∏
k ∈ Q


〈row(P , k)〉 − 〈row1(P , k)〉 if k is in the same cell;(
〈row(Q, k)〉 − 〈row1(Q, k)〉

)
· q if k moves up one cell;(

〈row(Q, k)〉 − 〈row1(Q, k)〉
)
· (q − 1) if k moves up and right.

This is a polynomial of degree

n(shQ) + length of deletion path− 1.

It is maximized by having the deletion path contain a cell on every row above c, which
happens uniquely in the generic game Q = DcP . The game is not uniform, however.

Conversely, in all semi-primary lattices, for any flag f = (fl ≤· · · · ≤· fh) and
element x ≤· fh,

ftype(f ∧ x) = D̃c ftype f where c = (type[fl, fh])/(type[fl ∧ x, fh ∧ x]),

ftype0̂(f ∧ x) = D̃c ftype0̂ f where c = (type fh)/(typex).

The generic case in the invariant subspace lattice over an infinite field was first done
by Steinberg [29, Lemma 1.2], and later by van Leeuwen [31, Lemma 2.5.1].

Proof. Since gk = fk ∧ x, we have gk−1 = fk−1 ∧ x = fk−1 ∧ fk ∧ x = fk−1 ∧ gk. Since
x ≤· 1̂, we have gk ≤· fk, and µ(k) ≤· λ(k). We will construct f and g with g = f ∧ x
using these local conditions.

Begin with fh := 1̂ and gh := x. For some k = h, h− 1, . . . , l + 1, we have

←− type
(fk−1) ≤· fk
·∨ ·∨

(gk−1) ≤· gk

=
γ ≤· δ
·∨ ·∨
α ≤· β
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(that is, fk and gk and all the partitions are given, and we will choose fk−1 and gk−1

to satisfy this).

γ = δ: Then fk−1 = fk; meet both sides with x to obtain gk−1 = gk, so that
α = β also. Neither tableau has an entry k.

γ = δ
·∨ ·∨
α = β

1 choice

α = β and γ <· δ: Then β = α ≤ β ∧ γ ≤ γ <· δ. Since β is a weak lower
cover of δ and β ≤ γ <· δ, in fact, α = β = γ. So fk−1 := gk−1 := gk in one
way, and k is deleted on the deletion path from P to Q.

γ <· δ
·∨

α = β
1 choice

α <· β and γ <· δ: If β = δ then gk = fk; meet both sides with fk−1 to obtain
gk−1 = fk−1 also, so α = γ. In view of this, the configurations of partitions
in Lemma 7.11 are all the configurations that arise when α <· β and γ <· δ.
The possibilities are as follows.

If β 6= γ, then k is in the same cell of P and Q.

(β 6= γ)
γ <· |r| δ
·∨ ·∨
α <· |r| β

〈δ′r〉 −
〈
δ′r+1

〉
=

〈row(P , k)〉 − 〈row1(P , k)〉
choices

If β = γ, then k is on the deletion path. It can move strictly up and right
from P to Q, bumping a smaller entry (as β/α is a cell in δ, so that cell in
P has a smaller entry than k):

(r > s)
γ <· |s| δ
·∨|r| ·∨|s|
α <· |r| β

(
〈β ′r〉 −

〈
β ′r+1

〉)
(q − 1) =(

〈row(Q, k)〉 − 〈row1(Q, k)〉
)
(q − 1)

choices;

or it can move up one cell from P to Q:

γ <· |r| δ
·∨|r| ·∨|r|
α <· |r| β

(
〈β ′r〉 −

〈
β ′r+1

〉)
q =(

〈row(Q, k)〉 − 〈row1(Q, k)〉
)
q

choices.

Now multiply all the numbers of choices given over all k ∈ P , that is, all k with
γ <· δ, to obtain the number of choices of f . The deleted entry k, if any, yields a
factor of 1, so the product may be taken over all k ∈ Q, to obtain the formula in the
statement of the theorem. Each term of the product has degree row(Q, k) − 1, plus
1 if there is a factor of q or q − 1 (that is, if k is on the deletion path, but is not the
entry bumped out). So the degree is the sum over all entries of Q of their row number
minus 1 (totalling n(shQ)), plus the number of cells in Q on the deletion path, which
is one less than the length of the deletion path since the deleted entry isn’t counted in
this length. The degree is uniquely maximized by the ordinary Robinson-Schensted
deletion path, with each entry (but the smallest) on the path moving up one row,

until it terminates at the top row or a •. So DcP is the generic value of D̃cP .
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It is not, however, uniform. Suppose β and γ are distinct lower covers of δ and
β/α is strictly below and left of δ/β. In terms of tableau, k is larger than the entry
deleted in the game DcP , and is to the left of the cell on the deletion path on the row
above k; thus, this configuration arises for some k unless the deletion path moves the
first entry in each row to the first entry of the preceding row (and deletes the smallest
entry of the tableau). By applying Corollary 4.72 to ftype0̂(gk−1, gk, fk) = (α, β, δ),
we generically expect type[gk−1, fk] = , but in fact, gk−1 is the meet of two lower
covers of fk, so type[gk−1, fk] = . Only a fraction at most O(q−1) of the lower covers
of gk of type α may be chosen as gk−1, so most flags g from 0̂ to x with ftype g = Q
cannot be represented as f ∧ x with ftype f = P .

For the converse statement in the theorem, ignoring all the enumerative parts of
the above proof shows that

Dc, D̃c : ftype f 7−→ ftype(f ∧ x) where fl ≤ x <· fh and c = λ/(type[fl, x])

Dc, D̃c : ftype0̂ f 7−→ ftype0̂(f ∧ x) where x <· fh and c = λ/ type x.

If x = fh, we have f ∧ x = f and c = ∅, and indeed, D̃∅ does not change P . If
fl 6≤ x <· fh, then fl ∨ x = fh, because fh is an upper bound of the two; there is
nothing between x and fh; and the join is not x since fl 6≤ x. Thus,

[fl ∧ x, fh ∧ x] = [fl ∧ x, x] ∼= [fl, fl ∨ x] = [fl, fh],

so c = ∅ and ftype(f ∧ x) = ftype f = D̃∅ ftype f .

7.5. Sample enumeration of the number of flags realizing a meet insersec-
tion type table.

Example 7.13. In a q-regular semi-primary lattice of type (3, 1), we’ll classify and
enumerate all pairs of flags (f, f ′) with ftype f = P and ftype f ′ = Q where

P = Q =
1 2
3
4

.

They will be classified according to their meet type table Λ = (λ(ij))0≤i,j≤n where
λ(ij) = type(fi ∧ f ′j). We encode such a table by a sequence of tableaux P n, . . . ,P 0

where P j = (λ(0j), . . . , λ(nj)). The transpose of Λ = (λ(ij))0≤i,j≤n is Λ′ = (λ(ji))0≤i,j≤n.
Apply the degenerate Robinson-Schensted deletion algorithm to the pair (P ,Q) by

performing degenerate deletion steps D̃c on P with c successively being the cell with
n, n − 1, . . . , 1 in Q, and forming a permutation σ by listing the deleted entries in
reverse order. The possibilities are in Figure 9. Let Nk be the number of pairs (f, f ′)
of flags realizing meet type table Λk in a q-regular semi-primary lattice.

(1) First we show that Λ7 never occurs in any semi-primary lattice, so that N7 = 0.
By Theorem 4.76, f1 = 1̂[[ ]] = C 1̂ because

ftype0̂ f = 1 2
3
4

= 1 + 2
3
4

.

Also, f ′1 = 1̂[[ ]] for the same reason, so f1 ∧ f ′1 = 1̂[[ ]] and P 1 = 1 . Thus
N7 = 0.
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σ P 4 P 3 P 2 P 1 P 0

Λ1 = Λ′1 1 4 3 2 1 2
3
4

1 3
4

1 4 1 ∅

Λ2 = Λ′3 1 3 4 2 1 2
3
4

1 3
4

1 3 1 ∅

Λ3 = Λ′2 1 4 2 3 1 2
3
4

1 2
4

1 4 1 ∅

Λ4 = Λ′4 1 2 4 3 1 2
3
4

1 2
4

1 2 1 ∅

Λ5 = Λ′5 1 3 2 4 1 2
3
4

1 2
3

1 3 1 ∅

Λ6 = Λ′6 1 2 3 4 1 2
3
4

1 2
3

1 2 1 ∅

Λ7 = Λ′7 3 4 1 2 1 2
3
4

1 4
3

3 4 3 ∅

Λ8 = Λ′8 1 4 3 2 1 2
3
4

1 4
3

1 4 1 ∅

Figure 9. All possible degenerate Robinson-Schensted games.
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(2) We evalutate Nk for other k’s. Since f1 = f ′1 = 1̂[[ ]], we have type[f1, f4] =
type[f ′1, f

′
4] = (13), so type[fi, fj] = type[f ′i , f

′
j] = (12) for (i, j) ∈ {(1, 3), (2, 4)}.

Thus, we could use an approach similar to that of Section 5.5: develop a system
of equations in the Nk’s by replacing f2 with some other atom in the interval
[f1, f3], and similarly replacing f3, f ′2, f

′
3, to see how it could change the meet

type table and whether a ratio of the frequencies of the possibilities can be
determined. In larger examples, however, it is often not possible to determine
from Λ whether type[fi, fj] = or for j − i = 2.

We give here a more direct approach than a system of equations, but it,
too, often fails in larger examples when types of intervals of length 2 cannot
be determined.

Since Λ2 = Λ′3, there is a bijection between pairs of flags with meet type
tables Λ3 and Λ2, namely (f, f ′) 7→ (f ′, f), so N2 = N3. We’ll determine N3.
First expand Λ3 as a square grid of partitions; see Figure 10. The tableau P
is the chain going up the right-hand edge and the tableau Q is the chain going
across the top edge. The games D̃c are played on columns from right to left,
rather than on rows from top to bottom. This way, the orientation of the grid
so obtained agrees with that in Roby [21].

Λ3 j 0 1 2 3 4

i

type(fi ∧ f ′j) P j

P ∗i

∅ 1 1 4 1 2
4

1 2
3
4

4 1 2
3
4

∅

3 1 3
4

∅

2 1 3 ∅

1 1 ∅

0 ∅ ∅ ∅ ∅ ∅ ∅

Figure 10. The graphical meet type table of Λ3.

The grid is divided into regions of adjacent grid cells whose partitions are
equal, because fi ∧ f ′j is constant on each such region: since fi ∧ f ′j ·≥ fi−1 ∧ f ′j
always holds, if λ(ij) = λ(i−1,j) then fi ∧ f ′j = fi−1 ∧ f ′j, and similarly, if

λ(ij) = λ(i,j−1) then fi ∧ f ′j = fi ∧ f ′j−1. Form a graded graph (Figure 11) by
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rotating the grid an eighth of a revolution counterclockwise, collapsing each
region to a node, and forming an edge between regions that share a horizontal
or vertical boundary (not just a corner). (More generally, if we form such a
graph for any pair of flags (f, f ′) in a lower semimodular lattice by coalescing
regions of constant fi∧ f ′j into single nodes, the graph is the Hasse diagram of
a lower semimodular sublattice.)

Λ3 : q3(q − 1)(q + 1)

x1 : 1

� �
x2 : q2 + q x7 : q

| � |
x6 : q − 1 x3 : q

� �
x4 : 1

|
x5 : 1
∅

Figure 11. The types in the meet semilattice of Λ3.

The values of fi∧f ′j on various regions are denoted x1, . . . , x7, and we choose
these values in the order given by the subscripts. The number of choices of
each element is specified after the colon. First choose x1 = 1̂ of type (3, 1) in
one way. Choose x2 <· x1 with typex2 = (2, 1) in 〈3〉 − 〈1〉 = q2 + q ways, and
similarly for x3, x4, x5. The interval [x4, x2] has type as noted previously,
but in larger examples, we wouldn’t always be able to determine this type, and
the procedure would break down now. Here we can continue: x6 is an atom
of [x4, x2] of type in the lattice, not equal to x3. Of the q + 1 atoms in the
interval, one has type , namely x2[[ ]], and the q others, including x3, have
type , so there are q − 1 choices of x6. Similarly, the interval [x3, x1] has
type , and all atoms in it have type (2, 1), so there are q choices of elements
not equal to x2. Thus, N3 = (q2 + q)q(q− 1)q = q3(q − 1)(q + 1).

(3) In general, how many solutions x4 ∈ (x1, x3) are there in a configuration

typex1 = δ
� �

typex2 = γ (typex4 = β)
� �

typex3 = α

134



where x1, x2, x3 are given and type[x3, x1] = ? There are q + 1 elements in
the interval (x3, x1). If δ/α is a brick, they all have the same type, and if it
is not a brick, one has the type given by adding the left-hand square of δ/α
to α and the other q have the type given by adding the right-hand square: if
the columns of the squares of δ/α are r < s then z = x1[r] ∨ x3 is the unique
solution of z ∈ (x3, x1) with typex3 <· |r| type z <· |s| typex1. Altogether, the
number of choices of x4 in every circumstance is as follows.

γ <· |s| δ
·∨|r| ·∨|r|
α <· |s| β


1 if r > s, namely x1[s] ∨ x3;

q if r < s since only x2 has type γ;

q if r = s, since all x ∈ (x3, x1)

have equal type and x4 6= x2.

γ <· |s| δ
·∨|r| ·∨|s|
α <· |r| β



0 if r < s since only

x2 = x3[r] ∨ x1 has type γ;

q − 1 if r > s since x4 6= x1

but they have equal type;

q if r = s.

By applying Corollary 4.72 to ftype0̂(x3, x2, x1) = (α <· |r| γ <· |s| δ) in both
diagrams, if r ≥ s then type[x3, x1] = holds necessarily, while if r < s it may
or may not hold; in particular, in the first configuration with r < s and δ/α
not a brick, it is necessary to specify that type[x3, x1] = because without
doing so, type[x3, x1] = is possible.

(4) In Figure 12, we solve for N1, N4, N5, N6, N8 in a similar fashion. In each case
we choose a flag 1̂ = x1 ·> · · · ·> x5 = 0̂, and then fill in intervals of type .
All length two intervals required to have type do, because x4 = 1̂[[ ]] and
they are subintervals of [x4, 1̂]. The highest degree polynomial is N1, of degree
6, corresponding to the ordinary Robinson-Schensted algorithm on (P ,Q).

Example 7.14. This method can break down.

(1) In a semi-primary lattice of type , how many flags (not of maximal length)
f = (f2 <· f3 <· f4 = 1̂), f ′ = (f ′2 <· f ′3 <· f ′4 = 1̂) have the following meet meet
type table?

Λ = (λ(ij))2≤i,j≤4 =

type(fi ∧ f ′j)

i�j 2 3 4

4

3

2 ∅
Let zij = fi ∧ f ′j, and try to choose the zij’s in a similar fashion to the

previous example. In what order do we choose the zij’s? First, z44 = 1̂.
Then choose z43 or z34; the type table is symmetric, so without loss of gen-
erality, choose z43 in one of 〈2〉 = q + 1 ways. The initial saturated chains
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Λ4 : q3(q + 1)

x1 : 1

� �
x2 : q2 + q x6 : q

� �
x3 : q

|
x4 : 1

|
x5 : 1
∅

Λ5 : q2(q + 1)(q − 1)

x1 : 1

|
x2 : q2 + q

� �
x3 : q x6 : q − 1

� �
x4 : 1

|
x5 : 1
∅

Λ6 : q2(q + 1)

x1 : 1

|
x2 : q2 + q

|
x3 : q

|
x4 : 1

|
x5 : 1
∅

Λ1 : q3(q − 1)2(q + 1)

x1 : 1

� �
x2 : q2 + q x7 : q

| � � |
x3 : q x6 : q − 1 x8 : q − 1

� | �
x4 : 1

|
x5 : 1
∅

Λ8 : q3(q − 1)(q + 1)

x1 : 1

� �
x2 : q2 + q x7 : q − 1

| � � |
x3 : q x6 : 1 x8 : q

� | �
x4 : 1

|
x5 : 1
∅

Figure 12. More meet semilattices.
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we could form by continuing in this fashion are (a) (z44, z43, z42, z32, z22); (b)
(z44, z43, z33, z32, z22); or (c) (z44, z43, z33, z23, z22). Continuing with either (b) or

(c), we will ultimately have ftype0̂(z32 <· z33 <· z43) =
• 3
2

, so that we do not

know whether type[z32, z43] = or ; we need to know this when selecting
z42. With (a) on the other hand, we ultimately have a flag (z23 <· z33 <· z34)
with the same problem when choosing z24.

We can enumerate the pairs of flags with meet type table Λ by another
approach. The pair (x24, x42) is of two independent 2-cycles whose join is 1̂.
There are q2+q join decompositions of 1̂ by Theorem 4.48. The interval [x42, 1̂]
has type and the only intermediate element is x43 = x42∨A0̂ = x42∨x24[1],
while x34 = x24∨x42[1]. Since variables on the upper and right boundaries are
all expressed in terms of the same join decomposition of 1̂, their meets have
the types shown in Λ. Thus, all q2 + q join decompositions of 1̂ yield pairs of
flags whose meet type table is Λ, so there are q2 + q such (f, f ′).

(2) Now take any partition λ, let n = |λ|, and form the grid Γ = (γ(ij))n+2≤i,j≤n+4

where γ(ij) = λ ∪ λ(i−n,j−n) . Try to find flags f = (fn+2, fn+3, fn+4) and
f ′ = (f ′n+2, f

′
n+3, f

′
n+4) with meet type table Γ. Let zij = fi∧f ′j . The problems

with sequences (a), (b), (c) above happen again, mutatis mutandis. If λ′1 > λ′2,
then γ(n+2,n+4)/γ(n+2,n+2) and γ(n+4,n+2)/γ(n+2,n+2) are no longer horizontal
bricks, so type[zn+2,n+2, zn+2,n+4] and type[zn+2,n+2, zn+4,n+2] no longer need to
be ; either or both could be . The join decomposition approach cannot be
applied. Further ad hoc methods could be developed to solve this problem. It
would be preferable to find a systematic approach to enumerate the number
of flags realizing a wide variety of meet type tables.

7.6. Transposed Robinson-Schensted deletion, D∗cP . Let λ/µ = shP ; the
parameter c is either ∅ or an inner corner of λ not in µ.

Pick x ·≥ fl. The following map is generic but not uniform.

D∗c , D̃∗c : ftype f 7−→ ftype(f ∨ x) x ·> fl and c = λ/(type[fl ∨ x, fh ∨ x])

D∗c , D̃∗c : ftype0̂ f 7−→ ftypex(f ∨ x) x ·> 0̂ and c = λ/ type[x, fh ∨ x]

The games Dc and D∗c are the same except that the roles of rows and columns are

reversed. The games D̃c and D̃∗c are not transposed versions of each other, however.

Tableau Rules. Let P be a standard skew tableau on distinct entries, and c be an
inner corner of oshP or c = ∅. If c = ∅ then D̃cP = P . Otherwise, proceed as
follows.

(D�

c
): We insert an entry e into a column by replacing its largest entry (pos-

sibly •) smaller than e with e; the number it replaces is bumped from the
column.

(D̃�

c
): We insert an entry e into a column by placing e where the largest entry

(possibly •) smaller than it is, then moving that entry up one cell, moving the
entry there up one cell, and so on, until we either choose to stop, or we are
forced to because moving up an entry would cause a row not to increase left
to right. At least the cell where e is placed changes, and possibly more do.
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The final entry displaced that does not displace the one above it is bumped
from the column.

Begin by letting e be the entry at c and removing cell c from the tableau. Insert e
one column left of c. Insert the bumped entry one column left of that, bumping out
another number. Continue this until either an entry is bumped out from the first
column, or • is bumped out. The final entry bumped out is said to be deleted from
the tableau.

The local rules are a cross between transposing the rules to D̃c on the one hand,
and the rules to ̃c

′
played in reverse on the other hand.

Local Rules. If c = ∅, let µ(h) := λ(h), and if c is a single cell, let µ(h) be λ(h) with c
deleted. Then for k = h, h − 1, . . . , l + 1, propagate as follows.

←−

k − 1 k h column
γ δ λ(h) P

(α) β (λ(h) 	 c) D̃∗cP

β = γ <· δ does not hold: Let α := β ∧ γ.
β = γ <· δ holds: Let c := δ/β.

col(c) = 1: Let α := γ.
col(c) > 1 (Dc): Delete the bottom cell of γ in the column left of c to
obtain α.

col(c) > 1 (D̃c): Choose one of the following as α:
• delete the cell above c in γ, provided there is one and doing so

yields a partition;
• delete the bottom cell of γ in the column left of c; or
• γ.

The tableau rules and local rules describe the same game. The proof is similar to
Proposition 7.10, but the positions of consecutive cells on the path are different.

Theorem 7.15. Consider a q-regular semi-primary lattice of type λ. Let µ <· λ and
c = λ/µ. Let P be a skew tableau, and fix Q = D̃∗cP . Let e be the deleted entry, or
e = low(P ) = • if no entry is deleted.

Pick an atom x of cotype µ. There are

∏
k ∈ P


〈row(Q, k)〉 − 〈row1(P , k)〉 if k > e and col(P , k) = col(Q, k);

〈row(P , k)〉 − 〈row1(Q, k)〉 if k > e and col(P , k) ·> col(Q, k);

qrow(P ,k)−1 if k = e

〈row(P , k)〉 − 〈row1(P , k)〉 if k < e,

flags f with ftype0̂ f = P and ftypex(f ∨ x) = Q. This is a polynomial of degree

n(shP )−# of entries on deletion path that move up one cell

It is maximized by having the deletion path contain a cell in every column weakly left
of c, which happens uniquely in the generic (but not uniform) game Q = D∗cP .
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Conversely, in all semi-primary lattices, for any flag f = (fl ≤· · · · ≤· fh),

ftype(f ∨ x) = D̃∗c ftype f where x ·≥ fl and
c = (type[fl, fh])/(type[fl ∨ x, fh ∨ x])

ftypex(f ∨ x) = D̃∗c ftype0̂ f where x ·≥ 0̂ and

c = (type[0̂, fh])/(type[x, fh ∨ x]).

