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Sample mean: estimating µ from data

A random variable has a normal distribution with mean µ = 500
and standard deviation σ = 100, but those parameters are secret.
We will study how to estimate their values as points or intervals
and how to perform hypothesis tests on their values.

Parametric tests involving normal distribution

z-test: σ known, µ unknown; testing value of µ

t-test: σ,µ unknown; testing value of µ

χ2 test: σ unknown; testing value of σ

Plus generalizations for comparing two or more random variables from
different normal distributions:

Two-sample z and t tests: Comparing µ for two different normal variables.
F test: Comparing σ for two different normal variables.
ANOVA: Comparing µ between multiple normal variables.
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Estimating parameters from data
Repeated measurements of X, which has mean µ and standard deviation σ

Basic experiment
1 Make independent measurements x1, . . . , xn.
2 Compute the sample mean:

m = x̄ =
x1 + · · ·+ xn

n
The sample mean is a point estimate of µ; it just gives one
number, without an indication of how far away it might be from µ.

3 Repeat the above with many independent samples, getting
different sample means each time.

The long-term average of the sample means will be approximately

E(X) = E
(X1+···+Xn

n

)
= µ+···+µ

n =
nµ
n

= µ

These estimates will be distributed with variance Var(X) = σ2/n.
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Sample variance s2: estimating σ2 from data

Data: 1, 2, 12

Sample mean: x̄ = 1+2+12
3 = 5

Deviations of data from
the sample mean, xi − x̄: 1−5, 2−5, 12−5 = −4, −3, 7

In this example, the deviations sum to −4 − 3 + 7 = 0.

In general, the deviations sum to
(
∑n

i=1 xi) − nx̄ = 0
since x̄ = (

∑n
i=1 xi)/n.

So, given any n − 1 of the deviations, the remaining one is
determined. In this example, if you’re told there are three
deviations and given two of them,

−4, , 7
then the missing one has to be −3, so that they add up to 0.

We say there are n − 1 degrees of freedom (df = n − 1).
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Sample variance s2: estimating σ2 from data

Data: 1, 2, 12

Sample mean: x̄ = 1+2+12
3 = 5

Deviations of data from
the sample mean, xi − x̄: 1−5, 2−5, 12−5 = −4, −3, 7

Here, df = 2 and the sum of squared deviations is
ss = (−4)2 + (−3)2 + 72 = 16 + 9 + 49 = 74

If the random variable X has true mean µ = 6, the sum of squared
deviations from µ = 6 would be

(1 − 6)2 + (2 − 6)2 + (12 − 6)2 = (−5)2 + (−4)2 + 62 = 77
n∑

i=1

(xi−y)2 is minimized at y= x̄, so ss underestimates
n∑

i=1

(xi−µ)
2.
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Sample variance: estimating σ2 from data

Definitions

Sum of squared deviations: ss =
n∑

i=1

(xi − x̄)2

Sample variance: s2 =
ss

n − 1
=

1
n − 1

n∑
i=1

(xi − x̄)2

Sample standard deviation: s =
√

s2

s2 turns out to be an unbiased estimate of σ2: E(S2) = σ2.
For the sake of demonstration, let u2 = ss

n = 1
n

∑n
i=1(xi − x̄)2.

Although u2 is the MLE of σ2 for the normal distribution, it is
biased: E(U2) = n−1

n σ
2.

This is because
∑n

i=1(xi − x̄)2 underestimates
∑n

i=1(xi − µ)
2.
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Estimating µ and σ2 from sample data (secret: µ = 500, σ = 100)

Exp. # x1 x2 x3 x4 x5 x6 x̄ s2 = ss/5 u2 = ss/6
1 550 600 450 400 610 500 518.33 7016.67 5847.22
2 500 520 370 520 480 440 471.67 3376.67 2813.89
3 470 530 610 370 350 710 506.67 19426.67 16188.89
4 630 620 430 470 500 470 520.00 7120.00 5933.33
5 690 470 500 410 510 360 490.00 12840.00 10700.00
6 450 490 500 380 530 680 505.00 10030.00 8358.33
7 510 370 480 400 550 530 473.33 5306.67 4422.22
8 420 330 540 460 630 390 461.67 11736.67 9780.56
9 570 430 470 520 450 560 500.00 3440.00 2866.67

10 260 530 330 490 530 630 461.67 19296.67 16080.56
Average 490.83 9959.00 8299.17

We used n = 6, repeated for 10 trials, to fit the slide, but larger
values would be better in practice.
Average of x̄: 490.83 ≈ µ = 500 X
Average of s2 = ss/5: 9959.00 ≈ σ2 = 10000 X
Average of u2 = ss/6: 8299.17 ≈ n−1

n σ
2 = 8333.33 ×××
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Proof that denominator n − 1 makes s2 unbiased

Expand the i = 1 term of SS =
∑n

i=1(Xi − X)2:

E((X1 − X)2) = E(X1
2) + E(X2

) − 2E(X1X)

Var(X) = E(X2) − E(X)2 ⇒ E(X2) = Var(X) + E(X)2. So

E(X1
2) = σ2 + µ2 E(X2

) =
σ2

n
+ µ2

Cross-term:

E(X1X) =
E(X1

2) + E(X1)E(X2) + · · ·+ E(X1)E(Xn)

n

=
(σ2 + µ2) + (n − 1)µ2

n
=
σ2

n
+ µ2

Total for i = 1 term:

E((X1 − X)2) =
(
σ2+µ2)+ (σ2

n
+µ2

)
− 2

(
σ2

n
+µ2

)
=

n − 1
n
σ2
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Proof that denominator n − 1 makes s2 unbiased

Similarly, every term of SS =
∑n

i=1(Xi − X)2 has

E((Xi − X)2) =
n − 1

n
σ2

The total is
E(SS) = (n − 1)σ2

Thus we must divide SS by n − 1 instead of n to get an unbiased
estimator of σ2.
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Hypothesis tests

Data
Sample Sample Sample

Exp. Values mean Var. SD
# x1, . . . , x6 x̄ s2 s

#1 650, 510, 470, 570, 410, 370 496.67 10666.67 103.28
#2 510, 420, 520, 360, 470, 530 468.33 4456.67 66.76
#3 470, 380, 480, 320, 430, 490 428.33 4456.67 66.76

Suppose we do the “sample 6 scores” experiment a few times and get
these values. We’ll test

H0 : µ = 500 vs. H1 : µ , 500

for each of these under the assumption that the data comes from a
normal distribution, with significance level α = 5%.
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Number of standard deviations x̄ is away from µ when
µ = 500 and σ = 100, for sample mean of n = 6 points

Number of standard deviations if σ is known:
The z-score of x̄ is

z =
x̄ − µ
σ/
√

n
=

x̄ − 500
100/

√
6

Estimating number of standard deviations if σ is unknown:
The t-score of x̄ is

t =
x̄ − µ
s/
√

n
=

x̄ − 500
s/
√

6

It uses sample standard deviation s in place of σ.
Note that s is computed from the same data as x̄.
The data feeds into the numerator and denominator of t.
t has the same degrees of freedom as s; here, df = n − 1 = 5.
As random variable: T5 (T distribution with 5 degrees of freedom).

Prof. Tesler z and t tests for mean Math 283 / Fall 2018 11 / 41



Number of standard deviations x̄ is away from µ

Data
Sample Sample Sample

Exp. Values mean Var. SD
# x1, . . . , x6 x̄ s2 s

#1 650, 510, 470, 570, 410, 370 496.67 10666.67 103.28
#2 510, 420, 520, 360, 470, 530 468.33 4456.67 66.76
#3 470, 380, 480, 320, 430, 490 428.33 4456.67 66.76

#1: z =
496.67 − 500

100/
√

6
≈ −.082 t =

496.67 − 500
103.28/

√
6
≈ −.079 Close

#2: z =
468.33 − 500

100/
√

6
≈ −.776 t =

468.33 − 500
66.76/

√
6
≈ −1.162 Far

#3: z =
428.33 − 500

100/
√

6
≈ −1.756 t =

428.33 − 500
66.76/

√
6
≈ −2.630 Far
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Student t distribution
In z = x̄−µ

σ/
√

n , the numerator depends on x1, . . . , xn while the
denominator is constant.
In t = x̄−µ

s/
√

n , both the numerator and denominator depend on xi’s.