The generic case in the invariant subspace lattice over an infinite field was done by
van Leeuwen [31, Lemma 2.5.2].

Proof. We begin with fh := gh := 1̂. For some k with l < k ≤ h, after having chosen
fh ·≥ fh−1 ·≥ · · · ·≥ fk we have

←− type
[0̂, (fk−1)] [0̂, fk]

·∧ ·∧
[x, (gk−1)] [x, gk]

=
γ ≤· δ
·∨ ·∨
α ≤· β

We will choose fk−1 to satisfy these types, in one of several ways. If γ = δ then
fk−1 := fk so gk−1 := gk and α = δ. There is no entry k in P or Q.

γ = δ
·∨ ·∨
α = β

1 choice of fk−1 and gk−1

Assume that γ <· δ.
x ≤ fk�1: We want to extend the partial flag (0̂ <· x < fk) to (0̂ <· x ≤
fk−1 <· fk), with specified types for each interval. By Theorem 5.4 and
Corollary 5.5, we have the following possible relations among the partitions,
and the following number of choices of fk−1 in each case.

The entry k can bump out the bottommost entry smaller than k in the
column just left of k:

γ <· |r+1| δ
·∨|r| ·∨|r+1|
α <· |r| β

〈
δ′r+1

〉
−
〈
β ′r+1

〉
=

〈row(P , k)〉 − 〈row1(Q, k)〉
choices

or k can stay in the same cell (r 6= s) or move up one cell (r = s):

γ <· |r| δ
·∨|s| ·∨|s|
α <· |r| β

〈β ′r〉 −
〈
δ′r+1

〉
=

〈row(Q, k)〉 − 〈row1(P , k)〉
choices

x 6≤ fk�1 and x ≤ fk: Then gk−1 = fk−1 ∨ x = fk and gk = fk ∨ x = fk, so
α = β <· δ. Also

[0̂, fk−1] = [x ∧ fk−1, fk−1] ∼= [x, x ∨ fk−1] = [x, fk]

so α = β = γ <· |r| δ for some r, and k is the entry deleted on the deletion
path.

Pick fk−1 to be a coatom of [0̂, fk] of type γ not also in [x, fk]. The coatoms
of type γ are the coatoms of [Ar−10̂ ∧ fk, fk] not also in [Ar0̂ ∧ fk, fk]. Since
x is an atom, A0̂ ≥ x, so coatoms of both intervals are weakly larger than x
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unless r = 1. Thus we must have r = 1, and fk−1 is any coatom of [0̂, fk] not
also in [x, fk], in one of 〈δ′1〉 − 〈β ′1〉 ways.

γ <· |1| δ
·∨|1|

α = β

〈δ′1〉 − 〈β ′1〉 = qrow(P ,k)−1

choices

x 6≤ fk: Then [0̂, fk] ∼= [x, fk ∨ x]. We must have α = γ and β = δ for all
fk−1 <· fk. Entry k is smaller than the deleted entry, and does not move.
Choose fk−1 to be any coatom fk−1 of [0̂, fk] with type γ.

γ <· |r| δ

α <· |r| β

〈δ′r〉 −
〈
δ′r+1

〉
=

〈row(P , k)〉 − 〈row1(P , k)〉
choices

Now multiply all the numbers of choices given over all k ∈ P , that is, all k with
γ <· δ, to obtain the number of choices of f stated in the theorem. When k > e and
col(P , k) = col(Q, k), the number of choices of fk−1 has degree row(Q, k)− 1, which
equals row(P , k)−1 when k is in the same cell of P and Q, and equals row(P , k)−2
when k moves up one cell. For all other k ∈ P , the number of choices of fk−1 has
degree row(P , k) − 1. So the total degree of the number of choices of f is the sum
of row(P , k) − 1 over all k ∈ P (totalling n(shP )), minus the number of k’s which
move up one cell from P to Q. This degree is maximized by never moving up one
cell and always choosing to move to the next column left, which happens uniquely in
the generic game D∗cP . See the note following this proof for further commentary on
maximizing this degree.

The game D∗c is not in general uniform, however, as we do not obtain most flags
in [x, 1̂] of type Q as possible images of f ∨ x over f ’s of type P . Suppose there
is some k with row(P , k) < row(Q, k), which happens in all games except those
whose deletion path simply shifts a row horizontally left one cell (possibly deleting
the leftmost entry). The number of choices of fk−1 has degree row(P , k) − 1, while
the number of choices of a coatom in [x, 1̂] of type µ(k−1) has degree row(Q, k) − 1,
which is larger. Thus, at most a fraction O(q−1) of all flags in [x, 1̂] of type Q are
possible images of f ∨ x over all f of type P in L, for most games P and Q.

For the converse statement in the theorem, ignoring the enumerative portions of the
above proof yields that the valid configurations of partitions α, β, γ, δ are precisely
those given by the local rules for the game D̃∗c .
Note. The formula in Proposition 5.7 for the number of flags f with ftype f = P and
ftype ∂f = Q = ∆̃P is a special case of the formula in Theorem 7.15 for the number
of flags f such that ftype f = P and ftype(f ∨x) = Q = D̃∗cP , yet the generic games
∆ and D∗c are different. This is because the boundary conditions of the deletion paths

are different; in ∆̃, it must terminate at the top left corner, while in D̃∗c , it must begin

at c. In the case of ∆̃, we minimize the number of entries bumped up one cell by
only allowing an entry to switch columns by moving horizontally one cell, yielding
the generic game ∆.

7.7. Robinson-Schensted internal insertion, IcP . The game IcP below is the
internal insertion game Rc defined by Sagan and Stanley in [23, p. 164], and ĨcP is
a nondeterministic variant.
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When x ·> fl, we have

Ic, Ĩc : ftype0̂ f 7−→ ftype0̂(f ∨ x) c = typex/ type fl.

This is neither generic nor uniform. Unlike most other games considered, there usually
is not a single value of ftype0̂(f ∨ x) that occurs generically, that is, with asymptotic
probability 1; there is some finite number N of outcomes that each asymptotically
occur with probability 1/N , and all other outcomes asymptotically occur with prob-
ability 0. The concept of uniformity does not similarly generalize to this situation,
however, and the game Ic is usually not one of the N “generic” possibilities. See the
note at the end of this section for further discussion.

Tableau Rules. Let P be a standard skew tableau of shape λ/µ on distinct entries,

and c be an outer corner of µ or ∅. If c = ∅ then ĨcP = P . Otherwise, proceed as
follows.

We insert an entry e into a row by replacing its smallest entry larger than e with
e, bumping out that entry, or if all entries are smaller than e, by appending e to
the end of the row.

(Ic): Place • at c. If c is an outer corner of λ then stop, and otherwise, let e
be the entry that was at c. Insert e one row lower; if e is placed at an outer
corner, stop, and otherwise, insert the bumped out number yet another row
one lower, continuing until a number is placed at an outer corner.

(Ĩc): Place • at c. If c is an outer corner of λ then stop, and otherwise, let e
be the entry that was at c. Choose either to stop, or choose any lower row,
and insert e on it, provided that the column e lands in continues to increase
from top to bottom, and if e is appended to the end of the row, it is at an
outer corner. If indeed e is appended, stop. Otherwise, either choose to stop,
or choose a lower row, and try to insert the bumped out number in the same
fashion. Continue this until either optionally stopping, or until forced to stop
by placing a number at an outer corner.

If we terminate by placing e at an outer corner, this is an insertion path with no
entry deleted. If we terminate Ĩc by optionally stopping, the resulting tableau has
the same outer shape as P , and the final entry bumped out is said to be deleted
from the tableau.

Local Rules. Let λ := oshP . Place λ(l)⊕c in column l. Then for k = l+1, l+2, . . . , h,
propagate as follows.

column l k − 1 k
P λ(l) γ δ

ĨcP (λ(l) ⊕ c) α (β)
−→

γ <· α = δ is false: Let β := α ∨ δ.
γ <· jrj α = δ (Ic): Let β ·>|s| α with s maximal subject to s ≤ r and α has
an outer corner in column s.
γ <· jrj α = δ (Ĩc): Choose any β ·> α with col(β/α) ≤ r, or choose to let
β := α.
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Theorem 7.16. For any flag f and x ·> fl, we have ftype(f∨x) = Ĩc(ftype f), where
c = typex/ type fl.

Fix c, P , and Q with Q = ĨcP , and let e be the deleted entry, or e = ∞ if no
entry is deleted. In a q-regular semi-primary lattice of type oshQ, the number of
pairs (x, f) where f is a flag and x ·> fl, with ftype0̂ f = P and ftype0̂(f ∨ x) = Q,
is a product of factors depending on how entries k move from P to Q.

∏
k ∈ P



〈row(P , k)〉 − 〈row1(P , k)〉 if k ≥ e; else, assume k < e:

〈row(Q, k)〉 − 〈row1(Q, k)〉 if k stays in the same cell;(
〈row(P , k)〉 − 〈row1(P , k)〉

)
q if k moves down one cell;(

〈row(P , k)〉 − 〈row1(P , k)〉
)
(q − 1) if k moves strictly left and down.

×goshQ
oshP ,(1)(q)

This is a polynomial of degreen(shP ) + length of insertion/deletion path− 2 if e <∞;

n(oshQ)− n(oshP ) + n(shP ) + length of insertion path− 1 if e =∞.

For specified values of Q and λ <· shQ, this is maximized over all (c,P ) where

oshP = λ and Q = ĨcP , by a unique pair for which Q = IcP .

Proof. Suppose x ·> fl and g = f ∨ x. Since fk ≤· fk ∨ x, we have λ(k) ≤· µ(k) for
all k. Whenever fk−1 = fk, we also have gk−1 = gk, while when fk−1 <· fk, we have
gk−1 ≤· gk. At most one k satisfies fk−1 <· fk and gk−1 = gk: for such a k we have
fk′ = gk′ for all k′ ≥ k, so that fk′−1 <· fk′ ⇒ gk′−1 <· gk′ for k′ ≥ k. If there is such
a k, denote it by e, and then Q is obtained from P by inserting • and deleting e
along some path; if there is no such k, let e =∞, and then Q is obtained from P by
inserting • along some path.

Now we solve for flags f and elements x ·> fl with ftype0̂ f = P and ftype0̂(f∨x) =
Q for some tableaux P andQ. If f and g are flags and x is an element with g = f∨x,
then for each k we have gk = fk ∨ x, so

gk = gk−1 ∨ gk = gk−1 ∨ fk ∨ x = (gk−1 ∨ x) ∨ fk = gk−1 ∨ fk.
This relation allows us to select successive pairs (fk, gk) by looking at a local part of
the flags. While the local rules for the game Q = ĨcP were described in the order
k = l, l + 1, . . . , h to satisfy the initial condition given by c, the selection process
proceeds in the order k = h, h− 1, . . . , l + 1.

If e < ∞, let fh := gh = 1̂, and otherwise, let gh := 1̂ and fh be a coatom with
type fh = oshP , in one of goshQ

oshP ,(1)(q) ways.
For some k = h, h− 1, . . . , l + 1 we have

←− type
(fk−1) ≤· fk
·∧ ·∧

(gk−1) ≤· gk

=
γ ≤· δ

·∧ ·∧
α ≤· β

(that is, fk and gk and all the partitions are given, and we will choose fk−1 and gk−1

to satisfy this).
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γ = δ: Then fk−1 := fk, and gk = fk ∨ gk−1 = fk−1 ∨ gk−1 = gk−1 so gk−1 :=
fk−1 and α = β. Neither tableau has an entry k.

γ = δ

·∧ ·∧
α = β

1 choice

α = β and γ <· δ: The only way to resolve the weak cover relations is γ <·
δ = α = β. So gk−1 := gk, and fk−1 is any lower cover of fk of type γ. The
entry k is deleted on the path from P to Q.

γ <· δ

·∧
α = β

〈δ′r〉 −
〈
δ′r+1

〉
=

〈row(P , k)〉 − 〈row1(P , k)〉
choices

α <· β and γ <· δ: If α = γ then gk−1 = fk−1; join both sides with fk to
obtain gk = fk also, so β = δ. In view of this, the configurations of partitions
in Lemma 7.11 (but turned upside down, so the roles of f and g are reversed,
and the roles of α and β are swapped with γ and δ) are all the configurations
that arise when α <· β and γ <· δ. The possibilities are as follows.

If α 6= δ, then k is in the same cell of P and Q.

(α 6= δ)
γ <· |r| δ
·∧ ·∧
α <· |r| β

〈β ′r〉 −
〈
β ′r+1

〉
=

〈row(Q, k)〉 − 〈row1(Q, k)〉
choices

The vertical relations are equality when k is larger than the deleted entry,
and in this case, the count is also 〈row(P , k)〉 − 〈row1(P , k)〉.

If α = δ, then k is on the deletion path. It can move down and left from
P to Q, bumping a larger entry (as all entries at most k in P are located in
the cells of δ, and β/α is an outer corner of δ):

(r > s)
γ <· |r| δ
·∧|r| ·∧|s|
α <· |s| β

(
〈δ′r〉 −

〈
δ′r+1

〉)
(q − 1) =(

〈row(P , k)〉 − 〈row1(P , k)〉
)
(q − 1)

choices;

or it can move down one cell from P to Q, bumping a larger entry:

γ <· |r| δ
·∧|r| ·∧|r|
α <· |r| β

(
〈δ′r〉 −

〈
δ′r+1

〉)
q =〈

(〈row(P , k)〉 − 〈row1(P , k)〉
)
q

choices.

Finally we set x := gl, and then g = f ∨ x.
Multiply the numbers of choices together to obtain the polynomial stated in the

theorem. The factors 〈row(P , k)〉 − 〈row1(P , k)〉 have degree row(P , k)− 1, as does
the factor 〈row(Q, k)〉 − 〈row1(Q, k)〉 when it occurs, as it occurs when k is in the
same cell of P and Q. The factors q and q− 1 have degree 1, and occur when k ∈ P
is on the insertion/deletion path, but isn’t the deleted entry; the total number of such
k’s is two less than the length of the insertion/deletion path if an entry is deleted
(e < ∞), or one less if none is (e = ∞). When no entry is deleted, there is also the
Hall polynomial, of degree row(µ(h)/λ(h)) − 1. The total degree is as stated in the
theorem.
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When there is a deleted entry, the total degree equals

n(shQ) + (row(c)− 1) + length of insertion path− 1.

For fixed Q and fixed λ <· shQ, consider (c,P ) as stated in the theorem. Given the
first cell c and the last cell c′ = (oshQ)/λ on the insertion path, the length of the
insertion path is at most row(c′)−row(c)+1, uniquely obtained by inserting • at c and
then bumping entries to successive rows without skipping any rows (this might not be
possible, given c and c′). So an upper bound for the degree is n(shQ) + row(c′)− 1.
This is obtained only by P = Dc′Q, with c set to the cell of the deleted entry in this
game.

Note. For all other games yet and still to be considered, we sought the value of Q
that, for a specified P , maximized the number of pairs of flags (f, g) satisfying the
game. The maximization in this theorem is backwards, because that turns out to be
the condition required to get the classically defined internal insertion game.

Let’s consider the ordinary maximization question. Given P and c, what game
Q = ĨcP maximizes the degree of the number of choices of (f, x)? In a given
lattice L, the shape of Q is predetermined as typeL, and the degree is maximized
by maximizing the length of the insertion/deletion path. We consider the case when
there is a deleted entry, and when there is no deleted entry.

Let

P =
• • 1
• 3
2

and c = (1, 3) be the cell with 1. The possible values of Q = ĨcP are listed below,
along with the factor for each k; the Hall polynomial; and the product of all factors,
equal to the total number of pairs (f, x) with ftype0̂ f = P and ftype0̂(f ∨ x) = Q in
a lattice whose type is oshQ.

ĨcP
• • •
• 3
2

• • •
• 1
2

• • •
• 3
1

• • •
• 1
2 3 IcP

• • •
• 1
2
3

k = 1 1 1 · (q − 1) 1 · (q − 1) 1 · (q − 1) 1 · (q − 1)
2 q2 q2 q2 q2 q2

3 q q q q · q q · (q − 1)
Hall 1 1 1 q2 + q q3 + q2

total q3 q3(q − 1) q3(q − 1) q5(q − 1)(q + 1) q5(q − 1)2(q + 1)

Of the three games ĨcP with a deleted entry, corresponding to fh := 1̂, two achieve
the maximum degree 4, so there is not a unique generic value. A generic value can be
thought of as a value that occurs with probability 1−O(q−1) as q →∞. As q →∞,
these two values each occur with probability 1

2
+O(q−1), and the third with probability

o(q−1); it might be interesting to do an analysis generalizing the notion of genericity
to multiple outcomes with well defined asymptotically positive probabilities.

In the games without a deleted entry, so that fh <· 1̂ and x 6≤ fh, the value of ĨcP
achieving the maximum degree is not IcP .
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8. The leftward and rightward vertical strip games

We introduce new tableau games similar in spirit to evacuation and Robinson-
Schensted that can be expressed in terms of tableaux, or in terms of grids of partitions.
They are all uniform.

L, L̃ : ftype0̂ f 7−→ ftype0̂Af

CL, CL̃ : ftype f 7−→ ftypeAf

R, R̃ : ftype0̂ f 7−→ ftype0̂Cf

Note that for any flag f , the intervals [fk, Afhfk] and [Cflfk, fk] are elementary,
so that type(Afhfk)/ type fk and type fk/ type(Cflfk) are vertical strips by Proposi-
tion 4.67. In the games jc and ∆, we formed a deletion path by creating a hole ?
into which an entry would slide. In the vertical strip games, we instead form vertical
strips of holes ? into which entries slide. In the leftward vertical strip game, a vertical
strip is formed that moves left while entries move into it, and in the rightward vertical
strip game, the directions are reversed.

8.1. The leftward vertical strip game, LP .

L, L̃ : ftype0̂ f 7−→ ftype0̂Af

Tableau Rules. We form a sequence of tableau P (h), . . . ,P (l). Set P (h) := P . To
transform P (k) to P (k−1) for k = h, . . . , l+1, if there is no k inP (k), let P (k−1) := P (k),
and otherwise do the following.

(L): Slide k to the bottom leftmost ? in a column strictly right of k, provided
there is such a ?; if there is not, replace k by ?.

(L̃): If the cell right of k has ?, slide k into it; otherwise, choose either to
slide k into the bottommost ? in any column right of k, or to replace k by ?
without putting a new k anywhere.

Finally, replace all ?’s with •’s in P (l) to obtain L̃P .

Local Rules. Let µ(h) := λ(h), and then for k = h, h−1, . . . , l+1, propagate as follows.

←−

k − 1 k h column
α β λ(h) P

(γ) δ (λ(h)) L̃P

β = α: Let γ := δ.
β ·>jsj α (L): If δ/β has no cells in columns s + 1, s+ 2, . . . , let γ := β, and
otherwise, choose minimum r > s so that δ/β has a cell in column r, and set
γ <· |r| δ.
β ·>jsj α (L̃): If δ/α has a horizontal brick, remove the right square of the
brick from δ to obtain γ. Otherwise, δ/α is a vertical strip. Either choose an
r > s such that column r of δ/α is nonempty, and set γ <· |r| δ, or choose to
let γ := δ.

Note that these rules ensure δ/β and γ/α are vertical strips, and that α ≤· β ≤ γ ≤· δ.
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Theorem 8.1. The local rules and the tableau rules for L and L̃ describe the same
game.

Proof. Apply the local rules to P to determine a possible value of L̃P . Define the
tableau P (k) (with l ≤ k ≤ h) as the following chain of partitions, with the entry e
to fill the squares added between two partitions shown between them as e :

µ(l) <·
l+1

µ(l+1) <·
l+2
· · · <·

k
µ(k)

·∧ ?

P (k) = λ(k) <·
k+1
· · · <·

h
λ(h)

Since µ(h) = λ(h), we have P (h) = P . We will show that the tableau rules describe
the transformation from P (k) to P (k−1).

When β = α, there is no k in P (k), and both sets of rules yield P (k−1) := P (k).
There is a horizontal brick in δ/α exactly when ? is in the cell right of k in P (k);

moving k right one cell is the same as removing the right square of the brick from δ
to obtain γ.

When δ/α is a vertical strip and β ·>|s| α, letting γ := δ is the same as replacing k
with ?, and letting γ <· |r| δ for some r > s is the same as sliding k to the bottommost
? in column r. A partition γ with α ≤ γ <· |r| δ exists provided r > s ≥ 1 and column
r of δ/α is nonempty.

Finally, given P (l), replacing the ?’s by •’s yields the tableau (λ(l), . . . , λ(h)).

Example 8.2. We will compute all possible values of L̃P for

P = P (8) =

1 4 6
2 7
3 8
5

We begin with k = 8. There is no ? in the tableau, so there is nowhere to slide 8, so
8 is replaced by ?.

P (7) =

1 4 6
2 7
3 ?

5

There is no ? in any column right of 7, so 7 is replaced by ?, and similarly, the same
then happens with 6.

P (6) =

1 4 6
2 ?
3 ?
5

P (5) =

1 4 ?

2 ?
3 ?
5

Both columns right of 5 contain ?. For L̃P , there are choices as to how to proceed,
which we’ll examine later. To compute LP , slide 5 to the lower ? of column 2,
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obtaining

P (4) =

1 4 ?
2 ?
3 5
?

Next, the cell just right of 4 has ?, so slide 4 there.

P (3) =

1 ? 4
2 ?

3 5
?

The column right of 3 has two ?’s; slide 3 to the lower one.

P (2) =

1 ? 4
2 3
? 5
?

The column right of 2 has a ?, where we slide 2.

P (1) =

1 2 4
? 3
? 5
?

There are no ?’s in columns right of 1, so 1 is replaced by ?.

P (0) =

? 2 4
? 3
? 5
?