Random variable Tn−1 has the t-distribution with n − 1 degrees of
freedom (d.f . = n − 1).

The pdf is still symmetric and “bell-shaped,” but not the same
“bell” as the normal distribution.

Degrees of freedom d.f .=n−1 match here and in the s2 formula.

As degrees of freedom rises, the pdf gets closer to the standard
normal pdf. They are really close for d.f . > 30.

Developed by William Gosset (1908) while doing statistical tests
on yeast at Guinness Brewery in Ireland. He found the z-test was
inaccurate for small n. He published under pseudonym “Student.”
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Student t distribution

The curves from bottom to top (at t = 0) are for d.f . = 1, 2, 10, 30, and
the top one is the standard normal curve:

!3 !2 !1 0 1 2 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

pd
f

Student t distribution
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Critical values of z or t

!3 !2 !1 0 1 2 30

0.1

0.2

0.3

0.4

t
!,df

t distribution: t
!,df defined so area to right is !

t

pd
f

The values of z and t that put area α at the right are zα and tα,df :

P(Z > zα) = α P(Tdf > tα,df ) = α

Prof. Tesler z and t tests for mean Math 283 / Fall 2018 15 / 41



Computing critical values of z or t with Matlab

We’ll use significance level α = 5% and n = 6 data points, so df = n − 1 = 5 for t.
We want areas α/2 = 0.025 on the left and right and 1 − α = 0.95 in the center.
The Matlab and R functions shown below use areas to the left.
Therefore, to get area .025 on the right, look up the cutoff for area .975 on the left.

!3 !2 !1 0 1 2 30

0.1

0.2

0.3

0.4

!1.960 1.960

Two!sided Confidence Interval for H0; !=0.050

z

pd
f

!3 !2 !1 0 1 2 30

0.1

0.2

0.3

0.4

!2.571 2.571

Two!sided Confidence Interval for H0; df=5, !=0.050

t
pd

f
Matlab R

−z0.025 = norminv(.025) = qnorm(.025) = −1.96
z0.025 = norminv(.975) = qnorm(.975) = 1.96

normcdf(-1.96) = pnorm(-1.96) = 0.025
normcdf(1.96) = pnorm(1.96) = 0.975
normpdf(-1.96) = dnorm(-1.96) = 0.0584
normpdf(1.96) = dnorm(1.96) = 0.0584

Matlab R
−t0.025,5 = tinv(.025,5) = qt(.025,5) = −2.5706

t0.025,5 = tinv(.975,5) = qt(.975,5) = 2.5706
tcdf(-2.5706,5) = pt(-2.5706,5) = 0.0250
tcdf(2.5706,5) = pt(2.5706,5) = 0.9750
tpdf(-2.5706,5) = dt(-2.5706,5) = 0.0303
tpdf(2.5706,5) = dt(2.5706,5) = 0.0303
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Hypothesis tests for µ
Test H0: µ = 500 vs. H1: µ , 500 at significance level α = .05

Exp. # Data x1, . . . , x6 x̄ s2 s
#1 650, 510, 470, 570, 410, 370 496.67 10666.67 103.28
#2 510, 420, 520, 360, 470, 530 468.33 4456.67 66.76
#3 470, 380, 480, 320, 430, 490 428.33 4456.67 66.76

When σ is known (say σ = 100)
Reject H0 when |z| > zα/2 = z.025 = 1.96.

#1: z = −.082, |z| < 1.96 so accept H0.
#2: z = −.776, |z| < 1.96 so accept H0.
#3: z = −1.756, |z| < 1.96 so accept H0.

When σ is not known, but is estimated by s
Reject H0 when |t| > tα/2,n−1 = t.025,5 = 2.5706.

#1: t = −.079, |t| < 2.5706 so accept H0.
#2: t = −1.162, |t| < 2.5706 so accept H0.
#3: t = −2.630, |t| > 2.5706 so reject H0.
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One-sided hypothesis test: Left-sided critical region
H0 : µ = 500 vs. H1 : µ < 500 at significance level α = 5%
The cutoffs to put 5% of the area at the left are

Matlab R
−z0.05 = norminv(0.05) = qnorm(0.05) = −1.6449
−t0.05,5 = tinv(0.05,5) = qt(0.05,5) = −2.0150

When σ is known (say σ = 100)
Reject H0 when z 6 −zα = −z.05 = −1.6449:

#1: z = −.082, z > −1.6449 so accept H0.
#2: z = −.776, z > −1.6449 so accept H0.
#3: z = −1.756, z 6 −1.6449 so reject H0.

When σ is not known, but is estimated by s
Reject H0 when t 6 −tα,n−1 = −t.05,5 = −2.0150.

#1: t = −.079, t > −2.0150 so accept H0.
#2: t = −1.162, t > −2.0150 so accept H0.
#3: t = −2.630, t 6 −2.0150 so reject H0.
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One-sided hypothesis test: Right-sided critical region
H0 : µ = 500 vs. H1 : µ > 500 at significance level α = 5%
The cutoffs to put 5% of the area at the right are

Matlab R
z0.05 = norminv(0.95) = qnorm(0.95) = 1.6449

t0.05,5 = tinv(0.95,5) = qt(0.95,5) = 2.0150

When σ is known (say σ = 100)
Reject H0 when z > zα = z.05 = 1.6449:

#1: z = −.082, z < 1.6449 so accept H0.
#2: z = −.776, z < 1.6449 so accept H0.
#3: z = −1.756, z < 1.6449 so accept H0.

When σ is not known, but is estimated by s
Reject H0 when t > tα,n−1 = t.05,5 = 2.0150.

#1: t = −.079, t < 2.0150 so accept H0.
#2: t = −1.162, t < 2.0150 so accept H0.
#3: t = −2.630, t < 2.0150 so accept H0.
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Z-tests using P-values, data set #2 (z = −0.776)
(a) H0: µ = 500

H1: µ > 500

P = P(Z > −0.776)
= 1 −Φ(−0.776)
= 1 − .2189
= .7811

R: 1−pnorm(−.776)

Matlab: 1−normcdf(−.776)
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(b) H0: µ = 500
H1: µ < 500

P = P(Z 6 −0.776)
= Φ(−0.776)
= .2189

pnorm(−.776)

normcdf(−.776)
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(c) H0: µ = 500
H1: µ , 500

P = P(|Z| > 0.776)
= 2P(Z > 0.776)
= 2(.2189)
= .4377

2∗pnorm(−.776)

2∗normcdf(−.776)
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Supports H0 better
Supports H1 better
Observed z=−0.776

In each case, P > α = 0.05, so accept H0.
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T-tests using P-values, data set #2 (t = −1.162, df = 5)
(a) H0: µ = 500

H1: µ > 500

P = P(T5 > −1.162)
= 1 − P(T5 < −1.162)
= 1 − .1488
= .8512

R: 1−pt(−1.162,5)

Matlab: 1−tcdf(−1.162,5)
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(b) H0: µ = 500
H1: µ < 500

P = P(T5 6 −1.162)
= .1488

pt(−1.162,5)

tcdf(−1.162,5)
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(c) H0: µ = 500
H1: µ , 500

P = P(|T5| > 1.162)
= 2P(T5 6 −1.162)
= 2(.1488)
= .2977

2∗pt(−1.162,5)

2∗tcdf(−1.162,5)
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Supports H0 better
Supports H1 better
Observed t=−1.162

In each case, P > α = 0.05, so accept H0.
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(2-sided) confidence intervals for estimating µ from x̄
(Chapter 3.3.2)

If our data comes from a normal distribution with known σ then
95% of the time, Z = X−µ

σ/
√

n should lie between ±1.96.