Replace the ?’s by •’s to obtain

LP =

• 2 4
• 3
• 5
•

There are several places we could have made degenerate choices. The first was at
k = 5; to compute LP , we put 5 in the lower ? of column 2, but to compute L̃P , we
can either do that, slide 5 to the ? in column 3, or replace 5 by ? without sliding 5
somewhere else. In the second case, we have

P (4) =

1 4 5
2 ?

3 ?
?
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There is no ? in columns right of 4, so 4 is replaced by ?.

P (3) =

1 ? 5
2 ?

3 ?
?

Each of 3, 2, and 1 in turn have ? just to their right, so we are successively forced to
have

P (2) =

1 ? 5
2 ?
? 3
?

P (1) =

1 ? 5
? 2
? 3
?

P (0) =

? 1 5
? 2
? 3
?

Finally, replace the ?’s by •’s to obtain another possible value of L̃P .

We list all possible choices in Figure 13.

Example 8.3. Now consider the skew tableau

P =

• • 6
• 7
• 8
5

The movements of k = 8, 7, 6 are similar to the previous example, since the entries
larger than 4 are in the same positions in both tableaux.

P (7) P (6) P (5)

• • 6
• 7
• ?

5

• • 6
• ?
• ?

5

• • ?
• ?
• ?

5

For P (4), we have three choices again.

• • ?
• ?
• 5
?

• • 5
• ?
• ?
?

• • ?
• ?
• ?
?

Replace all ?’s by •’s to obtain the possible values of L̃P , the first of which is LP .

• • •
• •
• 5
•

• • 5
• •
• •
•

• • •
• •
• •
•
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P (k)

k = 8 7 6 5

1 4 6
2 7
3 8
5

1 4 6
2 7
3 ?
5

1 4 6
2 ?
3 ?
5

1 4 ?
2 ?
3 ?
5

4 3 2 1 0

1 4 ?
2 ?

3 5
?

1 ? 4
2 ?

3 5
?

1 ? 4
2 3
? 5
?

1 2 4
? 3
? 5
?

? 2 4
? 3
? 5
?

1 ? 4
? 3
? 5
?

? 1 4
? 3
? 5
?

1 ? 4
2 ?
? 5
?

1 ? 4
? 2
? 5
?

? 1 4
? 2
? 5
?

1 4 5
2 ?
3 ?
?

1 ? 5
2 ?
3 ?
?

1 ? 5
2 ?
? 3
?

1 ? 5
? 2
? 3
?

? 1 5
? 2
? 3
?

1 4 ?

2 ?

3 ?
?

1 ? 4
2 ?

3 ?
?

1 ? 4
2 ?
? 3
?

1 ? 4
? 2
? 3
?

? 1 4
? 2
? 3
?

A missing tableau abbreviates the tableau above it. The possible transformations of

P (k) to P (k−1) are indicated: either slide k to a ? or change k to ? . Finally,

replace ?’s by •’s in P (0) to obtain L̃P . The first game is LP .

Figure 13. All possible degenerate leftward vertical strip games.
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8.2. The rightward vertical strip game, RP .

R, R̃ : ftype0̂ f 7−→ ftype0̂Cf

Tableau Rules. Let P be a standard skew tableau on distinct entries. We form a
sequence of tableau P (l), . . . ,P (h). Set P (l) := P . To transform P (k−1) to P (k) for
k = l + 1, . . . , h, if there is no k in P (k−1), let P (k) := P (k−1), and otherwise do the
following.

(R): Slide k to the ? that’s upper rightmost in the columns strictly left of k,
provided there is such a ?; if there is not, replace k by ?.

(R̃): If the cell left of k has ?, slide k into it; otherwise, choose either to slide
k into the topmost ? in any column left of k, or to replace k by ? without
putting a new k anywhere.

Finally, delete all the cells with ? from P (h) to obtain R̃P .

See Figure 14 for an example.

Local Rules. Let µ(l) := λ(l), and then for k = l+1, l+2, . . . , h, propagate as follows.

column l k − 1 k
P λ(l) γ δ

R̃P (λ(l)) α (β)
−→

δ = γ or δ ·>j1j γ: Let β := α.
δ ·>jrj γ for some r > 1 (R): If δ/α has no cells in columns 1, . . . , r − 1,
let β := α, and otherwise, choose maximum s < r such that δ/α has a cell in
column s, and set β ·>|s| α.

δ ·>jrj γ for some r > 1 (R̃): If δ/α has a horizontal brick, add the left
square of the brick to α to obtain β. Otherwise, δ/α is a vertical strip. Either
choose an s < r such that column s of δ/α is nonempty and set β ·>|s| α, or
choose to let β := α.

Note that these rules ensure δ/β and γ/α are vertical strips, and that α ≤· β ≤ γ ≤· δ.

Theorem 8.4. The local rules and the tableau rules for R and R̃ describe the same
game.

Proof. Apply the local rules to P to determine a possible value of R̃P . Define the
tableau P (k) (with l ≤ k ≤ h) as the following chain of partitions, with the entry e
to fill the squares added between two partitions shown between them as e :

P (k) = λ(k) <·
k+1
· · · <·

h
λ(h)

·∨ ?

µ(l) <·
l+1

µ(l+1) <·
l+2
· · · <·

k
µ(k)

Since µ(l) = λ(l), we have P (l) = P . We will show that the tableau rules describe the
transformation from P (k−1) to P (k).

When δ = γ, there is no k in P (k−1), and both sets of rules yield P (k) := P (k−1).
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k = 0 1 2 3 4 5

• • 3
•P (k) • 4
• 1 5
2

• • 3
• • 4
• ? 5
2

• • 3
• • 4
• ? 5
?

• • ?
• • 4
• 3 5
?

• • ?
• • ?
• 3 5
4

• • ?
• • ?
• 3 ?

4

• • ?
• • ?
• 3 5
?

• • ?
• • ?
• 3 ?

5

• • ?
• • ?
• 3 ?
?

• • ?
• • 4
• ? 5
3

• • ?
• • ?
• 4 5
3

• • ?
• • ?
• 4 ?

3

• • ?
• • ?
• ? 5
3

• • ?
• • ?
• 5 ?

3

• • ?
• • 4
• ? 5
?

• • ?
• • ?
• 4 5
?

• • ?
• • ?
• 4 ?

5

• • ?
• • ?
• 4 ?
?

• • ?
• • ?
• ? 5
4

• • ?
• • ?
• 5 ?
4

A missing tableau abbreviates the

tableau above it. The possible
transformations of P (k) from P (k−1)

are indicated: either slide k to a
? or change k to ? . Finally,

remove cells with ? in P (5) to ob-
tain R̃P . The first game is RP .

• • ?
• • ?
• ? 5
?

• • ?
• • ?
• 5 ?
?

Figure 14. All possible degenerate rightward vertical strip games.
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There is a horizontal brick in δ/α exactly when ? is in the cell left of k in P (k−1);
moving k left one cell is the same as adding the left square of the brick to α to obtain
β.

When δ/α is a vertical strip and δ ·>|r| γ, letting β := α is the same as replacing k
with ?, and letting β ·>|s| α for some s < r is the same as sliding k to the topmost ?
in column s. A partition β with γ ≥ β ·>|s| α exists provided r > s ≥ 1 and column
s of γ/α is nonempty.

Finally, given P (h), deleting the cells with ? yields the tableau (µ(l), . . . , µ(h)).

Next we prove that ftype0̂Af = L̃(ftype f) and ftype0̂Cf = R̃(ftype f), and show
that L and R are the uniform values.

Definition 8.5. The notation x ≤e y means x ≤ y and [x, y] is an elementary inter-
val.

Definition 8.6. For a vertical strip λ/µ and integer t ≥ 0, define

vlen(λ, µ, t)
def
= |λ| − |λ[t] ∨ µ| = # { i : λi ·> µi ≥ t }
= # of cells in λ/µ in columns t+ 1, t+ 2, . . .

vlen′(λ, µ, t)
def
= |µ| − |Cλ ∨ µ[t]| = # { i : λi = µi > t }
= # of rows of λ of length greater than t without cells of λ/µ

Evaluate the right-hand expressions for vlen and vlen′ by summing the contribution
of each row in the middle expressions. In vlen, the contribution of row i is λi −
max {min {λi, t} , µi}. Since λi ·≥ µi for all i, this contribution is 1 when both λi > t
and λi ·> µi, and is 0 otherwise. Similarly, the contribution of row i in vlen′ is
µi −min {max {λi − 1, 0} , µi, t}, which is 0 when either λi ·> µi or µi ≤ t, and is 1
otherwise. Also note that vlen(λ, µ, t) + vlen′(λ, µ, t) = λ′t+1 because the sum is the
number of parts of λ of length at least t + 1 that equal or cover the corresponding
part of µ, and all parts do because λ/µ is a vertical strip.

Let P be a skew tableau whose entries are distinct integers, and a vertical strip of
?’s. Let k be an integer in P and t = 0 or 1. Let r = col(P , k). Define

vlent(P , k)
def
= # of ?’s in P at least t columns right of k

vlen′t(P , k)
def
= rowt(P , k)− vlent(P , k)

When t is omitted, t = 0. If µ is the shape of the subtableau of P whose entries
are •, l + 1, . . . , k, and λ is the shape of the subtableau whose entries are •, l +
1, . . . , k, ?, and r = col(P , k), then vlent(P , k) = vlen(λ, µ, r+t−1) and vlen′t(P , k) =
vlen′(λ, µ, r + t− 1).

Lemma 8.7. In a q-regular semi-primary lattice, the number T (α, β, γ, δ) of solu-
tions (fk−1, gk−1) to

type

(fk−1) ≤· fk

∨e

�
∨e

�
∨e

(gk−1) ≤· gk

=

γ ≤· δ

∨∨
�
∨∨
�
∨∨

α ≤· β
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in various situations is as follows.

(1)

γ = δ

∨∨
�
∨∨
�
∨∨

α = β

1 choice

(2)

γ <· |r| δ

∨∨
�
∨∨
�
∨∨

α = β

〈vlen(δ, β, r− 1)〉 − 〈vlen(δ, β, r)〉
choices

(3)

γ = δ

∨∨
�
∨∨
�
∨∨

α <· |s| β

〈vlen′(γ, β, s− 1)〉 − 〈vlen′(γ, β, s)〉
choices

(4)

γ <· |r| δ

∨∨
�
∨∨
�
∨e

α <· |s| β

where gk−1 6≤e fk

We have r > s for all solutions of this last case, even in semi-primary lattices that
are not q-regular. For ones that are, choose fk−1 in one of

〈vlen(δ, β, r − 1)〉 − 〈vlen(δ, β, r)〉

ways, and then gk−1 in one of the following number of ways;
〈vlen′(γ, β, s− 1)〉 − 〈vlen′(γ, β, s)〉 if δ/α has a horizontal brick;

qvlen′(δ,β,s−1) if δ ≥∨ α and r − 1 = s;

qvlen′(δ,β,s−1) − qvlen′(δ,β,s) if δ ≥∨ α and r − 1 > s.

In cases (1), (2), (4) we have Cgk−1
fk = gk, and in cases (1), (3), (4) we have

Afkgk−1 = fk−1.

Proof. Consider a solution fk−1 and gk−1 to one of these configurations. In (1) and (2),
we have gk−1 = gk, so [gk−1, fk] is elementary; thus, Cgk−1

fk = gk−1 = gk. In (1) and
(3), fk−1 = fk so [gk−1, fk] is elementary, so Afkgk−1 = fk = fk−1. In (4), the interval
[gk, fk] is elementary, so gk ≥ Cfk. We have Cgk−1

fk = Cfk ∨ gk−1, which is at least
gk−1 and at most gk (because Cgk−1

fk ≤ Cgkfk = gk). It’s not gk−1 because [gk−1, fk]
is given as not elementary, whence Cgk−1

fk = gk. Similarly in (4), Afkgk−1 = fk−1.
Now we enumerate the solutions to each case.

(1) Since γ = δ and α = β, we have fk−1 := fk and gk−1 := gk, in one way.
(2) Set gk−1 := gk in one way.

Since γ <· |r| δ, we have that fk−1 ≥ fk[r − 1] but fk−1 6≥ fk[r]. Also, fk−1

is a coatom of [gk, fk]. Thus, fk−1 is any coatom of I1 =
[
fk[r − 1] ∨ gk, fk

]
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not also in I2 =
[
fk[r] ∨ gk, fk

]
. These are both elementary intervals, as

they are contained in the elementary interval [gk, fk], so altogether there are
〈ρ(I1)〉 − 〈ρ(I2)〉 choices of fk−1. We must find the ranks of I1 and I2.

Since [gk, fk] is elementary, there is a hereditary decomposition of gk and fk
by Theorem 4.69, and so by Theorem 4.62, type(fk[r − 1] ∨ gk) = δ[r− 1] ∨ β
and type(fk[r] ∨ gk) = δ[r] ∨ β. Thus ρ(I1) = vlen(δ, β, r − 1) and ρ(I2) =
vlen(δ, β, r).

(3) Set fk−1 := fk in one way.
We will compute

N(gk, fk−1, s) = #
{
gk−1 <· gk : gk−1 ≤e fk−1 and type gk−1 <· |s| type gk

}
.

Since gk−1 is a lower cover of gk with type α <· |s| β, we have gk−1 ≥ gk[s− 1]
but gk−1 6≥ gk[s]. Since [gk−1, fk−1] is elementary, gk−1 ≥ Cfk−1.

Thus, gk−1 is any coatom of I3 =
[
Cfk−1 ∨ gk[s − 1], gk

]
not also in I4 =[

Cfk−1 ∨ gk[s], gk
]
. These intervals are both elementary, because they are

contained in the elementary interval [Cfk−1, fk−1], so there are 〈ρ(I3)〉−〈ρ(I4)〉
choices of gk−1. We must find the ranks of the intervals.

Since [gk, fk−1] is elementary, there is a hereditary decomposition of gk and
fk, so we may compute types as follows: type(Cfk−1∨gk[s−1]) = Cγ∨β[s−1]
and type(Cfk−1 ∨ gk[s]) = Cγ ∨ β[s]. Thus ρ(I3) = vlen′(γ, β, s − 1) and
ρ(I4) = vlen′(γ, β, s), so N(gk, fk−1, s) = 〈vlen′(γ, β, s− 1)〉 − 〈vlen′(γ, β, s)〉.

(4) Given a solution fk−1 and gk−1, the values of r and s are

r = 1 + max
{
t : At0̂ ∧ fk−1 = At0̂ ∧ fk

}
s = 1 + max

{
t : At0̂ ∧ gk−1 = At0̂ ∧ gk

}
.

If At0̂∧gk−1 = At0̂∧gk, apply Afk to both sides to obtain At+10̂∧Agk−1∧fk =

At+10̂ ∧ Agk ∧ fk, which simplifies to At+10̂ ∧ fk−1 = At+10̂ ∧ fk. Thus, r > s.
Select fk−1 as in case (2) in one of 〈vlen(δ, β, r− 1)〉 − 〈vlen(δ, β, r)〉 ways.
If δ/α has a horizontal brick, then [gk−1, fk] is not elementary for all gk−1 <·

gk of type α, by Proposition 4.67. So choose gk−1 in the same fashion as in
case (3).

Now assume δ/α is a vertical strip.
If [gk−1, fk] is elementary, then so is the subinterval [gk−1, fk−1]. Thus, the

number of choices of gk−1 is

N(gk, fk−1, s)−N(gk, fk, s) =
(
〈vlen′(γ, β, s− 1)〉 − 〈vlen′(γ, β, s)〉

)
−
(
〈vlen′(δ, β, s− 1)〉 − 〈vlen′(δ, β, s)〉

)
.

For some j we have δ/γ = (j, r), and then δj ·> γj = βj = αj = r − 1 ≥ s.
Thus, vlen′(γ, β, s− 1) ·> vlen′(δ, β, s− 1), while vlen′(β, γ, s) ·≥ vlen′(δ, β, s)
with equality when r − 1 = s and covering when r − 1 > s. Note that
〈M + 1〉−〈M〉 = qM for all M , so when r−1 = s there are qvlen′(δ,β,s−1) choices

of gk−1, and when r − 1 > s there are qvlen′(δ,β,s−1) − qvlen′(δ,β,s) choices.
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Definition 8.8. Let P = (λ(l), . . . , λ(h)) and Q = (µ(l), . . . , µ(h)) be skew tableau
such that λ(k) ·>∨ µ(k) for l < k ≤ h. Let P (k) be a skew tableau of shape λ(h)/µ(l) in
which entries e ≤ k are in the same cells as in Q; entries e > k are in the same cells
as in P ; and the vertical strip λ(k)/µ(k) is filled with ?. Define

E(P ,Q; q)
def
=

∏
k ∈ P

(〈
vlen(P (k−1), k) + 1

〉
−
〈
vlen1(P (k−1), k)

〉)
×

∏
k ∈ Q
k 6∈ P

(〈
vlen(P (k), k)

〉
−
〈
vlen1(P

(k), k)
〉)

×
∏

k ∈ Q
k ∈ P



(〈
vlen′(P (k), k) + 1

〉
− if k slides〈

vlen′1(P (k), k) + 1
〉)

horizontally one cell;

qvlen′(P (k),k) one column to a different row;

qvlen′(P (k),k) − qvlen′1(P (k),k) more than one column.

This is the product of T (µ(k−1), µ(k), λ(k−1), λ(k)) over all k. In configurations (2) and
(4), we have vlen(δ, β, r− 1) = vlen(P (k−1), k) + 1 and vlen(δ, β, r) = vlen1(P

(k−1), k)
because ?’s form the strip γ/α in P (k−1), which differs from δ/β only in one cell in
column r = col(P (k−1), k). In (4), we have vlen′(δ, β, s− 1) = vlen′(P (k), k) because
the vertical strip of ?’s in the tableau is also δ/β, and the columns we examine are
the same. The value in (3) is similar. Finally in (4), one cell of δ/β in column r is
deleted to form the strip γ/β, and since r > s, this deleted cell is counted by both
vlen′(γ, β, s− 1) = vlen′(P (k), k) + 1 and vlen′(γ, β, s) = vlen′1(P

(k), k) + 1.

Theorem 8.9. For all multisaturated flags f in a semi-primary lattice, ftype0̂Af =

L̃(ftype0̂ f) and ftype0̂Cf = R̃(ftype0̂ f).
Now consider a q-regular semi-primary lattice of type λ. Let P be a skew tableau

of outer shape λ.
Fix Q = R̃P of outer shape µ. The number of flags f for which ftype0̂ f = P and

ftype0̂Cf = Q is gλµ,(m)′(q) ·E(P ,Q; q), where m = |λ| − |µ|. Flags f with ftype0̂ f =
P are uniformly mapped by C to flags g from fl to Cflfh with ftype0̂ g = RP .

Fix Q = L̃P . The number of flags g for which ftype0̂ f = P and ftype0̂Af = Q
is E(Q,P ; q). Flags f with ftype0̂ f = P are uniformly mapped by A to flags g from
Afhfl to fh with ftype0̂ g = LP .

Proof. If f and g are flags with g = Cf , then we have gl = Cflfl = gl and gk = Cflfk =
Cfk ∨ fl = Cfk ∨ Cfk−1 ∨ fl = Cfk ∨ gk−1. The intervals [gk−1, fk−1] and [gk, fk] are
elementary, so by Proposition 4.67, type gk−1 ≤∨ type fk−1 and type gk ≤∨ type fk.
Since fk−1 ≤· fk, we have Cfk ≤ fk−1. Also gk−1 ≤ fk−1, so gk ≤ fk−1. Thus
type gk ≤ type fk−1. Also, [gk, fk−1] is a subinterval of the elementary interval [gk, fk],
so it is elementary, and type gk ≤∨ type fk−1.

Consider a semi-primary lattice of type λ. Let P = (λ(l), . . . , λ(h)) be a standard

tableau of outer shape λ, and fix Q = R̃P = (µ(l), . . . , µ(h)). To find all pairs of
flags (f, g) with g = Cf and ftype0̂ f = P and ftype0̂Cf = Q, set fh := 1̂ in one

way, and choose gh ≤e fh so that type gh = µ(h) in one of gλ
(h)

µ(h),(m(h))′
(q) ways (where

m(k) = |λ(k)| −
∣∣∣µ(k)

∣∣∣). Then for k = h, h − 1, . . . , l + 1, successively find pairs
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(fk−1, gk−1) of weak lower covers of fk and gk with specified types λ(k−1) and µ(k−1)

such that gk = Cfk∨gk−1. Cases (1), (2), and (4) of Lemma 8.7 give all possibilities: if
λ(k−1) = λ(k) then fk−1 = fk so applying C maintains equality, and we are in case (1),
not (3). Suppose λ(k−1) <· λ(k). If µ(k−1) = µ(k), we are in case (2). If µ(k−1) <· µ(k),
then for any solution we find, we have gk = Cfk∨ gk−1 ·> gk−1 so gk−1 6≥ Cfk, whence
gk−1 6≤e fk. Thus, we are in case (4).

In a q-regular semi-primary lattice, multiply the numbers of choices together to
obtain

gλ
(h)

µ(h),(m(h))′(q) · E(P ,Q; q)

flags f with ftype0̂ f = P and ftype0̂Cf = Q. Denote this product p(P ,Q; q). This
product is a monic polynomial in q: the Hall polynomial is monic, because its leading
coefficient is the number of ways to fill a Littlewood-Richardson tableau of specified
skew shape with just 1’s, which can only be done in one way, and E(P ,Q; q) is a
product of monic polynomials.

We show that R is the generic game by inducting on high(P ) − low(P ). Note
that dRP = RdP , and by the inductive hypothesis, RdP is the generic value of
R̃dP . Thus, p(dP , dRP ; q) is a monic polynomial whose degree is the same as that
of F dP (q). If we show that the degrees of p(P ,RP ; q) and F P (q) are the same, then
all but O(q−1) flags f with ftype0̂ f = P have ftype0̂Cf = RP , soR gives the generic
value.