Solve for bounds on µ from the upper limit on Z:
x̄−µ
σ/
√

n 6 1.96 ⇔ x̄ − µ 6 1.96 σ√
n ⇔ x̄ − 1.96 σ√

n 6 µ

Notice the 1.96 turned into −1.96 and we get a lower limit on µ.

Also solve for an upper bound on µ from the lower limit on Z:
−1.96 6 x̄−µ

σ/
√

n ⇔ −1.96 σ√
n 6 x̄ − µ ⇔ µ 6 x̄ + 1.96 σ√

n

Together, x̄ − 1.96 σ√
n 6 µ 6 x̄ + 1.96 σ√

n

In the long run, µ is contained in approximately 95% of intervals(
x̄ − 1.96 σ√

n , x̄ + 1.96 σ√
n

)
This interval is called a confidence interval .
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2-sided (100 − α)% confidence interval for the mean
When σ is known (

x̄ −
zα/2√

n σ , x̄ +
zα/2√

n σ
)

95% confidence interval (α = 5% = 0.05) with σ = 100, z.025 = 1.96:(
x̄ − 1.96(100)√

n , x̄ + 1.96(100)√
n

)
Other commonly used percentages:
99% CI: use ±2.58 instead of ±1.96. 90% CI: use ±1.64.

For demo purposes: 75% CI: use ±1.15.

When σ is not known, but is estimated by s(
x̄ −

tα/2,n−1√
n s , x̄ +

tα/2,n−1√
n s
)

A 95% confidence interval when n = 6 is
(

x̄ − 2.5706s√
n , x̄ + 2.5706s√

n

)
.

The cutoff 2.5706 depends on α and n, so would change if n changes.
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95% confidence intervals for µ
Exp. # Data x1, . . . , x6 x̄ s2 s

#1 650, 510, 470, 570, 410, 370 496.67 10666.67 103.28
#2 510, 420, 520, 360, 470, 530 468.33 4456.67 66.76
#3 470, 380, 480, 320, 430, 490 428.33 4456.67 66.76

When σ known (say σ = 100), use normal distribution

#1: (496.67 −
1.96(100)√

6
, 496.67 +

1.96(100)√
6

) = (416.65, 576.69)

#2: (468.33 −
1.96(100)√

6
, 468.33 +

1.96(100)√
6

) = (388.31, 548.35)

#3: (428.33 −
1.96(100)√

6
, 428.33 +

1.96(100)√
6

) = (348.31, 508.35)

When σ not known, estimate σ by s and use t-distribution

#1: (496.67 −
2.5706(103.28)√

6
, 496.67 +

2.5706(103.28)√
6

) = (388.28, 605.06)

#2: (468.33 −
2.5706(66.76)√

6
, 468.33 +

2.5706(66.76)√
6

) = (398.27, 538.39)

#3: (428.33 −
2.5706(66.76)√

6
, 428.33 +

2.5706(66.76)√
6

) = (358.27, 498.39)
(missing 500)
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Confidence intervals
σ = 100 known, µ = 500 unknown, n = 6 points per trial, 20 trials

Confidence intervals w/o µ = 500 are marked *(393.05,486.95)*.
Trial # x1 x2 x3 x4 x5 x6 m = x̄ 75% conf. int. 95% conf. int.