Consider the quotient

p(P ,RP ; q)

p(dP , dRP ; q)
=

gλ
(h)

µ(h),(m(h))′(q)

gλ
(h−1)

µ(h−1) ,(m(h−1))′
(q)
· T (µ(h−1), µ(h), λ(h−1), λ(h))

We must show the degree of the ratio is n(oshP / osh dP ) = n(δ/γ). We evaluate the
difference in degrees of the Hall polynomials, and the degree of T , for cases (1), (2),
and (4) of the preceding lemma. Note that the Hall polynomial gλµ,ν(q) has degree
n(λ) − n(µ) − n(ν), and in this case, ν is always a single column.

In (1), the ratio equals 1 and also F P (q)/F dP (q) = 1, so R is generic.
In (2), the ratio of Hall polynomials has degree δ′r − |δ/γ|, and the factor T has

degree vlen(δ, β, r− 1)− 1. When configuration (2) arises in R, the vertical strip δ/β
is wholly contained in columns r, r + 1, . . . . Thus, vlen(δ, β, r − 1) = |δ/β|, so the
total ratio has degree δ′r − 1 = n(δ/γ), as required.

In (4), the ratio of Hall polynomials has degree δ′r − β ′s, and the factor T has
degree vlen(δ, β, r − 1) − 1 + vlen′(δ, β, s − 1). When configuration (4) arises in R
(and L), the vertical strip δ/β has no cells in columns s+ 1, s+ 2, . . . , r− 1, so rows
β ′s+ 1, β ′s + 2, . . . , δ′s have length at least s−1 and no cells of the vertical strip. Thus,
vlen′(δ, β, r− 1) = vlen′(δ, β, s− 1)− (δ′s − β ′s), so the factor T has degree

(vlen′(δ, β, s− 1) + vlen(δ, β, s− 1)) − 1− δ′s + β ′s = δ′s − 1− δ′s + β ′s = β ′s − 1.

The degree of the total ratio is (δ′r − β ′s) + (β ′s − 1) = δ′r − 1 = n(δ/γ), as required.
Now we show that R is uniform: we show that all but O(q−1) of the flags g with

ftype0̂ g = RP and gh ≤e 1̂ have qn(shP )(1 + O(q−1)) inverses f with ftype0̂ f = P
and g = Cf . Begin with any gh ≤e 1̂ with type gh = µ(h). Suppose we have chosen
gh, . . . , gk and fh, . . . , fk, and we want to choose gk−1 and fk−1. In cases (1) and
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(2), we set gk−1 := gk and choose any of T (α, β, γ, δ) values for fk−1; this count is
independent of g. In case (4), we saw that the degree of T in the generic game R
is β ′s − 1, which is the same as the degree of the number of lower covers of gk of
type α. Thus, all but a fraction O(q−1) of partial flags g can be extended so that
the inverse f has an extension. For each extension of g, the extension of f is unique:
fk−1 := Afkgk−1. Thus, by case (4), only a fraction O(q−1) of g with ftype0̂ g = RP
are not invertible (cases (1) and (2) impose no restrictions), and by case (2), there
are qn(shP )(1+O(q−1)) inverses of each (cases (1) and (4) yield unique choices of fk−1

while (2) contributes many choices).

The proof for the game L̃ is similar. The roles of f and g are reversed from the
lemma; we denote the configurations (1′), etc., to indicate that all f ’s and g’s in the
lemma should be swapped. We set (α, β, γ, δ) = (λ(k−1), λ(k), µ(k−1), µ(k)) so that the
partitions agree with those in the lemma. For pairs of flags (f, g) with g = Af , we
have fh = gh, and gk = Afhfk = Afk ∧ fh = Afk ∧ gh, so gk−1 = Afk−1 ∧ gh =
Afk−1 ∧ (Afk ∧ gh) = Afk−1 ∧ gk. So a local part of (f, g) has form (1′), (3′), or (4′),
whence ftype0̂Af = L̃(ftype0̂ f).

We compute the number of flags f with ftype0̂ f = P and ftype0̂Af = Q as follows.
The flag g will equal Af during the construction. Let fh := gh := 1̂ in one way. Then
for each k = h, h−1, . . . , l+1, choose gk−1 and fk−1 in one of T (λ(k−1), λ(k), µ(k−1), µ(k))
ways; multiply all the values of T together to obtain the total number E(Q,P ; q).

We show that L is the generic value of L̃. We must show for each k that the degree
of the polynomial T equals n(β/α), the degree of the total number of weak lower
covers of fk of type α. In (1′) there is one choice of (fk−1, gk−1) and one weak lower
cover of fk of type α. In (4′), the generic value of the number of choices of (fk−1, gk−1)
has degree β ′s − 1, by the same proof used for R above; this is also the degree of the
number of lower covers of fk of type α. When configuration (3′) arises in the game
L, the vertical strip δ/β is wholly contained in columns 1, . . . , s, so the degree of T is
N2(γ, β, s− 1)− 1 = β ′s − 1, which again is the degree of the number of lower covers

of fk of type α. Thus, the generic value of L̃ is L.
Now we show that the generic value is uniform. Let P be a tableau of ordinary

shape. Since Af = (C(f∗))∗ for all flags f , the generic value of ftype((C(f∗))∗) is a
composition ev(C(ev(P ))) of uniform games. Thus, LP = ev(C(ev(P ))), and this is
uniform. When P is skew with inner shape of size N , fill in the inner shape of P with
a standard tableau on l −N + 1, l − N + 2, . . . , l to obtain a tableau R of ordinary
shape. We have P = ∂NR. Also, LP = ∂NLR, and this composition of uniform
games is uniform.

Corollary 8.10. For all multisaturated flags f in a semi-primary lattice, ftypeAf =
CL̃(ftype f), and uniformly, ftypeAf = CL(ftype f).

8.3. Relation of vertical strip games to evacuation and jeu de taquin.

Theorem 8.11. Let P be a standard tableau of shape λ ` n on entries 1, . . . , n.
Form a tableau Q as follows: for each r > 0, take the entries that vanish in the
game Lr−1P → LrP , complement them by subtracting each from n + 1, and place
the complements in column r of Q in increasing order from top to bottom. Then
Q = evP .
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Proof. We can compute the generic cotype of flags f with ftype f = P in two ways. On
the one hand, by Theorem 5.14, it is evP . Alternately, the differences in successive
ranks of fk, Afk, A2fk, . . . , are the parts of Atype[fk, fn]. We evaluate the generic
values of these ranks over all k by the playing games P ,LP ,L2P , . . . . If k is deleted
in the transition Lr−1P → LrP , then generically, Ar−1fk ·> Ar−1fk−1 and Arfk =
Ar−1fk−1, so the cotypes of fk−1 and fk differ in column r. Thus, the complement
n+ 1− k to k− 1 is in column r of the cotype tableau. This determines the columns
of all entries in the cotype tableau, and sorting the entries in each column determines
their positions.

Example 8.12.

P =

1 4 6
2 5
3 7
8

LP =

• 2 4
• 3
• 5
•

L2P =

• • 3
• •
• •
•

L3P =

• • •
• •
• •
•

The entries that disappear in the first step are 1,6,7,8; in the second step, 2,4,5; and
in the third step, 3. Subtracting them from 9, the first column of evP has 8,3,2,1;
the second, 7,5,4; and the third, 6. So

evP =

1 4 6
2 5
3 7
8

.

Theorem 8.13. Let P be a skew tableau on distinct entries. Form a Young tableau
Q whose entries in the rth column are the entries that vanish in the game Rr−1P →
RrP . Then Q = j(P ).

Proof. We can compute the generic value of ftype f over flags with ftype0̂ f = P in
two ways. On the one hand, by Theorem 6.3, it is j(P ). Alternately, the differences
in successive ranks of fk, Cflfk, C

2
fl
fk, . . . , are the parts of Ctype[fl, fk]. We evaluate

the generic values of these ranks over all k by the playing games P ,RP ,R2P , . . . .
If k is deleted in the transition Rr−1P → RrP , then generically, Cr−1

fl
fk ·> Cr−1

fl
fk−1

and Cr
fl
fk = Cr−1

fl
fk−1, so type[fl, fk−1] and type[fl, fk] differ in column r. Thus, k

is in column r of ftype f . This determines the columns of all entries in ftype f , and
sorting the entries in each column determines their positions.

Example 8.14.

P =

• • 3
• • 4
• 1 5
2
6

RP =

• •
• •
• 3
4

R2P =

• •
• •
• j(P ) =

1 3
2 4
5
6

158



8.4. A-statistics of flags. Let f = (f0 <· · · · <· fn) be a saturated flag in a modular
lattice and ~r = (r0, . . . , rn) be a sequence of nonnegative integers. Define

A~r f
def
= Ar0f0 ∧Ar1f1 ∧ · · · ∧Arnfn

ρ~r (f)
def
= ρ(A~r f )

If some Arifi with i < n is omitted from the expression for A~r f , an equivalent
expression containing it can be formed by inserting Arn+n−ifi because An−ifi ≥ fn.
If the lattice has finite length and the term Arnfn is missing, we may insert AarankLfn
because that quantity equals 1̂.

Definition 8.15. For an arbitrary modular lattice, ~r ∈ Nn+1 is reduced when r0 ·≥
r1 ·≥ · · · rn. For a modular lattice of finite height, we further impose the conditions
rn = 0 and r0 ≤ arankL.

Suppose ~r is not reduced. If ri < ri+1 then Arifi ∧ Ari+1fi+1 = Arifi = Arifi ∧
Arifi+1, so we can replace ri+1 by ri. If ri − ri+1 > 1, then since Afi ≥ fi+1, we see
that Arifi∧Ari+1fi+1 = Ari+1fi+1 = Ari+1+1fi∧Ari+1fi+1. Substitutions of these forms
always lower exponents, so repeated substitutions of these forms eventually terminate
in a reduced sequence ~r ∗ with A~r f = A~r

∗
f for all flags f . Explicitly,

r∗i
def
=

n

min
k=i

(
k − i+

k

min
j=0

rj

)
.

If we are only considering maximum length saturated flags with f0 = 0̂ and f1 = 1̂,
then Arn 1̂ = 1̂ for all rn, so we can take rn to be 0, while Ar0 0̂ = 1̂ iff r0 ≥ arankL,
so we can take r0 ≤ arankL.

Now we restrict our attention to semi-primary lattices. The reduced sequences for
a semi-primary lattice of type λ ` n have the form 0 = rn ≤· rn−1 ≤· · · · ≤· r0 ≤ λ1,

and there are
∑λ1
k=0

(
n
k

)
of them. The quantities ρ~r (f) are interesting because they

generalize the notions of Littlewood-Richardson sequences and interval type tables,
and an extension of it generalizes relative positions. It generalizes the notion of
Littlewood-Richardson sequences, since ALR[fi,fk](fj) = ((type[fi, Ar

fk
fj])′)r≥0 and in

turn,
type[fi, A

r
fk
fj] = (ρ(As−1fi ∧ Arfj ∧ fk, Asfi ∧ Arfj ∧ fk))s≥1,

which is derivable from such quantities. It also generalizes the notion of interval type
tables, since

type[fi, fj] = ρ(As−1fi ∧ fj, Asfi ∧ fj)
is derivable from such quantities.

Definition 8.16.

Ri(~r )
def
= (r0, . . . , ri−1, ri + 1, ri+1, . . . , rn)

R(~r )
def
= (r0 + 1, . . . , rn + 1)

Li(~r )
def
= (r0, . . . , ri−1, ri − 1, ri+1, . . . , rn)

Proposition 8.17. The following are necessary conditions for a specification of ρ~r ’s
to be realizable in a semi-primary lattice. For all ~r ∈ Nn+1,
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(1) ρ~r = ρ~r
∗
.

(2) ρ~r ≤· ρRi(~r ) when ri−1 ·> ri = ri+1, for 0 < i < n;
(3) ρR(Ri(~r )) − ρR(~r ) ≤ ρRi(~r ) − ρ~r , for 0 ≤ i ≤ n;
(4) ρRi(~r ) − ρ~r ≥ ρRiRj(~r ) − ρRj(~r ), for 0 ≤ i, j ≤ n and i 6= j.

Conditions (2)–(4) only need to be checked for reduced ~r .

Proof.

(1) This was shown when ~r ∗ was constructed.
(2) A~r f and ARi(~r )f differ by replacing Arifi in the former with Ari+1fi in the

latter. Let r = ri−1. We have Arfi−1 ≤· Arfi and Arfi−1 ≥ Ar−1fi. Therefore,

Arfi−1 ∧Ar−1fi ∧ Ar−1fi+1 = Ar−1fi = Arfi−1 ∧Arfi ∧Ar−1fi

≤· Arfi−1 ∧Ar−1fi ∧Ar−1fi+1.

The initial expression is three terms of ARi(~r )f , and the final expression is
the replacement terms in A~r f . Separately meet these with ARi(~r )f to obtain
A~r f ≤· ARi(~r )f .

(3)–(4) By Theorem 4.19, the lattice polynomials At and t ∧ Arjfj in t shrink in-
terval lengths. Apply the former to the interval [A~r f, ARi(~r )f ] to obtain
a weakly shorter interval [AR(~r )f, ARRi(~r )]. Apply the latter to the interval
[ARiRj(~r )f, ARj(~r )f ] to obtain a weakly shorter interval [ARi(~r )f, A~r f ].

Definition 8.18. For a flag f = (fl, . . . , fh) and l ≤ k ≤ h, let

Akf
def
= Adh−k = (Afkfl, . . . , Afkfk).

For a tableau P and low(P ) ≤ k ≤ high(P ) = h, define L̃kP = L̃dh−kP , and
similarly define Lk.
Proposition 8.19. Let ~r be a reduced sequence. Let si = min{ j : rj = i } for i =

0, . . . , k where k = r0. Then ρ~r (f) =
∣∣∣L̃sk · · · L̃s1L̃s0P ∣∣∣ for some possible outcome of

the games L̃.

Proof. Consider

As0f = (Afj ∧ fs0)0≤j≤s0

ending in Afs0 ∧ fs0 = fs0 ;

As1As0f = (A(Afj ∧ fs0) ∧ (Afs1 ∧ fs0))0≤j≤s1

= (A2fj ∧Afs1 ∧ fs0)0≤j≤s1

ending in A2fs1 ∧Afs1 ∧ fs0 = Afs1 ∧ fs0
...

Asm · · ·As0f = (Amfj ∧Am−1fsm−1 ∧ · · · ∧ fs0)0≤j≤fsm
ending in Amfsm ∧ · · · ∧ fs0

...

Ask · · ·As0f = (Akf0 ∧Ak−1fsk−1
∧ · · · ∧ fs0)

because sk = 0.
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The possible types are obtained by replacing each Asi with L̃si . Ultimately, a tableau
with one partition (µ) is obtained, and and the required rank is |µ|.
Conjecture 8.20. Let P be a standard tableau. Let ρ~rg be the generic ranks for flags

of type P , obtained by replacing L̃ with L in Proposition 8.19. Then ρ~rg ≤ ρ~r (f) for
all ~r and flags f .

Applied to interval type tables, the following corollary to the conjecture empirically
holds for all the interval type tables in Appendix A.

Definition 8.21. Let λ and µ be partitions. Then λ (row) dominates µ, written
λ D µ, iff λ1 + · · · + λk ≥ µ1 + · · · + µk for all k > 0. Also, λ column dominates µ,
written λ D′ µ, when λ′ D µ′. These differ from the usual definition of dominance in
which |λ| = |µ| is a requirement; in the usual definition, λ D µ iff µ D′ λ, but this
does not hold in the extended definition.

Let P = (λ(l), . . . , λ(h)) and Q = (µ(l), . . . , µ(h)) be tableaux. Then P D Q iff
λ(k) D µ(k) for k = l, . . . , h, and similarly for D′.
Corollary 8.22. Let f = (f0, . . . , fn) be a flag with ftype f = P . Then ftype∂if D′
∆iP for 0 ≤ i ≤ n.

Proof, given the conjecture. Since ftype ∂if = (type[fi, fj ])nj=i, the number of squares

in the first k columns of the jth partition is ρ(fi, Akfi ∧ fj) = ρ(Akfi ∧ fj)− i. If the
conjecture holds, the generic value of ρ(Akfi ∧ fj) is weakly lower than the one this
f realizes. The generic value is the number of squares in the first k columns of the
jth partition in ∆iP , so the realized value dominates the generic value.

Example 8.23. Note that ∆̃iP D′ ∆iP does not always hold, Consider

P = 1 3
2 4

∆P = 2 3
4

∆2P = 3
4

∆̃P =
2 4
3

∆̃2P = 3 4

The shapes of ∆̃2P and ∆2P are and , and 6D′ . However, no flag with
ftype f = P has ftype ∂2f = 3 4 because

P = 1
2

+ 3
4

so by Theorem 4.76, ftype ∂2f = 3
4

.

8.5. Counting the number of flags with given A-statistics. The method devel-
oped in Section 5.5 for enumerating the number of flags realizing an interval type table
generalizes to counting the number of flags realizing some specification of the ρ~r ’s. Let
Λ = (ρ~r )~r be a collection of numbers satisfying Proposition 8.17, where the indicies
run over reduced sequences ~r . The A-statistics of a flag f are Λ(f) = (ρ~r (f))~r .

Fix k with 0 < k < n. Consider two k-adjacent flags f, f ′. Let ~r be a reduced
sequence. If rk ·> rk+1 then

Arkfk ∧ Ark+1fk+1 = Ark+1fk+1 = Arkf ′k ∧Ark+1f ′k+1
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so A~r f = A~r f ′ and ρ~r (f) = ρ~r (f ′). If rk−1 = rk then

Ark−1fk−1 ∧Arkfk = Ark−1fk−1 = Ark−1f ′k−1 ∧Arkf ′k.

so again, A~r f = A~r f ′ and ρ~r (f) = ρ~r (f ′). Thus, we say ~r is k-free when rk−1 = rk
or rk ·> rk+1, and is k-dependent when rk−1 ·> rk = rk+1. When ~r is k-free, we
may substitute for fk any atom of [fk−1, fk+1] without changing the value of A~r f .
In particular, when ~r is reduced and k-dependent, both Rk(~r ) and (Lk−1(~r ))∗ are
k-free, so ARk(~r )f and ALk−1(~r )f do not depend on fk.

Consider k-dependent ~r . We have ALk−1(~r )f ≤· A~r f ≤· ARk(~r )f : the first cover is
obtained by meeting Arkfk−1 ≤· Arkfk with A~r f , and the second by Proposition 8.17.
The left and right expressions have no dependence on fk, so they are the same if
we substitute f ′ for f . If ρLk−1(~r ) = ρRk(~r ) then both weak covers are equality, so
ρ~r (f) = ρ~r (f ′) = ρLk−1(~r ). If ρRk(~r )−ρLk−1(~r ) = 2 then ρ~r (f) = ρ~r (f ′) ·> ρLk−1(~r ). We
say that Λ is ~r -specializable when ρRk(~r )− ρLk−1(~r ) = 1, that it is ~r -special when
ρ~r = ρRk(~r ), and that it is ~r -generic when ρ~r = ρLk−1(~r ). A flag is ~r -specializable,
~r -special, or ~r -generic when Λ(f) is.

Let ρ~r be specializable. If f 6= f ′ are k-adjacent, they cannot both be ρ~r -special,
for suppose they are. Then A~r f = A~r f ′ = ARk(~r )f , but

A~r f ∧A~r f ′ = ARk(~r )f ∧ Arkfk ∧Arkf ′k
= ARk(~r )f ∧ Ark(fk ∧ f ′k)
= ARk(~r )f ∧ Arkfk−1

= ALk−1(~r )f

<· ARk(~r )f,

a contradiction. So when an adjacency class is ~r -specializable for a particular ~r , at
most one flag in it is ~r -special.

In fact, exactly one flag is. Let ~r be reduced and k-dependent, and f be ~r -
specializable. Let f ′ be the k-adjacent flag with f ′k = fk−1 ∨ CrkARk(~r )f . We must
verify that f ′k is an atom of [fk−1, fk+1] and that ρ(A~r f ′) = ρ(ARk(~r )f ′). Clearly
f ′k ≥ fk−1. Let r = rk+1 = rk <· rk−1. Then CrkARk(~r )f ≤ CrArfk+1 ≤ fk+1 so
f ′k ≤ fk−1 ∨ fk+1 = fk+1. Thus fk−1 ≤ f ′k ≤ fk+1. Since

ρ(f ′k) = ρ(fk−1) + ρ(ARk(~r )f)− ρ(Arfk−1 ∧ ARk(~r )f )

= ρ(fk−1) +
(
ρ(ARk(~r )f)− ρ(ALk−1(~r )f )

)
= ρ(fk−1) + 1,

fk−1 is an atom of [fk−1, fk+1]. Finally, let

y = ARk(~r )f ′

z = A~r f ′ = y ∧Arkf ′k = y ∧Ark(fk−1 ∨ Crky).

Then y ≤ ArkCrky ≤ Ark(fk−1 ∨ Crky) so z = y. Thus, f ′ is ~r -special.
We have built up a generalization of the framework designed for interval type tables

in Section 5.5. A similar technique could be applied to enumerate the number NΛ

of flags realizing each A-statistic Λ. List all Λ’s satisfying Proposition 8.17 and split
them into k-adjacency classes over all k. If a class lacks an ~r -generic or an ~r -special
Λ for some specializable ~r , delete all members of that class from the list. A class
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{Λ0, . . . ,Λm} in which Λ0 is ~r -generic for all specializable ~r , and with exactly one
Λi that’s ~r -special for each specializable ~r , yields the equation NΛ0/(q + 1 −m) =
NΛ1 = · · · = NΛi . It would be interesting to pursue this further. If the equations turn
out to be solvable, it would provide a refinement of the polynomials that enumerate
how many flags realize specified interval type tables.

The theory of hereditary flags in Section 5.6 computed the A-statistics of hered-
itary flags, and then only used the portion of those statistics necessary to con-
struct the interval type table. For hereditary flags of composition tableau type P ,
the A-statistics are given by substituting the operator A of that section for L̃ in
Proposition 8.19. Let Λ(P ) be those statistics. In Theorem 5.52, it is shown that
fitypeP (q) = q2n(λ)−dom(P )Mλ(q−1); in fact, this also is the number of flags with A-
statistics Λ(P ).

8.6. Further statistics and future problems. Consider the C-statistics of a flag,
given as

ρ~r (f) = ρ(Cr0f0 ∨ · · · ∨ Crnfn)

where 0 = r0 ≤· r1 ≤· · · · ≤· rn ≤ λ1 are the reduced sequences in semi-primary
lattices of type λ. Let Cm(f) = C∂m−low(f)(f) = (Cfmfm, . . . , Cfmfh) and Rm(P ) =
R∂m−low(P )(P ). Let si = max { j : rj = i } for i = 0, . . . , k, where k = rn. Then for
flags of type P , we have ρ~r (f) = |Rsk · · ·Rs0(P )|, analogously to Proposition 8.19.
The enumeration theory is similar to that of the A-statistics.

We can also consider multiple flags, Combinations of the games L̃ and D̃c can be
used to compute possible values of ρ(A~r f ∧ A~sg ∧ · · ·). We illustrate for two and
three flags.

First define the operator A#
k (f) = (Afkfl, Afkfl+1, . . . , Afkfk, fk+1, . . . , fh). If f

is a multisaturated chain, so is A#
k (f), because Afk maintains weak covers in the l

through kth terms; Afkfk = fk ≤· fk+1; and the k+ 1 through hth terms already form

a multisaturated chain. Also, for P = (λ(l), . . . , λ(h)) and L̃kP = (µ(l), . . . , µ(k)),

define L̃#
k P = (µ(l), . . . , µ(k), λ(k+1), . . . , λ(h)). In terms of tableau, we apply L̃ to the

subtableau of P whose entries are at most k, and leave all the entries larger than k
in place. Similarly define L#

k . Uniformly we have

L#
k , L̃

#
k : ftype0̂ f 7−→ ftype0̂A

#
k (f).

Let ftype0̂ f = P and ftype0̂ g = Q. Let ~r and ~s be reduced sequences and set
r′i = min{ j : rj = i } and s′i = min{ j : sj = i }. Let

f# = (Arifi ∧Ari+1fi+1 ∧ · · · ∧Arnfn)

= · · ·A#
r′1
A#
r′0

(f),

P# = · · · L̃#
r′1
L̃#
r′0

(P ).

Then ftype0̂ f
# = P#, with the uniform type found by replacing L̃#

r′i
by L#

r′i
. Similarly

define g# and Q#.
Next, perform a skew Robinson-Schensted algorithm on (P#,Q#). Let k1 < · · · <

km be the entries of Q# and c1, . . . , cm be the cells of Q# with k1, . . . , km. Then
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ftype0̂(f# ∧ A~sg) = D̃c1 · · · D̃cm(P#), so the inner shape of this skew tableau is the
value of type(A~rf ∧A~sg).

For three flags f, g, h of types P ,Q,R, and reduced sequences ~r,~s,~t, define f#,
g#, h# and P#,Q#,R# analogously to the two flag case. Let k1 < · · · < km
be the entries of R# and c1, . . . , cm their cells. The games P## = ftype0̂(f# ∧
A~th) = D̃c1 · · · D̃cm(P ) and Q## = ftype0̂(g# ∧A~th) = D̃c1 · · · D̃cm(Q) each result in
tableaux of the same shape (the inner shape of R#). Perform the skew Robinson-
Schensted deletion algorithm on (P##,Q##), and the final P -tableau obtained is

ftype0̂(f# ∧A~sg ∧ A~th), so its inner shape is type(A~rf ∧A~sg ∧A~th).

For two flags f and g, the A-statistics simultaneously encode the relative positions
of the flags and their interval type tables. In Section 7, we were not able to enumer-
ate the number of pairs of flags in given relative positions by the techniques used in
Section 5.5 for interval type tables, because our statistics were insufficient to deter-
mine the types of length 2 intervals. Since A-statistics resolve that difficulty, they
should be explored further to see if the number of pairs of flags realizing particular
A-statistics is in fact enumerable, exactly or asymptotically in the generic case.

The following is a generalization of Conjecture 8.20 to multiple flags.

Conjecture 8.24. Let P ,Q, . . . be standard tableaux, and ~r,~s, . . . be reduced se-
quences. Compute the generic values ρ~r,~s,...gen of A~rf ∧ A~rg ∧ · · · by using L and Dc
in place of L̃ and D̃c in the procedure described above. Then for all flags f, g, . . . , we
have

ρ~r,~s,...gen ≤ ρ(A~rf ∧A~sg ∧ · · ·).
Corollary 8.25. Let (P ,Q) be a pair of standard tableau of shape λ. Let P =
P n, . . . ,P 0 = ∅ be the sequence of tableau obtained in the inverse Robinson-Schensted
algorithm. Let f and g be flags with ftype0̂ f = P and ftype0̂ g = Q in a semi-primary
lattice of type λ. Then ftype0̂(f ∧ gk) D′ P k.

Conjectural Proof. We assume the previous conjecture, and assume that compositions
of games Dc give generic values. The jth partition in ftype(f ∧ gk) is type(fj ∧ gk).
The first i columns of it have a total of ρ(Aif0 ∧ fj ∧ gk) squares. By the conjecture,
this is minimized by the generic value, which is the first i columns of the jth partition
of P k.
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Part IV. Strongly modular lattices

9. Strongly modular lattices

9.1. The Fibonacci lattices F ib(r) and Z(r). Let r be a positive integer, and
W (r) be the set of all finite length words formed from the alphabet {11, 12, . . . , 1r, 2},
including the empty word ∅. A digit is “a 1” if it is any 1i. When r = 1, the alphabet
may be abbreviated {1, 2}. As with partitions, an arbitrary number of 0’s may be
appended to the end of a word when convenient. Fomin [5] introduced a pictorial
diagram for words of W (1) that is a rotation of the usual composition diagram; the
word 221211 has snake diagram . We may expand this to words of W (r) by
placing an i in the lower right corner of the cell representing 1i, so 221121315 has
snake diagram

1 3 5

In [28], two different partial orders on W (r) are defined by defining the cover
relations and then extending to a partial order by transitivity.

In F ib(r), the cover relation v ·>F u holds when u is obtained from v either by
changing a single 2 to a 1 anywhere in v, or by deleting the last digit of v if it is a 1.
When extended transitively to a full partial order, v ≥F u if u may be obtained from
v by changing some 2’s to 1’s, and deleting any number of digits from the right end
of the word. Thus in F ib(2), the word 2212211 covers 11212211, 12212211, 21112211,
21212211, 22121111, 22121211, and 22122. Pictorially, we may delete any of the marked
cells, and if they in the upper row, we may introduce any subscript in the lower cell.

• • •

2 •1

The cover relation v ·>Z u holds in Z(r) when either of two conditions hold. Either
the leftmost 1 of v is deleted to obtain u, denoted v ·>1 u, or a 2 in v preceded only
by 2’s is changed to a 1, denoted v ·>2 u. So in Z(2), we have 2212211 ·>1 22211 and
2212211 ·>2 11212211, 12212211, 21112211, 21212211. Pictorially, we may delete any
marked cell, and when it is a 2, add any subscript to the lower cell.

• •
•2 1

The total number of upper covers of u is κ+(u) = (k + 1)r or (k + 1)r + 1, where
u = 2k or 2k1ix, respectively, for arbitrary k ≥ 0 and x ∈ Z(r). This is because any
of r 1’s may be inserted before the first 2 or following any of the first k 2’s, or if there
is a 1, the first 1 may be changed to a 2. Similarly, the total number of lower covers
of v is κ−(v) = kr or kr + 1, where v = 2k or 2k1x, respectively; any one of the first
k 2’s can replaced by any of r 1’s, or the first 1 (if present) can be deleted.

Both F ib(r) and Z(r) are graded lattices with rank function ρ(a1a2 · · · ak) = a1 +
a2 + · · · + ak, where we add the ai’s as integers by ignoring the subscripts on the
1’s. These lattices are called Fibonacci lattices because the number of elements
of rank n when r = 1 is the Fibonacci number Fn+1 (where F1 = F2 = 1 and
Fn+1 = Fn + Fn−1).

We will evaluate the operators A and C in Z(r) in Theorems 9.4 and 9.7, and
establish in Theorem 9.2 a new criterion for determining whether two elements of Z(r)
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are comparable under ≥Z without having to exhibit a chain of elements satisfying the
cover relation ·>Z.

Definition 9.1. Let u and v be two elements of Z(r) and factor them u = µτ and
v = ντ , where τ is as large as possible; that is, one or both of µ and ν is empty, or they
are both nonempty but end in different digits. Let µ1, µ2, and µ12 respectively denote
the number of 1’s of all kinds in µ; the number of 2’s in µ; and the total number of
digits in µ, and define similar subscripted quantities for u, v, τ, ν, and other variables
in Z(r) that are introduced later. When dealing with multiple values of u and v, all
of µ, ν, τ and their subscripted forms may be expressed as functions of u and v, so
that u = µ(u, v)τ (u, v) and v = ν(u, v)τ (u, v).

Theorem 9.2. Let v, u ∈ Z(r). Then v ≥Z u iff ν2 ≥ µ12.

Proof. Suppose ν2 ≥ µ12. First, prepend to u a total of ν2 − µ12 2’s by alternately
prepending 11 and then changing the 11 to 2. The successive elements obtained
increase by alternate cover relations ·>1 and ·>2. So now we have the word 2ν2−µ12µτ .
Next, change the 1’s in the µ part to 2’s, sequentially from left to right, to obtain
2ν2τ ; each successive change is a ·>2 relation in Z(r). Finally, by a sequence of ·>1

relations, insert into this 1i’s from right to left with the same positions and subscripts
as in ν, to obtain v = ντ . Thus v ≥Z u.

Conversely, suppose v ≥Z u. Any saturated chain from u to v must pass through an
element of the form 2mτ because the digit preceding τ is eventually changed, and to
change a digit requires all preceding digits to be 2’s. We must have m ≥ µ12 because
the number of digits in a word weakly increases as we go up in Z(r) (so comparing
u and 2mτ , this number increases from µ12 + τ12 to m+ τ12), and also we must have
ν2 ≥ m because the number of 2’s in a word weakly increases as we go up in Z(r) (so
comparing 2mτ and v, this increases from m+ τ2 to ν2 + τ2). So ν2 ≥ µ12.

Example 9.3. Let

u = 2 12 11 2 2 13 12 2 11 12 2 2 13 14 2

v = 2 2 11 2 2 14 2 11 2 2 12 2 2 2 2 11 12 2 2 13 14 2

Factor these as u = µτ and v = ντ with τ as large as possible.

µ = 2 12 11 2 2 13 12

ν = 2 2 11 2 2 14 2 11 2 2 12 2 2 2

τ = 2 11 12 2 2 13 14 2

Since ν2 = 10 ≥ 7 = µ12, we should have v ≥Z u. Starting with u, first prepend three
2’s (since ν2 − µ12 = 3) by prepending 11 and changing it to 2, yielding alternating
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·>1 and ·>2 cover relations.

2 12 11 2 2 13 12 2 11 12 2 2 13 14 2

11 2 12 11 2 2 13 12 2 11 12 2 2 13 14 2

2 2 12 11 2 2 13 12 2 11 12 2 2 13 14 2

11 2 2 12 11 2 2 13 12 2 11 12 2 2 13 14 2

2 2 2 12 11 2 2 13 12 2 11 12 2 2 13 14 2

11 2 2 2 12 11 2 2 13 12 2 11 12 2 2 13 14 2

2 2 2 2 12 11 2 2 13 12 2 11 12 2 2 13 14 2

Then change the 1i’s of µ into 2’s, yielding a succession of ·>2 cover relations.

2 2 2 2 12 11 2 2 13 12 2 11 12 2 2 13 14 2

2 2 2 2 2 11 2 2 13 12 2 11 12 2 2 13 14 2

2 2 2 2 2 2 2 2 13 12 2 11 12 2 2 13 14 2

2 2 2 2 2 2 2 2 2 12 2 11 12 2 2 13 14 2

2 2 2 2 2 2 2 2 2 2 2 11 12 2 2 13 14 2

Finally, insert the 1i’s of ν into this from right to left, yielding a succession of ·>1

cover relations.

2 2 2 2 2 2 2 2 2 2 2 11 12 2 2 13 14 2

2 2 2 2 2 2 2 12 2 2 2 2 11 12 2 2 13 14 2

2 2 2 2 2 11 2 2 12 2 2 2 2 11 12 2 2 13 14 2

2 2 2 2 14 2 11 2 2 12 2 2 2 2 11 12 2 2 13 14 2

2 2 11 2 2 14 2 11 2 2 12 2 2 2 2 11 12 2 2 13 14 2

We will see below that Atype[u, v] = 2318 and Ctype[u, v] = 221217 .

Theorem 9.4. If v ≥Z u then Avu is determined as follows:

2u if µ12 < ν2;

Change the leftmost 1 of u to 2 if µ2 < µ12 = ν2;

µ1iτ where ν ends in 1i if µ2 = µ12 = ν2 < ν12;

u if µ2 = µ12 = ν2 = ν12 = 0.

The only exception occurs when r = 1, u = ∅, and ν2 > 0; in this case, Avu = 1.

Proof. If µ12 < ν2 then u <Z 2u ≤Z v because ν2(2u, v) − µ12(2u, v) <· ν2(u, v) −
µ12(u, v); either τ and ν stay the same and µ12 goes up by 1, or τ (u, v) = u, τ (2u, v) =
2u, µ(u, v) = µ(2u, v) = ∅, ν(u, v) = 2ν(2u, v) so that ν2 decreases by 1 and µ12 stays
0. Further, all κ+(u) upper covers of u are lower covers of 2u, and unless r = 1 and
u = ∅, there is more than one upper cover, so their join Au is 2u. Since 2u ≤ v, also
Avu = Au ∧ v = Au = 2u. When r = 1 and u = ∅, there is only one upper cover and
Avu = Au = 1.

So assume µ12 = ν2. Suppose µ2 < µ12. What are the atoms u′ of [u, v]? There is at
least one 1 in µ because µ2 < µ12, so any u′ ·> u has τ (u′, v) = τ (u, v), and the altered
digit is in the µ portion. We cannot insert a 1 because then µ12(u′, v) > ν2(u′, v) so

167



u′ 6≤Z v. So u′ ·>2 u, and the only such u′ is obtained by changing the first 1 in u to
a 2.

Now suppose µ2 = µ12 = ν2. Then µ = 2µ2 . If ν2 = ν12 then µ = ν, but since µ
and ν by definition do not end in the same digit, this requires µ = ν = ∅, so u = v
and Avu = u. Only the case µ2 = µ12 = ν2 < ν12 remains, and ν must end in some
1; say it ends in 1i. Then v ≥Z µ1iτ ·>Z u. Are there any other atoms u′ of [u, v]?
Consider another upper cover u′ of u in Z(r). What are τ (u′, v), µ(u′, v), and ν(u′, v)
as compared with τ (u, v), µ(u, v), and ν(u, v)? All digits of τ left of the altered one in
u <·Z u′ are moved to µ and ν (if the alteration was in τ ), thereby adding at least as
many digits to µ as 2’s are added to ν; next, µ gains a 1 if u′ ·>1 u, or µ gains a 2 and
ν a 1 if u′ ·>2 u, thereby adding a digit to µ but not adding any 2’s to ν. So at least
one more digit is added to µ than 2’s are added to ν, yielding µ12(u′, v) ≥ ν2(u′, v)+1.
Thus, u′ 6≤Z v. So µ1iτ is the unique atom of [u, v].

Corollary 9.5. Atype[u, v] = 2ν2−µ121µ1+ν1 , unless r = 1 and u = ∅ and ν2 > 0, in
which case Atype[u, v] = 12ν2−111+ν1 if v ends in 2, and Atype[u, v] = 12ν2 1ν1−1 if v
ends in 1.

Proof. Except in the exceptional case, the chain of elements from u to v built in the
proof of Theorem 9.2 is precisely u,Avu,A2

vu, . . . by the preceding theorem; first we
prepend ν2 − µ12 2’s to u, and then change µ1 1’s to 2’s, and then insert ν1 1’s, and
sequentially listing the changes in rank yields Atype[u, v] = 2ν2−µ121µ1+ν1 . In the
exceptional case r = 1, u = ∅, and ν2 > 0, we have Avu = 1 instead of 2, but the
next ν2 − 1 or ν2 (depending on whether v ends in 2 or 1) applications of Av to this
do prepend 2’s. If v ends in 2, the next application of Av changes the terminal 1 to
a 2. Finally, we insert the remaining 1’s into ν.

Example 9.6. In Example 9.3 above, Atype[u, v] = 2318. For exceptional cases,
Atype[∅, 221] = 122 if r = 1 but Atype[∅, 2211] = 221 if r > 1, and Atype[∅, 22] = 121
if r = 1 but Atype[∅, 22] = 22 if r > 1.

Theorem 9.7. If v ≥Z u then Cuv is determined as follows:

Delete the first digit of v if ν2 > µ12, or if ν2 = µ12 and v starts
with a 1;

Delete the leftmost 1 of v if ν12 > ν2 = µ12;

ν′1iτ , where ν = ν′2 and µ = µ′1i if ν12 = ν2 = µ12 > µ2;

u if ν12 = ν2 = µ12 = µ2.
The only exception occurs when r = 1; in this case, C∅2 = 1.

Proof. If ν2 > µ12 and we delete the first digit of v to obtain v′, we will decrease ν1

or ν2 by 1 but keep µ12 the same, so v >Z v′ ≥Z u. If this first digit is a 1, then v′ is
the unique lower cover of v in Z(r). If v = 2v′, then all κ−(v) lower covers of v are
upper covers of v′, and there is more than one lower cover unless r = 1 and v = 2,
so the meet of all lower covers of v is Cv = v′ ≥ u. Further, Cuv = Cv ∨ u = v′. If
v = 2 and r = 1 then u = ∅ (as 1 = ν2 > µ12 ≥ 0) and Cuv = 1.

Now suppose ν2 = µ12. If ν12 > ν2 then ν has 1’s in it. Consider lower covers v′ of
v. If v ·>2 v′ then some 2 of ν(u, v) is changed to a 1 to obtain ν(u, v′), but µ(u, v′) =
µ(u, v), so µ12 stays the same and ν2 goes down by 1, yielding ν2(u, v′) < µ12(u, v′),
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so u 6≤Z v′. So v ·>1 v′, which uniquely determines v′ by deleting the first 1 in v. So
Cuv = v′.

Now suppose ν12 = ν2 = µ12. If µ12 = µ2 then µ and ν have the same length and
are all 2’s, and since they must not end in the same digit, µ = ν = ∅ and u = v, so
Cuv = u. So we are left with the case µ12 > µ2. All digits of ν are 2, so µ has the
form µ = µ′1i. Write ν = ν′2. Then ν′1iτ satisfies u ≤Z ν′1iτ <·2 v. Do any other
lower covers v′ of v satisfy v′ ≥Z u? To compute µ(u, v′) and ν(u, v′) from µ and ν,
we add to both µ and ν all digits of τ left of the one that changes in v ·>Z v′ (if the
change is in τ ), and then we add a 1 to µ if v ·>1 v′ or a 2 to µ and 1 to ν if v ·>2 v′.
Either way, the number of digits added to µ goes up by at least one more than the
number of 2’s added to ν, so µ12(u, v′) > ν2(u, v′), so v′ 6≥Z u. So the only lower cover
of v that exceeds u is ν′1iτ , whence Cuv = ν′1iτ .

Corollary 9.8. Ctype[u, v] is found as follows. Factor ν = st where t2 = µ12; the
factorization isn’t unique, as there may be some 1’s that can be placed either at the
right of s or the left of t. Form s′ from s by dropping the subscripts on all the 1’s.
Then Ctype[u, v] = s′1t1+µ1 , except when r = 1, u = ∅, and ν2 > 0. When r = 1,
Ctype[∅, v] = v unless it ends in 2, in which case the final 2 is changed to 11.

Proof. We will consider µ(u, v′) and ν(u, v′) as v′ takes on successive values v, Cuv,
C2
uv, . . . . Initially set v′ to v. The first s12 applications of Cu simply remove initial

digits s of v; remove initial digits one by one as long as doing so maintains ν2(u, v′) ≥
µ12(u, v′). Then remove 1’s from left to right as long as ν12 > µ12 (a total of t1 1’s).
Now u and v′ have the same number of digits, and where they disagree, u has some
1i and v′ has a 2, so from right to left, lower the 2’s of v′ to the 1i’s found in u (a
total of µ1 times). Finally we obtain u.

Each digit removed or lowered is precisely an application of Cu by the preceding
theorem, except for the exceptional case. List the successive drops in rank to ob-
tain Ctype[u, v] as stated above: removing a 1 or 2 decreases the rank by 1 or 2,
respectively, and lowering a 2 to a 1 decreases the rank by 1.

The only exceptional case is when r = 1, u = ∅, and v ends in a 2. When r = 1
and u = ∅, successive applications of Cu = C remove leading digits of v one at a time,
until all that is left is the terminal digit, and then C2 = 1 and C1 = ∅, instead of
C2 = ∅ as happens with r > 1.

Theorem 9.9. Let u, v ∈ Z(r). Without loss of generality, µ2 ≤ ν2. Let m =
max {0, µ12 − ν2}. Then u ∧ v is obtained from u by deleting the first m 1’s.

Without loss of generality, µ12 ≤ ν12. Let m = max {0, µ12 − ν2}. Then u ∨ v is
obtained from v by changing the first m 1’s to 2’s.

Finally,

ρ(u ∧ v) = min{ρ(u), ρ(v), µ2 + ν2 + ρ(τ )} ,
ρ(u ∨ v) = max {ρ(v), ρ(v), µ12 + ν12 + ρ(τ )} .

Proof. We compute the meet; the join is computed similarly. Let α be the result of
deleting the first m 1’s from u. Then α ≤Z u. Either m = 0, or m = µ12 − ν2 ≤
µ12 − µ2 = µ1, so these 1’s are all contained in µ. Let β be the result of deleting the
first m 1’s from µ, so α = βτ . To prove α ≤Z v, we show β ≤Z ν, for if this holds,
append τ to both sides to obtain α ≤Z v. If β and ν do not end in the same digit
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then β12 = µ12 −m = min{µ12, ν2} ≤ ν2, so β ≤ ν. If they do end in the same digit
then it is a 2 and we deleted all the 1’s from µ, because µ and ν do not end in the
same digit. So β = 2µ2 , and ν has at least µ2 2’s (since µ2 ≤ ν2), so β ≤Z µ. Thus,
α ≤Z u ∧ v.

If α = u or v then α is certainly the meet, so assume α <Z u, v. Since α is obtained
from u by deleting 1’s, the only upper cover α+ of α with α+ ≤Z u is Auα, obtained by
reinserting the rightmost deleted 1 in the β portion. Then ν(α+, v) = ν, τ (α+, v) = τ ,
and µ(α+, v) = β+ is β with a 1 suitably inserted. We have β12 = min{µ12, ν2} < µ12

because if β12 = µ12, inserting a 1 would yield more digits than u has. Thus, β12 = ν2

and β+
12 = ν2 + 1 6≤ ν2, so α+ 6≤Z v, and we conclude α = u ∧ v.

The rank of the meet is

ρ(α) = ρ(u)−m
= min{ρ(u), ρ(u)− µ12 + ν2}
= min{ρ(u), µ2 + µ12 − µ12 + ν2}
= min{ρ(u), µ2 + ν2} .

Combining this with the like expression for the case µ2 ≥ ν2 gives the value stated in
the theorem.

9.2. Strongly modular lattices. We now introduce a new class of lattices.

Theorem 9.10. The following conditions on a lattice are equivalent.

(1) The lattice is modular, and all complemented intervals have length at most 2.
(2) For any set S of at least two elements of the lattice, the meet of all the elements

of S is covered by each element in S iff each element in S is covered by the
join of all elements of S.

Proof.

(1)⇒ (2): The function Au is defined for all u even when the lattice has
infinite length: if there are an infinite number of elements covering some u
and their join is unbounded, a finite subcollection of them yields joins of any
finite rank, and the interval from u to these joins is atomic and hence com-
plemented. Thus, complemented intervals of all finite ranks exist, violating
(1).

Let S be a set of at least two elements of the lattice such that the meet u
of all elements of S is covered by each element of S. Then Au is the join of
all the elements of S and possibly other elements of the lattice. Since there
are at least two elements in the join, Au is strictly larger than either, and
[u,Au] is an atomic (hence complemented) interval of length at least 2, so by
(1), its length is exactly 2. Since Au is larger than all elements of S and has
rank 1 larger, it covers them all.

The converse statement in (2) is proven dually, using C instead of A.
(2)⇒ (1): If a lattice satisfies (2), it is modular, for given any two elements,
they cover their meet iff they are covered by their join. Further, suppose
[x, y] is a complemented interval of length greater than 1. There must be at
least two atoms, for if there is only one atom, v, it has no complement: the
only element disjoint with it is x, but x ∨ v = v < 1̂. The meet of all the
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atoms of [x, y] is x, which is a lower cover of every atom; thus, by (2), the
join of all atoms must cover each atom, so [x,Ayx] has length 2. If Ayx < y
then Ayx has no complement, because the only element disjoint from it is x,

and x ∨Ayx = Ayx < 1̂. So Ayx = y, and [x, y] has length 2.

Definition 9.11. A strongly modular lattice is a lattice satisfying either of the
above equivalent conditions.

A semi-primary lattice of type λ with λ′1 ≤ 2 is a strongly modular lattice.

Theorem 9.12 (see [28, Prop. 5.4]). Z(r) is a strongly modular lattice.

Proof. If S is a set of at least two elements whose meet x is a lower cover of each
element of S, then Ax = 2x is an upper cover of each element of S. If S is a set of
at least two elements whose join y is an upper cover of each element of S, then y has
the form 2x (since words not beginning with 2 have at most one lower cover), and x
is a lower cover of each element of S.

Theorem 9.13. Let L be a strongly modular lattice. For any closed interval [x, y],
both Atype[x, y] and Ctype[x, y] are in W (1).

Proof. The parts of Atype[x, y] are the successive lengths of the intervals [x,Ayx],
[Ayx,A2

yx], [A2
yx,A

3
yx], . . . . Each such interval is atomic and hence complemented,

so for i with Ai
yx < y, the interval [Ai

yx,A
i+1
y x] has length 1 or 2, while all further

intervals have length 0. Dualize this argument for Ctype.

Theorem 9.14. If x <· v ≤ y in L then Atype[v, y] <·Z Atype[x, y] in Z(1). Dually,
if x ≤ v <· y, then Ctype[x, v] <·Z Ctype[x, y] in Z(1).

Proof. We show the first cover relation by inducting on the length of the interval
[x, y].

Suppose Atype[x, y] begins with a 1. Then Ayx is the unique atom of [x, y], which
must be v, so Atype[x, y] is Atype[v, y] with a 1 prepended.

Suppose Atype[x, y] and Atype[v, y] both begin with a 2. Since v ≥ x⇒ Ayv ≥ Ayx
and v has rank one greater than x and Ay increases both ranks by 2, we must have
Ayv ·> Ayx. By induction, Atype[Ayv, y] <·Z Atype[Ayx, y], and we prepend 2 to
both sides to obtain Atype[v, y] <·Z Atype[x, y].

Finally, if Atype[x, y] begins with 2 and Atype[v, y] begins with 1, then Ayv ≥ Ayx,
and both sides have the same rank, so they are equal. So all other entries in the types
are the same.

Theorem 9.15. Let x <· v ≤ y. If Atype[v, y] <· 1 Atype[x, y] with a 1 inserted after
the first k 2’s, then v = CkAk+1

y x. If Atype[v, y] <·2 Atype[x, y] with the 1 changed to

a 2 in the kth position, then x = CkAk
yv.

Dually, let x ≤ v <· y. If Ctype[x, v] <· 1 Ctype[x, y] with a 1 inserted after the first
k 2’s, then v = AkCk+1

x y. If Ctype[x, v] <·2 Ctype[x, y] with the 1 changed to a 2 in
the kth position, then y = AkCk

xv.
Only uniqueness of v, x, or y in each case is asserted, not existence.
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Proof. Let x <· v ≤ y. Suppose Atype[v, y] <· 1 Atype[x, y] with a 1 inserted after
the first k 2’s. Then Ak

yx <· Ak
yv since each side has rank 2k more than in x <·

v. Now Ak
yv ≤ Ay(Ak

yx) = Ak+1
y x because the middle term is a join of elements

which includes the left term. The left and right terms both have the same rank by
examining Atype[v, y] and Atype[x, y], so in fact, Ak

yv = Ak+1
y x. Next, Ck

vA
k
yv ≤ v by

Theorem 3.3(2), and also the left side is less than v because Cv is bounded below by
v. So v = Ck

vA
k
yv = Ck

vA
k+1
y x. This is bounded below by CkAk+1

y x. Each of the k
applications of Cv must have decreased the rank by 2, and so the applications of C
can decrease the rank no further. Thus, v = Ck

xA
k+1
y x.

Now suppose Atype[v, y] <·2 Atype[x, y] with the 1 changed to a 2 in the kth
position. Then Ak

yx = Ak
yv since the right side is a weak upper bound for the left,

and both have the same rank (by adding the first k digits of the types to the ranks
of x <· v). Then x = Ck

xA
k
yx = Ck

xA
k
yv, and since each application of Cx reduces the

rank by 2, it could be replaced by C, to obtain x = CkAk
yv.

The proofs for Ctype are dual.

To examine the relation of Ctype[x, y] and Ctype[v, y] when v is an atom of [x, y]
requires a new graded poset Z∗. Its elements are those of W (1), and the cover relations
are u <·1∗ u1 and u11m <·2∗ u21m, where u ∈W (1) and m ≥ 0 are arbitrary. In other
words, u <·Z∗ v when either a 1 is inserted in u in a position followed only by 1’s
(equivalently, when a 1 is appended to u), or when a 1 followed only by 1’s is changed
to a 2. In terms of snake diagrams, this may be visualized by the following example,
in which v is shown, and either marked cell may be removed to obtain some u <·Z∗ v.

•
•

Although we will use Z∗ in comparing the types as stated above, we will not have
any other use for Z∗. Note that Z∗ is not a lattice, since upper bounds may not exist;
for example, 12 and 2 have no upper bound, because in Z∗, all words larger than 12
start with 12 and all words larger than 2 start with 2. It is a meet semilattice: given
two words u = xz and v = xy where z or y is empty, or they are both nonempty and
start with different digits, then u ∧ v = x1m where m is the smaller of the number of
digits of y or z.

Theorem 9.16. If x <· v ≤ y in L, then Ctype[v, y] <·Z∗ Ctype[x, y]; further, if
Ctype[v, y] <· 1∗ Ctype[x, y], then v = Ck−1

x y, where k = arank[x, y]. Dually, if x ≤
v <· y, then Atype[x, v] <·Z∗ Atype[x, y], and if Atype[x, v] <·1∗ Atype[x, y], then
v = Ak−1

y x, where k = arank[x, y].

Proof. We induct on the length of the interval [x, y], and set α = Ctype[x, y] and
β = Ctype[v, y].

If α and β begin with the same digit, then Cxy = Cvy, and if we replace y by Cxy,
we get a smaller interval with the first digit of α and β deleted; the theorem holds in
the smaller interval, and by prepending the common deleted digit, it holds in [x, y].

So assume α and β do not start with the same digit. Then Cxy 6= Cvy = v ∨ Cxy,
so v 6≤ Cxy. Join v elementwise with the chain Cxy ≥ C2

xy ≥ · · · to obtain Cvy ≥
C2
vy ≥ · · ·; the ranks of the elements in the second chain are one higher than in the

first, because the chains are in [x, y] and v is an atom of [x, y], with v not smaller
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than the top element of the chain. Thus, successive differences in ranks in the two
chains are the same, so only the first digit of α and β differ. If α = 1 and β = ∅ we
are done. If α = 1γ and β = 2γ for some word γ, then ρ(α) <· ρ(β); however, [x, y] is
an interval of length one higher than [v, y], so this cover relation should be reversed.
Thus, this situation doesn’t occur. We are left with α = 2γ and β = 1γ. Can any
digit of β be 2? If the jth digit of β is 2, then Cj

vy = Cjy has rank 2 lower than
Cj−1
v y, and v ≤ Cjy ≤ Cj

xy, violating the fact that v 6≤ Cj
xy. So all digits of β are 1,

and all digits of α but the first are 1.
Note that if α = β1 then v is uniquely determined by Theorem 3.8.

9.3. Interval type tables in strongly modular lattices. Let f = (f0 <· f1 <·
· · · <· fn) be a saturated flag in a strongly modular lattice.

The interval Ctype table of a saturated flag f in a strongly modular lattice is the
triangular array (Ctype[fi, fj ])0≤i≤j≤n. The interval Atype table is defined dually.
We will be interested in determining the possible interval type tables of a flag given
just some of the entries of the table, such as the first row, (Ctype[f0, fj ])0≤j≤n, and
more generally, any sequence Ctype[fi0, fj0 ], . . . ,Ctype[fin, fjn ] where i0 = j0, in = 0,
jn = n, and for each k > 0, either ik = ik−1 − 1 and jk = jk−1, or ik = ik−1 and
jk = jk−1 + 1.

We will develop necessary (but not sufficient) conditions for a triangular array
Λ = (λ(ij))0≤i≤j≤n of words of W (1) to be realizable as the interval type table of some
flag in an arbitrary strongly modular lattice, and then will focus on Z(r).

By Theorem 9.14, λ(ij) increases in Z(1) for fixed i and increasing j. By Theo-
rem 9.16, it increases in Z∗ for fixed j and decreasing i.

Let i < j and consider the types of the intervals determined by the four elements
fi <· fi+1 ≤ fj−1 <· fj. The types are denoted as shown in this table, and have the
cover relations shown by Theorems 9.14 and 9.16.

Ctype[fa, fb] b = j − 1 b = j
a = i γ <·Z δ

·∨Z∗ ·∨Z∗
a = i+ 1 α <·Z β

Proposition 9.17. The local configurations permitted in an interval Ctype table are
as follows, where x ∈ Z(1) and k,m ≥ 0 are arbitrary. The label at the center of each
is for later reference.

γ <·Z δ
·∨Z∗ ·∨Z∗
α <·Z β

2kx1 <· 1 2k1x1
·∨1∗ (1) ·∨1∗

2kx <· 1 2k1x

2k2 <·1 2k21
·∨2∗ (2) ·∨1∗

2k1 <·2 2k2

2kx21m <· 1 2k1x21m

·∨2∗ (3) ·∨2∗

2kx11m <· 1 2k1x11m

2k21m <· 1 2k211m

·∨2∗ (4) ·∨2∗

2k11m <· 1 2k111m

2k1x21m <·2 2k2x21m

·∨2∗ (5) ·∨2∗

2k1x11m <·2 2k2x11m

2k211m <·2 2k221m

·∨2∗ (6) ·∨2∗

2k111m <·2 2k211m

2k1x1 <·2 2k2x1
·∨1∗ (7) ·∨1∗

2k1x <·2 2k2x

2k1 <·2 2k2
·∨1∗ (8) ·∨2∗

2k <·1 2k1
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Proof. In the left column of a configuration, given γ, there is at most one α with
α <·1∗ γ (namely, if γ ends in 1 then remove it), and at most one α with α <· 2∗ γ (if
γ has a 2, change the last 2 to 1). In the right column, there are similar possibilities
for obtaining β from δ. In the top row, if γ <·1 δ then γ is uniquely determined from
δ by removing the first 1, while if γ <· 2 δ then δ is uniquely determined from γ by
changing the first 1 to 2. A similar relationship holds in the bottom row. This allows
us to explicitly list all forms this table may take on by considering the kind of cover
relation we have in each of the four positions. Given these four cover relations, if the
top row has <·1 then δ determines all three of the other entries of the table, while if it
has <· 2 then γ determines the other three. Exhaustively listing all possibilities gives
the configurations in the statement of the theorem, except for (2) and (8).

In place of (2), we actually obtain

2k21m <·1 2k211m

·∨2∗ (2′) ·∨1∗

2k11m <·2 2k21m

Assume we have elements in configuration (2′). We show m = 0, which is config-
uration (2). Let z = Ck+1

fi
fj. Since β and δ both start with 2k+1, the first k + 1

applications of Cfi and Cfi+1 to fj agree, and z = Ck+1
fi+1

fj ≥ fi+1. Since the remaining

digits of δ are 1’s, Ctype[fi, z] = 1m+1, so [fi, z] is a chain and fi+1 is its atom. Next,
since δ = γ1 and γ has k + m + 1 digits, the first k + m + 1 applications of Cfi to
fj−1 <· fj maintain a cover relation: C t

fi
fj−1 <· C t

fi
fj for 0 ≤ t ≤ k + m + 1. When

t ≤ k+m, both sides are strictly larger than fi, hence weakly larger than the unique
cover fi+1 of fi, so we can replace Cfi with Cfi+1. Thus, the first k + m digits of α,
β, γ, δ should all agree. But when m > 0, the (k + 1)th digit is 1 in α and 2 in the
others, a contradiction. So only m = 0 is possible.

In place of (8), we actually obtain

2k11m <·2 2k21m

·∨1∗ (8′) ·∨2∗

2k1m <·1 2k11m

Assume we have elements in this configuration and that m > 0. There are at least
k + 1 digits in each of α, β, γ, δ. We have Ck+1

fi
fj−1 ≤ Ck+1

fi
fj , and the ranks of both

sides are the same since the first k + 1 digits of γ and δ differ in sum by 1, as do
the ranks of fj−1 and fj. So Ck+1

fi
fj−1 = Ck+1

fi
fj. Join both sides with fi+1 to obtain

Ck+1
fi+1

fj−1 = Ck+1
fi+1

fj . However, the first k+1 digits of α and β agree, so this should be
<· , a contradiction. Thus, we cannot have m > 0, so only m = 0 is conceivable.

Whether these configurations of types are realized in a particular strongly modular
lattice depends on the lattice.

Next, we examine determination of β or γ from the other three types.
Given α <·Z γ <·Z∗ δ, there is always some β consistent with them (if configuration

(2) is removed, the rest yield unique solutions covering all cases), and it is usually
unique. Similarly, given α <·Z∗ β <·Z δ, there is always some γ consistent with them
(omit configurations (2) and (6) to get unique solutions covering all cases), usually
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unique. Usually (odd numbered configurations), both vertical covers α <·Z∗ γ and
β <·Z∗ δ entail changing a digit in the same position from the right end of the word,
and both horizontal covers α <·Z β and γ <·Z δ entail changing the same position
from the left end of the word. When α has the form 2 · · · 21 · · · 1 (even numbered
configurations), however, the positions near the central 21 are accessible for alterations
by both <·Z and <·Z∗.

Examination of configurations (1)–(8) yields the following as the only possibilities
for β or γ not being uniquely determined by the other three types.

2k2 <· 1 2k21
·∨2∗ (9) ·∨Z∗
2k1 <·Z β

(4) β = 2k11; generic
(2) β = 2k2; degenerate: fi+1 = Ck+1fj

γ <·Z 2k21
·∨Z∗ (10) ·∨1∗

2k1 <·2 2k2

(7) γ = 2k11; generic
(2) γ = 2k2; degenerate: fj−1 = Ak+1fi

γ <·Z 2k221m

·∨Z∗ (11) ·∨2∗

2k111m <· 2 2k211m

(6) γ = 2k211m; more likely in Z(r)
(5) γ = 2k121m; less likely in Z(r)

Given fi, fj with Ctype[fi, fj] = 2k21, the only fi+1 with Ctype[fi+1, fj] = 2k2 is
fi+1 = Ck+1fj, and the only fj−1 with Ctype[fi, fj−1] = 2k2 is fj−1 = Ak+1fi. Thus,
in (9) and (10), both these conditions holding simultaneously is “degenerate,” while
one holding and the other element being chosen freely from among potentially many
possibilities is “generic.” Of course, the number of “generic” possibilities depends on
the lattice. In Z(r), the generic possibilities truly do occur with higher frequency than
the degenerate ones. Choose any fi, fj with Ctype[fi, fj ] = 2k21. Then fj = 2k2x for
some x ∈ Z(r). To obtain configuration (9), let fj−1 = 2k2fi, and fi+1 be any upper
cover of fi except for x. There are κ+(fi) − 1 choices, and κ+(fi) − 1 ≥ r − 1. To
obtain configuration (10), let fi+1 = x and fj−1 be any lower cover of fj except for
2k2fi. There are κ−(fj)− 1 ≥ (k + 1)r − 1 choices.

Last, we consider configuration (11). Choose any fi, fj with Ctype[fi, fj] = 2k221m.
Since δ begins with 2k22, we have fj = 2k22x with x = Ck+2fj ≥ fi. Choose any
fi <· fi+1 ≤ fj with Ctype[fi, fj] = δ and Ctype[fi+1, fj] = β. Since δ begins with
2k22, we can write fj = 2k22x, with x ≥ fi and Ctype[fi, x] = 1m. Since β begins
2k21, we have 2x ≥ fi+1 but x 6≥ fi+1, and Ctype[fi+1, 2x] = 11m. All lower covers
of fj−1 exceed fi+1 because they all exceed 2k2x. Since α = 2k111m, the form of
fj−1 is 2kx′ where Ctype[fi+1, x′] = 111m. Also, since Ck+2

fi
fj = Ck+2

fi
fj−1 by rank

considerations, C2x′ = x. Either Ctype[x, x′] = 12 so that x′ = 1s2x in one of r
ways, or Ctype[x, x′] = 21, so that x′ is obtained from x by prepending 2 to any
of the κ+(x) upper covers of x. In the first case, γ = 2k121m, and in the second,
γ = 2k211m unless x′ = 22Cfix, when γ = 2k221m−1. In the second case, κ+(x) > r
unless x = ∅, so that fi = ∅, m = 0, and κ+(x) = r; since m = 0, the exception
γ = 2k221m−1 cannot occur. Thus for all fi, fi+1, fj, there are at least as many choices
of fj−1 with γ = 2k211m as there are with γ = 2k121m. Note that the ratio κ+(x)/r is
asymptotically an integer as r→∞, rather than a power of r, so this more frequent
choice is not generic in the sense that term has been used elsewhere.
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Theorem 9.18. Let Λ = (λ(ij))0≤i≤j≤n be a triangular array whose local configura-
tions satisfy Proposition 9.17. There is a polynomial pΛ(r) such that the number of
flags 0̂ = f0 <· · · · <· fn in Z(r) with Ctype[fi, fj] = λ(ij) for all i, j is pΛ(r) when
r > 1. When configuration (2) is not present, this polynomial is monic, with degree
equal to the number of digits of λ(0n). When configuration (2) is present, the degree
is lower.

Proof. A necessary condition for Λ to be the interval Ctype table of a flag is that
Proposition 9.17 applies to every local portion of Λ.

Let P = (∅ = λ(0) <· · · · <· λ(n)) be a chain in Z(1). Let J =
{
j : λ(j−1) <· 1 λ(j)

}
.

Let π = {B1, . . . , Bk} be a set partition of J , and ~c = (c1, . . . , ck) be distinct numbers
in {1, . . . , r}. Given π, there are r(r − 1) · · · (r − k + 1) choices of ~c. Let f(P , π,~c)
be the flag ∅ = f0 <· · · · <· fn in which Ctype[∅, fj] = λ(j) and when j ∈ Bm, a 1cm
is inserted in fj−1 to obtain fj. The specification of P , π, and ~c uniquely determines
f . Conversely, all flags are expressible in this form.

The computation of Ctype[fi, fj] in Corollary 9.8 only depends on knowing λ(i),
λ(j), and whether subscripts on particular 1’s agree or disagree, which is all encoded
in P and π. Thus, Λ(f(P , π,~c)) is independent of ~c, so we can call it Λ(P , π).

Now take any Λ locally satisfying Proposition 9.17, and let P = (λ(00) <· · · · <·
λ(0n)). Then

pΛ(r) =
∑

{ π : Λ(P ,π)=Λ }
r(r − 1) · · · (r − k + 1)

where π is a partition of J and k is the number of blocks of π.

The total number of flags with Ctype[∅, fj] = λ(j) for all j is r#J , obtained by
making independent choices of which 1 to insert when fj−1 <·1 fj. The discussion
before this theorem showed that for all but O(r−1) flags, configuration (2) does not
arise in the interval Ctype table, and that without configuration (2), all other entries
are uniquely determined by specifying the top row P . Thus, for each P , there is
some Λ with deg(pΛ) = #J ; this can only be Λ = Λ(P , π), where π is the partition of
J into singleton blocks, and pΛ is monic because all other π with Λ = Λ(P , π) have
fewer blocks and hence contribute only smaller degree terms.

Note.

(1) The restriction r > 1 is necessary for the trivial reason that C2 = 1 in Z(1)
and C2 = ∅ for r > 1.

(2) Recall that ev is an involution on chains in Young’s lattice, and generically
gives the cotype of a flag of given type. The preceding theorem similarly gives
the generic value of (Ctype[fi, fn])0≤i≤n when (Ctype[f0, fi])0≤i≤n is specified,
for ∅ = f0 <· · · · <· fn in Z(r). However, it does not give a bijection between
saturated chains in Z(1) and in Z∗ from ∅ to the same maximum element:
configuration (11) gives α, δ with two different γ necessarily mapping to the
same β, so we cannot specify a chain in Z∗ and apply certain of configurations
(1)–(8) to recover a unique chain in Z(1). In fact, there usually aren’t the
same number of saturated chains in Z(1) and Z∗ from ∅ to x ∈ W (1). For
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example, if x = 22, there are 3 chains in the first and 2 in the second.

[∅, 22] in Z(1)
22

� �
12 21

� � �
2 11

� �
1

|
∅

[∅, 22] in Z∗
22

|
21

� �
2 11

� �
1

|
∅

(3) Stanley [28, Prop. 5.4] showed that the number of saturated chains from to
x in Z(r) is the same as in F ib(r). In the same spirit as ev and the preceding
theorem, it is tempting to try to form a triangular array Λ = (λ(ij))0≤i≤j≤n of
words of W (r) of rank j − i, increasing in Z(r) as j increases and increasing
in F ib(r) as i decreases. We initialize λ(ii) = ∅, and then λ(0j)’s to a chain in
Z(r), or λ(in)’s to a chain in F ib(r), and have a propagation rule on local 2×2
configurations to determine the remaining entries. Unfortunately, this scheme
does not work. One problematic configuration is

γ <·Z δ
·∨F ·∨F
α <·Z β

=
2k22lx <·Z 2k22l11x
·∨F ·∨F

2k122lx <·Z ?

When x = (11)m, the only possible solution is β = 2k22lx. When x is not of
this form, there are no solutions.

9.4. Fomin’s Robinson-Schensted algorithm for Z(1). Fomin [4] developed an
analogue of the Robinson-Schensted correspondence for Z(1): a bijection between
pairs of saturated chains from ∅ to the same endpoint, and permutations in Sn. See
Fomin [6] and Roby [21] for a unified treatment of these and similar correspondences.
The bijection is as follows.

Form an array Λ = (λ(ij))0≤i,j≤n. A local configuration in it is

Λ(ij) =
λ(i,j−1) ≤·Z λ(ij)

·∨Z ·∨Z
λ(i−1,j−1) ≤·Z λ(i−1,j)

=
γ ≤·Z δ
·∨Z ·∨Z
α ≤·Z β

Fomin’s Robinson-Schensted correspondence in Z(1). Let σ ∈ Sn. Form
the array Λ as follows. Initialize the left and bottom edges of Λ to ∅: λ(i0) = λ(0i) = ∅
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for i = 0, . . . , n. Working in some order of increasing i and j, set

δ =



1α if α = β = γ and σ(j) = i

α if α = β = γ and σ(j) 6= i

2α if α <·Z β, γ
β if β ·>Z γ = α

γ if γ ·>Z β = α

As we construct λ(ij), it is a weakly increasing function of i and j, and ρ(λ(ij)) =
# { 0 < j′ ≤ j : σ(j′) ≤ i }. Finally, the chains on the right and top edges of Λ are
P = (λ(0n), . . . , λ(nn)) and Q = (λ(n0), . . . , λ(nn)).

The inverse correspondence. Given saturated chains P andQ in Z(1) from ∅ to
the same top element, form the array ΛFRS(P ,Q) as follows. Initialize the chains on
the right and top edges to (λ(0n), . . . , λ(nn)) = P and (λ(n0), . . . , λ(nn)) = Q. Working
in some order of decreasing i and j, set

α =


β if β <·Z γ = δ

γ if γ <·Z β = δ

delete first digit of δ otherwise

We have λ(n,j−1) <·Z λ(nj) and λ(0,j−1) = λ(0j). If λ(i,j−1) = λ(ij), the same is true upon
replacing i with i − 1, so for each j there is a unique i with α = β = γ <· δ, and we
set σ(j) = i.

9.5. Relative positions of flags in strongly modular lattices. Let f = (f0 <·
· · · <· fn) and f ′ = (f ′0 <· · · · <· f ′n) be two saturated flags in a strongly modular lattice
with the same endpoints, f0 = f ′0, fn = f ′n, where f0 has finite rank. Let xij = fi∧f ′j.
We consider the meet type table Λ(f, f ′) = (λ(ij)), where λ(ij) = Ctype[0̂, xij] for
0 ≤ i, j ≤ n. Since xi−1,j−1 = xi−1,j ∧ xi,j−1, we may examine a local portion of Λ:

Λ(ij) =

Ctype[∅, fa ∧ f ′b] b = j − 1 b = j
a = i γ <·Z δ

·∨Z ·∨Z
a = i− 1 α <·Z β

We seek possible values of α given the other three.

If xi,j−1 or xi−1,j equals xij, we obtain one of the following configurations.

(1)
γ <· δ

(γ) <· δ
(2)

δ = δ
·∨ ·∨

(β) = β
(3)

γ = γ

(γ) = γ

These all occur in ΛFRS too.

We consider configurations with β, γ <·Z δ. If xi−1,j and xi,j−1 are distinct lower
covers of xij, the interval [xi−1,j ∧ xi,j−1, xij] is complemented of length 2, so Cxij =
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xi−1,j−1, and δ = 2α.

(4)

γ <·Z 2α

·∨Z
�
6=
�
·∨Z

(α) <·Z β

(5)

γ <·2 2α

·∨1

�
=
�
·∨2

(α) <·1 γ

Either β 6= γ, or we have two distinct lower covers of equal type. By Theorem 9.15,
when γ <· 1 δ, there is at most one lower cover of xij of type γ, so to have two distinct
lower covers requires γ <·2 δ. This restriction on a local configuration does not exist
in ΛFRS.

Finally, if xij ·> xi−1,j = xi,j−1, we have

(6)
γ <·1 δ

·∨1

(γ) = γ
(7)

γ <· 2 δ
·∨2

(γ) = γ

Unlike ΛFRS, this does not require δ = 1γ.
In all cases, if α = β ∧ γ then any solutions of α ≤· β ≤· δ and α ≤· γ ≤· δ fall

into one of these configurations. The only other case is α <· β = γ <· δ, when we are
restricted to (5) and not α <·2 β = γ <·1 δ.

Given the chains along the right and top boundaries of Λ, if we propagate in some
order of decreasing i and j to fill Λ using rules (1)–(7), the only ambiguity arises when
γ = β <· 2 δ, since either (5) or (7) can be used; all other arrangements of β, γ, δ admit
exactly one choice of α, namely α = β ∧ γ. Let ΛZRS(P ,Q) be the array obtained by
using (5) when the ambiguity arises, and σZRS(P ,Q) be the associated permutation.
This array is not the same as ΛFRS(P ,Q) because their local rules differ. Using rule
(7) instead of rule (5) would give λ(ij) = λ(nj) ∧ λ(in) with associated permutation
σ(P ,Q), and provides a lower bound of the relative position in the Bruhat order by
Theorem 7.7.

Note. When P and Q consist only of words of the form 2k1m, so do all entries of Λ,
no matter whether (5) or (7) is used. In fact, this is exactly the same as the local
rule version of the ordinary Robinson-Schensted algorithm in Young’s lattice when we
interpret 2k1m ∈ Z(1) as the two row partition (k+m,m) in Young’s lattice, for each
word in P , Q, and Λ. Rule (5) gives the generic choice and rule (7) the degenerate
choice for Young’s lattice as well.

Theorem 9.19. Let f, f ′ be saturated chains with the same endpoints in a strongly
modular lattice, and P = (Ctype[f0, fi])0≤i≤n, Q = (Ctype[f ′0, f

′
j])0≤j≤n. Then

σ(P ,Q) ≤ σ(f, f ′) ≤ σZRS(P ,Q) in the Bruhat order.

Proof. The lower bound holds by Theorem 7.7.
Let Λ be a meet type table. We show how to alter certain λ(ij) with 0 ≤ i, j < n

so that these λ(ij) decrease in Z(1), and all other λ(ij) stay intact. Such alterations
can be carried out iff configuration (7) appears somewhere in Λ, so the stable table
obtained at the end is ΛZRS(P ,Q), and is componentwise less than Λ in Z(1); thus,
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the permutation Λ defines is smaller than the one ΛZRS(P ,Q) defines in the Bruhat
order.

So suppose Λ(i′,j′) is in configuration (7). Then we can write δ = 2x. Define a new
meet type table M = (µ(ij))0≤i,j≤n by

µ(ij) =

λ(ij) if i ≥ i′ or j ≥ j′

λ(ij) ∧ x if i < i′ and j < j′

We show that all local configurations of M are of the forms (1)–(7), and that µ(ij) =
λ(ij) or µ(ij) <· 1 λ(ij) (denoted µ(ij) ≤·1 λ(ij)) for all i, j. The local configurations are
denoted as follows.

M (ij) =
µ(i,j−1) ≤·Z µ(ij)

·∨Z ·∨Z
µ(i−1,j−1) ≤·Z µ(i−1,j)

=
γ̃ ≤·Z δ̃
·∨Z ·∨Z
α̃ ≤·Z β̃

First, since x <·1 λ(i′−1,j′−1) <·2 λ(i′,j′), we have µ(i′−1,j′−1) = x <·1 λ(i′−1,j′−1).
For some i < i′ and j < j′, let β = λ(i−1,j), δ = λ(ij), β̃ = µ(i−1,j), δ̃ = µ(ij). Suppose

δ̃ ≤·1 δ. We show µ(i−1,j) ≤· 1 λ(i−1,j), that is, β̃ ≤·1 β. We have

β̃ = x ∧ β = x ∧ (δ ∧ β) = (x ∧ δ) ∧ β = δ̃ ∧ β.

δ̃ = δ: Then β̃ = δ ∧ β = β.
β = δ̃ <·1 δ: Then β̃ = δ̃ ∧ β = β.
δ̃ <·1 δ = β: Then β̃ = δ̃ <·1 δ = β.
δ̃ <·1 δ and δ̃ 6= β <· δ: We have δ = 2y ·>1 δ̃ ·>2 y and δ ·>2 β ·>1 y (there’s

only one ·>1 lower cover, and δ̃ 6= β), so β̃ = y <· 1 β.

Similarly, µ(i,j−1) ≤·1 λ(i,j−1), so we can propagate to obtain µ(ij) ≤·1 λ(ij) for all i and
j.

Next, we verify that all M (ij) are valid configurations.
When i > i′ or j > j′ we have M (ij) = Λ(ij), so the configuration is valid.
Let i ≤ i′ and j = j′, so α = β = β̃ and γ = δ = δ̃. Then

α̃ = α ∧ x = (γ ∧ α) ∧ x = (α ∧ x) ∧ γ = (β ∧ x) ∧ γ = β ∧ γ̃ = β̃ ∧ γ̃,

so M (ij) is in a valid configuration.
Similarly, i = i′ and j ≤ j′ yields M (ij) in a valid configuration.
Finally, consider i < i′ and j < j′. If Λ(ij) is not in configuration (5) then α = β∧γ

and so α̃ = β̃ ∧ γ̃ so M (ij) is valid. If Λ(ij) is in configuration (5), either δ̃ = δ so

M (ij) = Λ(ij) is valid, or else δ̃ <·1 δ. Then δ̃ 6= γ since γ <·2 δ, so α̃ = β̃ = γ̃ = α and
M (ij) is in configuration (7) (since α <· 2 δ̃ <· 1 δ = 2α).

Corollary 9.20. Conjecture 7.6 holds in semi-primary lattices whose type has two
rows.

Proof. That conjecture for semi-primary lattices is identical to the preceding theorem
for strongly modular lattices; they coincide for semi-primary lattices whose type has
two rows.
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Theorem 9.21. Let Λ = (λ(ij))0≤i,j≤n be a meet type table. There is a polynomial
pΛ(r) such that the number of pairs of saturated chains f, f ′ in Z(r) with f0 = f ′0 = ∅
and fn = f ′n and Ctype[∅, fi ∧ f ′j] = λ(ij) for all 0 ≤ i, j ≤ n, is pΛ(r) when r > 1.
The degree is the number of configuration (6)’s appearing in Λ, and the maximum
degree n is obtained precisely when Λ has the form ΛZRS(P ,Q) for saturated chains
P , Q in Z(1) of length n from ∅ to the same endpoint.

Proof. We form a matrix X = (xij) 0≤i,j≤n of entries in Z(r) that increase in Z(r) as i
and j do; have Ctype[∅, xij] = xij; and have xi−1,j ∧ xi,j−1 = xi−1,j−1 for 0 < i, j ≤ n.
Let xi0 = x0i = ∅ for 0 ≤ i ≤ n. Propagate from the perimeter for increasing i and
j to compute the remaining entries of X. When Λ(ij) is in local configuration (m),
propagate according to rule (m′) below.

(1′)
x <· (y)

x <· y
(2′)

y = (y)
·∨ ·∨
x = x

(3′)
x = (x)

x = x

(4′, 5′)

z <· (2x)

·∨
�
6=
�
·∨

x <· y

(6′)
2kx <· 2k(1cjx)

·∨
2kx = 2kx

(7)
2k1mx <·2 (2k2x)

·∨2

2k1mx = 2k1mx

In (1′), (2′), (3′), (4′), and (7′), the value given in the upper right corner is clearly the
unique solution of xij given the other three values and Ctype[∅, xij] = δ. In (6′), the
subscript cj may be chosen arbitrarily from {1, . . . , r}. In (4′), since β 6= γ, we already
have xi−1,j 6= xi,j−1. In (5′), we require xi−1,j 6= xi,j−1, meaning that the subscripts
on their first 1’s are different; these words were given to us from earlier propogation
steps, so it’s a bit late to impose this restriction. Proceed with the construction by
ignoring this restriction, and we’ll fix it up later. All conditions we require on the
entries of X are met except that xi,j−1 ∧ xi−1,j = xi−1,j−1 may fail when Λ(ij) is in
configuration (5).

Let J =
{
j : Λ(ij) is in configuration (6) for some i

}
. There is a subscript cj for

each j ∈ J . The restrictions from configuration (5) say that certain cj’s should be
unequal; let R = { {j1, j2} : (5)⇒ cj1 6= cj2 }. Then

pΛ(r) =
∑
π

r(r − 1) · · · (r − k + 1)

where π runs over all set partitions of J in which no block contains both elements of
a restricted pair in R, and k is the number of blocks of π. Assign values 1, . . . , r to
the cj’s so that cj1 = cj2 iff j1 and j2 are in the same block of π; the number of ways
to do this assignment for a given π is r(r − 1) · · · (r − k + 1).

The partition into singleton blocks yields the term of maximum degree in the sum,
so deg(pΛ) = #J .

The maximum degree pΛ can have is n, when J = {1, . . . , n}. The total number
of configuration (6) and (7)’s in Λ is n. For any P and Q, the unique Λ with right
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and top perimeter chains P and Q and n configuration (6)’s (hence no (7)’s) is
ΛZRS(P ,Q).

182



Appendix A. Statistical summary of interval type tables computed

with Mathematica
r

The weight fΛ(q) of an interval type table Λ is the number of flags realizing it in
a q-regular semi-primary lattice; it is the polynomial of Conjecture 5.25. Empirically,
it usually has a factorization involving powers of q and the following functions.

[n] = (q − 1)(q − 2) · · · (q − n)

〈n〉 = 1 + q + · · ·+ qn−1 =
qn − 1

q − 1

〈n〉! = 〈1〉〈2〉 · · · 〈n〉
〈0〉! = 1

Mλ(q) =
∏
j

〈mj(λ)〉!

For q-regular semi-primary lattices of various types, the weights of all interval type
tables were computed by the method developed in Section 5.5 with Mathematica

r
(a

symbolic mathematics program, c©1993 Wolfram Research, Inc.). We present a brief
summary and a longer summary of the results. In all cases, the parameter q0 associ-
ated with these polynomials has value 1, so the polynomials enumerate the interval
type tables in all q-regular semi-primary lattices. The Mathematica computations
also show that for the lattice types listed, if fΛ(q) is identically 0 as a polynomial,
then Λ is not realized even in irregular semi-primary lattices.

A.1. Brief summary of results. Key:

λ Type of lattice. Let n = |λ|.
Nr Number of interval type tables realized over all lattices of type λ.
Ns Number of realized interval type tables that are symmetric.
Nh Number of realized interval type tables that are hereditary, equal to the number

of unordered set partitions of {1, . . . , n} of type λ. The order total is the nth
Bell number.

Nsh Number of realized interval type tables that are symmetric and hereditary,
equal to the number of unordered set partitions of {1, . . . , n} of type λ invariant
under the permutation i 7→ n+ 1− i.

min Minimum degree of weights of interval type tables, equal to

n(λ)− n0(λ) =
∑
i

(i− 1)λi −
∑
j

(
mj(λ)

2

)
.

max Maximum degree of weights of interval type tables, equal to

n(λ) =
∑
i

(i− 1)λi.

fλ Number of standard Young tableaux of shape λ.
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λ Nr Ns Nh Nsh min max Mλ(q) fλ

∅ 1 1 1 1 0 0 1 1
Order 0 1 1 1 1

(1) 1 1 1 1 0 0 1 1
Order 1 1 1 1 1

(2) 1 1 1 1 0 0 1 1
(1, 1) 1 1 1 1 1 1 〈2〉 1
Order 2 2 2 2 2

(3) 1 1 1 1 0 0 1 1
(2, 1) 3 1 3 1 0 1 1 2
(13) 1 1 1 1 3 3 〈3〉! 1
Order 3 5 3 5 3

(4) 1 1 1 1 0 0 1 1
(3, 1) 5 1 4 0 0 1 1 3
(2, 2) 3 3 3 3 1 2 〈2〉 2
(2, 1, 1) 6 2 6 2 1 3 〈2〉 3
(14) 1 1 1 1 6 6 〈4〉! 1
Order 4 16 8 15 7

(5) 1 1 1 1 0 0 1 1
(4, 1) 7 1 5 1 0 1 1 4
(3, 2) 12 2 10 2 0 2 1 5
(3, 1, 1) 15 3 10 2 1 3 〈2〉 6
(2, 2, 1) 15 3 15 3 1 4 〈2〉 5
(2, 13) 10 2 10 2 3 6 〈3〉! 4
(15) 1 1 1 1 10 10 〈5〉! 1
Order 5 61 13 52 12

(6) 1 1 1 1 0 0 1 1
(5, 1) 9 1 6 0 0 1 1 5
(4, 2) 26 6 15 3 0 2 1 9
(4, 1, 1) 28 4 15 3 1 3 〈2〉 10
(3, 3) 12 6 10 4 1 3 〈2〉 5
(3, 2, 1) 87 3 60 0 0 4 1 16
(3, 13) 35 3 20 0 3 6 〈3〉! 10
(23) 15 7 15 7 3 6 〈3〉! 5

(2, 2, 1, 1) 45 9 45 9 2 7 〈2〉2 9
(2, 14) 15 3 15 3 6 10 〈4〉! 5
(16) 1 1 1 1 15 15 〈6〉! 1
Order 6 274 44 203 31
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λ Nr Ns Nh Nsh min max Mλ(q) fλ

(7) 1 1 1 1 0 0 1 1
(6, 1) 11 1 7 1 0 1 1 6
(5, 2) 44 4 21 3 0 2 1 14
(5, 1, 1) 45 5 21 3 1 3 〈2〉 15
(4, 3) 57 3 35 3 0 3 1 14
(4, 2, 1) 240 6 105 3 0 4 1 35
(4, 13) 84 4 35 3 3 6 〈3〉! 20
(3, 3, 1) 128 10 70 4 1 5 〈2〉 21
(3, 2, 2) 148 10 105 9 1 6 〈2〉 21
(3, 2, 1, 1) 357 9 210 6 1 7 〈2〉 35
(3, 14) 70 6 35 3 6 10 〈4〉! 15
(23, 1) 105 7 105 7 3 9 〈3〉! 14
(2, 2, 13) 105 9 105 9 4 11 〈3〉! 〈2〉 14
(2, 15) 21 3 21 3 10 15 〈5〉! 6
(17) 1 1 1 1 21 21 〈7〉! 1
Order 7 1417 79 877 59

(8) 1 1 1 1 0 0 1 1
(7, 1) 13 1 8 0 0 1 1 7
(6, 2) 66 8 28 4 0 2 1 20
(6, 1, 1) 66 6 28 4 1 3 〈2〉 21
(5, 3) 145 9 56 0 0 3 1 28
(5, 2, 1) 493 5 168 0 0 4 1 64
(5, 13) 165 5 56 0 3 6 〈3〉! 35
(4, 4) 57 19 35 11 1 4 〈2〉 14
(4, 3, 1) 769 7 280 0 0 5 1 70
(4, 2, 2) 580 38 210 18 1 6 〈2〉 56
(4, 2, 1, 1) 1224 30 420 12 1 7 〈2〉 90
(4, 14) 210 10 70 6 6 10 〈4〉! 35
(3, 3, 2) 475 27 280 16 1 7 〈2〉 42

(3, 3, 1, 1) 725 37 280 16 2 8 〈2〉2 56
(3, 2, 2, 1) 1394 18 840 0 1 9 〈2〉 70
(3, 2, 13) 1092 12 560 0 3 11 〈3〉! 64
(3, 15) 126 6 56 0 10 15 〈5〉! 21
(24) 105 25 105 25 6 12 〈4〉! 14
(23, 1, 1) 420 28 420 28 4 13 〈3〉! 〈2〉 28
(2, 2, 14) 210 18 210 18 7 16 〈4〉! 〈2〉 20
(2, 16) 28 4 28 4 15 21 〈6〉! 7
(18) 1 1 1 1 28 28 〈8〉! 1
Order 8 8365 315 4140 164
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λ Nr Ns Nh Nsh min max Mλ(q) fλ

(9) 1 1 1 1 0 0 1 1
(6, 3) 278 6 84 4 0 3 1 48
(5, 4) 303 7 126 6 0 4 1 42
(5, 14) 495 15 126 6 6 10 〈4〉! 70
(4, 15) 462 10 126 6 10 15 〈5〉! 56
(33) 475 27 280 16 3 9 〈3〉! 42
(24, 1) 945 25 945 25 6 16 〈4〉! 42
(19) 1 1 1 1 36 36 〈9〉! 1
Order 9 incomplete

(10) 1 1 1 1 0 0 1 1
(5, 5) 303 45 126 16 1 5 〈2〉 42
(5, 15) 1287 15 252 0 10 15 〈5〉! 126
(110) 1 1 1 1 45 45 〈10〉! 1
Order 10 incomplete

A.2. Special classes of types. For hooks λ = (i, 1j) (with i > 0 and j ≥ 0), the

formula Nr =
(

2i+j−2
j

)
empirically holds when 1 ≤ i ≤ 5 and 0 ≤ j ≤ 5.

For two column partitions λ = (i, j)′ (with i ≥ j ≥ 0), all interval type tables are
hereditary by Theorem 5.53, so Nr = Nh = n!/(j!(i− j)!2j).

For two row partitions (i, j) (with i ≥ j ≥ 0), the following values of Nr were
computed.

j�i 0 1 2 3 4 5 6
0 1 1 1 1 1 1 1
1 1 3 5 7 9 11
2 3 12 26 44 66
3 12 57 145 278
4 57 303 n/a
5 303 n/a

A.3. Extended summary of results. We now list all the weights occurring for
each type. The individual interval type tables Λ are not listed, but counts of how
many Λ share common characteristics are given.

fΛ(q) Number of flags realizing interval type table Λ in a q-regular semi-primary
lattice.

d Degree of fΛ(q).
Nr Number of realized interval type tables with this weight.
Ns Number of realized interval type tables with this weight that are symmetric.

The tables below have the following components.

Mλ(q) λ
degree of fΛ(q) fΛ(q)/Mλ(q) # of Λ of this form # of symmetric Λ
degree of fΛ(q) fΛ(q)/Mλ(q) # of Λ of this form # of symmetric Λ
· · · · · · · · · · · ·

When Mλ(q) = 1, it is omitted.
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Mλ λ

d fΛ/Mλ Nr Ns

∅
0 1 1 1

(1)

0 1 1 1

(2)

0 1 1 1

〈2〉 (1, 1)

1 1 1 1

(3)

0 1 1 1

(2, 1)

1 q 2 0
0 1 1 1

〈3〉! (13)

3 1 1 1

(4)

0 1 1 1

(3, 1)

1 q 2 0
1 [1] 1 1
0 1 2 0

〈2〉 (2, 2)

2 q 2 2
1 1 1 1

〈2〉 (2, 1, 1)

3 q2 3 1
2 q 2 0
1 1 1 1

〈4〉! (14)

6 1 1 1

(5)

0 1 1 1

Mλ λ

d fΛ/Mλ Nr Ns

(4, 1)

1 q 2 0
1 [1] 2 0
0 1 3 1

(3, 2)

2 q2 3 1
2 q[1] 2 0
1 q 6 0
0 1 1 1

〈2〉 (3, 1, 1)

3 q2 3 1
3 q[1] 3 1
2 q 4 0
2 [1] 2 0
1 1 3 1

〈2〉 (2, 2, 1)

4 q3 5 1
3 q2 6 0
2 q 3 1
1 1 1 1

〈3〉! (2, 13)

6 q3 4 0
5 q2 3 1
4 q 2 0
3 1 1 1

〈5〉! (15)

10 1 1 1

(6)

0 1 1 1

(5, 1)

1 q 2 0
1 [1] 3 1
0 1 4 0

Mλ λ

d fΛ/Mλ Nr Ns

(4, 2)

2 q2 3 1
2 q[1] 5 1
2 [2] 1 1
1 q 8 0
1 [1] 5 1
0 1 4 2

〈2〉 (4, 1, 1)

3 q2 3 1
3 q[1] 6 0
3 [1]2 1 1
2 q 6 0
2 [1] 6 0
1 1 6 2

〈2〉 (3, 3)

3 q2 3 1
3 q[1] 2 2
2 q 6 2
1 1 1 1

(3, 2, 1)

4 q4 8 0
4 q3[1] 8 0
3 q3 20 0
3 q2[1] 12 2
2 q2 20 0
2 q[1] 6 0
1 q 10 0
1 [1] 1 1
0 1 2 0

〈3〉! (3, 13)

6 q3 4 0
6 q2[1] 6 2
5 q2 6 0
5 q[1] 6 0
4 q 6 0
4 [1] 3 1
3 1 4 0

187



Mλ λ

d fΛ/Mλ Nr Ns

〈3〉! (23)

6 q3 5 3
5 q2 6 2
4 q 3 1
3 1 1 1

〈2〉2 (2, 2, 1, 1)

7 q5 9 3
6 q4 13 1
5 q3 12 2
4 q2 7 1
3 q 3 1
2 1 1 1

〈4〉! (2, 14)

10 q4 5 1
9 q3 4 0
8 q2 3 1
7 q 2 0
6 1 1 1

〈6〉! (16)

15 1 1 1

(7)

0 1 1 1

(6, 1)

1 q 2 0
1 [1] 4 0
0 1 5 1

(5, 2)

2 q2 3 1
2 q[1] 8 0
2 [1]2 1 1
2 [2] 2 0
1 q 10 0
1 [1] 12 0
0 1 8 2

Mλ λ

d fΛ/Mλ Nr Ns

〈2〉 (5, 1, 1)

3 q2 3 1
3 q[1] 9 1
3 [1]2 3 1
2 q 8 0
2 [1] 12 0
1 1 10 2

(4, 3)

3 q3 4 0
3 q2[1] 8 0
3 q[2] 2 0
2 q2 16 2
2 q[1] 12 0
1 q 14 0
0 1 1 1

(4, 2, 1)

4 q4 8 0
4 q3[1] 19 1
4 q2[1]2 4 0
4 q[1]3 2 0
4 q2[2] 2 0
3 q3 26 0
3 q2[1] 44 0
3 q[1]2 8 0
3 q[2] 4 0
2 q2 37 1
2 q[1] 38 0
2 [1]2 2 0
2 [2] 1 1
1 q 26 0
1 [1] 11 1
0 1 8 2

Mλ λ

d fΛ/Mλ Nr Ns

〈3〉! (4, 13)

6 q3 4 0
6 q2[1] 12 0
6 q[1]2 4 0
5 q2 9 1
5 q[1] 18 0
5 [1]2 3 1
4 q 12 0
4 [1] 12 0
3 1 10 2

〈2〉 (3, 3, 1)

5 q4 7 1
5 q3[1] 9 1
5 q (q2 − q + 1)
×[1] 1 1

5 q2[1]2 4 0
4 q3 22 0
4 q2[1] 20 0
4 q[1]2 5 1
3 q2 22 0
3 q[1] 17 3
2 q 16 2
2 [1] 2 0
1 1 3 1

〈2〉 (3, 2, 2)

6 q5 10 2
6 q4[1] 10 0
6 q3[1]2 1 1
5 q4 27 1
5 q3[1] 20 0
4 q3 37 3
4 q2[1] 10 0
3 q2 23 1
3 q[1] 2 0
2 q 7 1
1 1 1 1
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Mλ λ

d fΛ/Mλ Nr Ns

〈2〉 (3, 2, 1, 1)

7 q6 15 1
7 q5[1] 20 0
6 q5 40 0
6 q4[1] 42 0
5 q4 54 2
5 q3[1] 46 2
4 q3 54 0
4 q2[1] 26 0
3 q2 30 2
3 q[1] 11 1
2 q 14 0
2 [1] 2 0
1 1 3 1

〈4〉! (3, 14)

10 q4 5 1
10 q3[1] 10 2
9 q3 8 0
9 q2[1] 12 0
8 q2 9 1
8 q[1] 9 1
7 q 8 0
7 [1] 4 0
6 1 5 1

〈3〉! (23, 1)

9 q6 14 0
8 q5 28 2
7 q4 28 0
6 q3 20 2
5 q2 10 2
4 q 4 0
3 1 1 1

〈3〉!〈2〉 (2, 2, 13)

11 q7 14 2
10 q6 22 0
9 q5 24 2
8 q4 21 1
7 q3 13 1
6 q2 7 1
5 q 3 1
4 1 1 1

Mλ λ

d fΛ/Mλ Nr Ns

〈5〉! (2, 15)

15 q5 6 0
14 q4 5 1
13 q3 4 0
12 q2 3 1
11 q 2 0
10 1 1 1

〈7〉! (17)

21 1 1 1

(8)

0 1 1 1

(7, 1)

1 q 2 0
1 [1] 5 1
0 1 6 0

(6, 2)

2 q2 3 1
2 q[1] 11 1
2 [1]2 3 1
2 [2] 3 1
1 q 12 0
1 [1] 21 1
0 1 13 3

〈2〉 (6, 1, 1)

3 q2 3 1
3 q[1] 12 0
3 [1]2 6 2
2 q 10 0
2 [1] 20 0
1 1 15 3

Mλ λ

d fΛ/Mλ Nr Ns

(5, 3)

3 q3 4 0
3 q2[1] 14 2
3 q[1]2 3 1
3 q[2] 6 0
3 [3] 1 1
2 q2 18 0
2 q[1] 37 1
2 [2] 9 1
1 q 26 0
1 [1] 19 3
0 1 8 0

(5, 2, 1)

4 q4 8 0
4 q3[1] 30 0
4 q2[1]2 16 0
4 q[1]3 4 0
4 q2[2] 4 0
4 q[1][2] 2 0
3 q3 32 0
3 q2[1] 88 2
3 q[1]2 32 0
3 [1]3 1 1
3 q[2] 10 0
2 q2 58 0
2 q[1] 96 0
2 [1]2 10 0
2 [2] 2 0
1 q 52 0
1 [1] 30 2
0 1 18 0

〈3〉! (5, 13)

6 q3 4 0
6 q2[1] 18 2
6 q[1]2 12 0
6 [1]3 1 1
5 q2 12 0
5 q[1] 36 0
5 [1]2 12 0
4 q 20 0
4 [1] 30 2
3 1 20 0

189



Mλ λ

d fΛ/Mλ Nr Ns

〈2〉 (4, 4)

4 q3 4 2
4 q2[1] 8 2
4 q[2] 2 2
3 q2 16 2
3 q[1] 12 4
2 q 14 6
1 1 1 1

(4, 3, 1)

5 q5 10 0
5 q4[1] 27 1
5 q2 (q2 − q + 1)
×[1] 2 0

5 q3[1]2 18 0
5 q2[1]3 5 1
5 q3[2] 4 0
5 q (q2 − 2q + 2)
×[1]2 2 0

5 q2[1][2] 2 0
4 q4 48 0
4 q3[1] 100 0
4 q (q2 − q + 1)
×[1] 2 0

4 q2[1]2 46 0
4 q[1]3 8 0
4 q2[2] 6 0
4 q[1][2] 6 0
3 q3 88 0
3 q2[1] 124 4
3 q[1]2 44 0
3 q[2] 6 0
2 q2 80 0
2 q[1] 84 0
1 q 50 0
1 [1] 3 1
0 1 4 0

Mλ λ

d fΛ/Mλ Nr Ns

〈2〉 (4, 2, 2)

6 q5 10 2
6 q4[1] 26 2
6 q3[1]2 11 1
6 q2[1]3 3 1
6 (q3 − 2q2 + q − 1)
×q[1] 1 1

6 q3[2] 3 1
6 q2[1][2] 2 0
5 q4 35 1
5 q3[1] 79 1
5 q2[1]2 23 1
5 q[1]3 6 2
5 q2[2] 12 0
4 q3 63 5
4 q2[1] 100 2
4 q[1]2 15 1
4 q[2] 10 2
3 q2 60 2
3 q[1] 61 3
3 [1]2 2 2
3 [2] 2 0
2 q 33 5
2 [1] 14 0
1 1 9 3

Mλ λ

d fΛ/Mλ Nr Ns

〈2〉 (4, 2, 1, 1)

7 q6 15 1
7 q5[1] 46 2
7 q4[1]2 18 0
7 q2 (q2 − q + 1)
×[1]2 1 1

7 q3[1]3 7 1
7 q4[2] 3 1
6 q5 52 0
6 q4[1] 133 1
6 q3[1]2 46 0
6 q2[1]3 11 1
6 q3[2] 8 0
5 q4 93 3
5 q3[1] 190 2
5 q2[1]2 48 2
5 q[1]3 2 0
5 q2[2] 12 2
4 q3 116 0
4 q2[1] 156 2
4 q[1]2 22 0
4 q[2] 4 0
3 q2 87 5
3 q[1] 72 0
3 [1]2 5 1
3 [2] 1 1
2 q 44 0
2 [1] 19 1
1 1 13 3

〈4〉! (4, 14)

10 q4 5 1
10 q3[1] 20 0
10 q2[1]2 10 2
9 q3 12 0
9 q2[1] 36 0
9 q[1]2 12 0
8 q2 18 2
8 q[1] 36 0
8 [1]2 6 2
7 q 20 0
7 [1] 20 0
6 1 15 3
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Mλ λ

d fΛ/Mλ Nr Ns

〈2〉 (3, 3, 2)

7 q6 12 2
7 q5[1] 18 2
7 q3 (q2 − q + 1)
×[1] 3 1

7 q4[1]2 9 1
6 q5 54 2
6 q4[1] 54 0
6 q3[1]2 18 2
5 q4 81 3
5 q3[1] 72 4
4 q3 87 5
4 q2[1] 18 0
3 q2 36 2
3 q[1] 3 1
2 q 9 1
1 1 1 1

Mλ λ

d fΛ/Mλ Nr Ns

〈2〉2 (3, 3, 1, 1)

8 q6 12 2
8 q5[1] 24 2
8 q3 (q2 − q + 1)
×[1] 2 0

8 q4[1]2 17 3
8 q3[1]3 1 1
7 q5 42 2
7 q4[1] 70 0
7 q2 (q2 − q + 1)
×[1] 4 0

7 q3[1]2 39 3
6 q4 65 3
6 q3[1] 105 3
6 q (q2 − q + 1)
×[1] 2 0

6 q2[1]2 32 2
6 q[1]3 1 1
5 q3 75 3
5 q2[1] 78 0
5 q[1]2 18 2
4 q2 49 1
4 q[1] 45 3
4 [1]2 1 1
3 q 31 3
3 [1] 6 0
2 1 6 2

Mλ λ

d fΛ/Mλ Nr Ns

〈2〉 (3, 2, 2, 1)

9 q8 30 0
9 q7[1] 38 2
9 q6[1]2 2 0
8 q7 102 0
8 q6[1] 110 0
8 q5[1]2 4 0
7 q4 (2q − 1)
×[1] 1 1

7 q6 176 0
7 q5[1] 154 6
7 q4[1]2 2 0
6 q5 208 0
6 q4[1] 132 2
5 q4 168 0
5 q3[1] 73 3
4 q3 98 0
4 q2[1] 30 2
3 q2 44 0
3 q[1] 7 1
2 q 12 0
2 [1] 1 1
1 1 2 0

〈3〉! (3, 2, 13)

11 q8 24 0
11 q7[1] 40 0
10 q7 66 0
10 q6[1] 97 3
9 q6 100 0
9 q5[1] 132 0
8 q5 122 0
8 q4[1] 123 5
7 q4 112 0
7 q3[1] 80 0
6 q3 74 0
6 q2[1] 41 3
5 q2 40 0
5 q[1] 16 0
4 q 18 0
4 [1] 3 1
3 1 4 0
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Mλ λ

d fΛ/Mλ Nr Ns

〈5〉! (3, 15)

15 q5 6 0
15 q4[1] 15 3
14 q4 10 0
14 q3[1] 20 0
13 q3 12 0
13 q2[1] 18 2
12 q2 12 0
12 q[1] 12 0
11 q 10 0
11 [1] 5 1
10 1 6 0

〈4〉! (24)

12 q6 14 6
11 q5 28 6
10 q4 28 4
9 q3 20 4
8 q2 10 2
7 q 4 2
6 1 1 1

〈3〉!〈2〉 (23, 1, 1)

13 q9 28 4
12 q8 64 2
11 q7 88 6
10 q6 87 3
9 q5 68 4
8 q4 45 3
7 q3 24 2
6 q2 11 3
5 q 4 0
4 1 1 1

Mλ λ

d fΛ/Mλ Nr Ns

〈4〉!〈2〉 (2, 2, 14)

16 q9 20 4
15 q8 33 1
14 q7 39 3
13 q6 39 1
12 q5 33 3
11 q4 22 2
10 q3 13 1
9 q2 7 1
8 q 3 1
7 1 1 1

〈6〉! (2, 16)

21 q6 7 1
20 q5 6 0
19 q4 5 1
18 q3 4 0
17 q2 3 1
16 q 2 0
15 1 1 1

〈8〉! (18)

28 1 1 1

(9)

0 1 1 1

(6, 3)

3 q3 4 0
3 q2[1] 20 0
3 q[1]2 10 0
3 q[2] 10 0
3 [1][2] 2 0
3 [3] 2 0
2 q2 21 1
2 q[1] 66 0
2 [1]2 10 2
2 [2] 20 0
1 q 38 0
1 [1] 54 0
0 1 21 3

Mλ λ

d fΛ/Mλ Nr Ns

(5, 4)

4 q4 5 1
4 q3[1] 20 0
4 q2[1]2 5 1
4 q2[2] 10 0
4 q[3] 2 0
3 q3 30 0
3 q2[1] 70 0
3 q[2] 20 0
2 q2 60 4
2 q[1] 50 0
1 q 30 0
0 1 1 1

〈4〉! (5, 14)

10 q4 5 1
10 q3[1] 30 2
10 q2[1]2 30 2
10 q[1]3 5 1
9 q3 16 0
9 q2[1] 72 0
9 q[1]2 48 0
9 [1]3 4 0
8 q2 30 2
8 q[1] 90 2
8 [1]2 30 2
7 q 40 0
7 [1] 60 0
6 1 35 3
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Mλ λ

d fΛ/Mλ Nr Ns

〈5〉! (4, 15)

15 q5 6 0
15 q4[1] 30 0
15 q3[1]2 20 0
14 q4 15 1
14 q3[1] 60 0
14 q2[1]2 30 2
13 q3 24 0
13 q2[1] 72 0
13 q[1]2 24 0
12 q2 30 2
12 q[1] 60 0
12 [1]2 10 2
11 q 30 0
11 [1] 30 0
10 1 21 3

〈3〉! (33)

9 q6 12 2
9 q5[1] 18 2
9 q3 (q2 − q + 1)
×[1] 3 1

9 q4[1]2 9 1
8 q5 54 2
8 q4[1] 54 0
8 q3[1]2 18 2
7 q4 81 3
7 q3[1] 72 4
6 q3 87 5
6 q2[1] 18 0
5 q2 36 2
5 q[1] 3 1
4 q 9 1
3 1 1 1

Mλ λ

d fΛ/Mλ Nr Ns

〈4〉! (24, 1)

16 q10 42 2
15 q9 120 0
14 q8 180 4
13 q7 195 3
12 q6 165 3
11 q5 117 5
10 q4 70 2
9 q3 35 3
8 q2 15 1
7 q 5 1
6 1 1 1

〈9〉! (19)

36 1 1 1

(10)

0 1 1 1

〈2〉 (5, 5)

5 q4 5 1
5 q3[1] 20 4
5 q2[1]2 5 1
5 q2[2] 10 2
5 q[3] 2 2
4 q3 30 2
4 q2[1] 70 6
4 q[2] 20 4
3 q2 60 6
3 q[1] 50 10
2 q 30 6
1 1 1 1

Mλ λ

d fΛ/Mλ Nr Ns

〈5〉! (5, 15)

15 q5 6 0
15 q4[1] 45 3
15 q3[1]2 60 0
15 q2[1]3 15 3
14 q4 20 0
14 q3[1] 120 0
14 q2[1]2 120 0
14 q[1]3 20 0
13 q3 40 0
13 q2[1] 180 4
13 q[1]2 120 0
13 [1]3 10 2
12 q2 60 0
12 q[1] 180 0
12 [1]2 60 0
11 q 70 0
11 [1] 105 3
10 1 56 0

〈10〉! (110)

45 1 1 1
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