1 720 490 660 520 390 390 528.33 (481.38,575.28) (448.32,608.35)
2 380 260 390 630 540 440 440.00 *(393.05,486.95)* (359.98,520.02)
3 800 450 580 520 650 390 565.00 *(518.05,611.95)* (484.98,645.02)
4 510 370 530 290 460 540 450.00 *(403.05,496.95)* (369.98,530.02)
5 580 500 540 540 340 340 473.33 (426.38,520.28) (393.32,553.35)
6 500 490 480 550 390 450 476.67 (429.72,523.62) (396.65,556.68)
7 530 680 540 510 520 590 561.67 *(514.72,608.62)* (481.65,641.68)
8 480 600 520 600 520 390 518.33 (471.38,565.28) (438.32,598.35)
9 340 520 500 650 400 530 490.00 (443.05,536.95) (409.98,570.02)
10 460 450 500 360 600 440 468.33 (421.38,515.28) (388.32,548.35)
11 540 520 360 500 520 640 513.33 (466.38,560.28) (433.32,593.35)
12 440 420 610 530 490 570 510.00 (463.05,556.95) (429.98,590.02)
13 520 570 430 320 650 540 505.00 (458.05,551.95) (424.98,585.02)
14 560 380 440 610 680 460 521.67 (474.72,568.62) (441.65,601.68)
15 460 590 350 470 420 740 505.00 (458.05,551.95) (424.98,585.02)
16 430 490 370 350 360 470 411.67 *(364.72,458.62)* *(331.65,491.68)*
17 570 610 460 410 550 510 518.33 (471.38,565.28) (438.32,598.35)
18 380 540 570 400 360 500 458.33 (411.38,505.28) (378.32,538.35)
19 410 730 480 600 270 320 468.33 (421.38,515.28) (388.32,548.35)
20 490 390 450 610 320 440 450.00 *(403.05,496.95)* (369.98,530.02)
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Confidence intervals
σ = 100 known, µ = 500 unknown, n = 6 points per trial, 20 trials

In the 75% confidence interval column, 14 out of 20 (70%)
intervals contain the mean (µ = 500).
This is close to 75%.

In the 95% confidence interval column, 19 out of 20 (95%)
intervals contain the mean (µ = 500).
This is exactly 95% (though if you do it 20 more times, it wouldn’t
necessarily be exactly 19 the next time).

A k% confidence interval means if we repeat the experiment a lot
of times, approximately k% of the intervals will contain µ.
It is not a guarantee that exactly k% will contain it.

Note: If you really don’t know the true value of µ, you can’t
actually mark the intervals that do or don’t contain it.
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Confidence intervals — choosing n

Data: 380, 260, 390, 630, 540, 440
Sample mean: x̄ = 380+260+390+630+540+440

6 = 440

σ: We assume σ = 100 is known

95% CI half-width: 1.96 σ√
n =

(1.96)(100)√
6

≈ 80.02

95% CI: (440 − 80.02, 440 + 80.02) = (359.98, 520.02)

To get a narrower 95% confidence interval, say mean ±10, solve
for n making the half-width 6 10:

1.96
σ√

n
610 n>

(
1.96σ

10

)2

=

(
1.96(100)

10

)2

=384.16 n>385
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One-sided confidence intervals
In a two-sided 95% confidence interval, we excluded the highest
and lowest 2.5% of values and keep the middle 95%.
One-sided removes the whole 5% from one side.

One-sided to the right: remove highest (right) 5% values of Z

P(Z 6 z.05) = P(Z 6 1.64) = .95

95% of experiments have
x̄ − µ
σ/
√

n
6 1.64 so µ > x̄ − 1.64

σ√
n

So the one-sided (right) 95% CI for µ is (x̄ − 1.64 σ√
n ,∞)

One-sided to the left: remove lowest (left) 5% of values of Z

P(−z.05 6 Z) = P(−1.64 6 Z) = .95
The one-sided (left) 95% CI for µ is (−∞, x̄ + 1.64 σ√

n)

If σ is estimated by s, use the t distribution cutoffs instead.
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Hypothesis tests for the binomial distribution
parameter p

Consider a coin with probability p of heads, 1 − p of tails.
Warning: do not confuse this with the P from P-values.

Two-sided hypothesis test: Is the coin fair?
Null hypothesis: H0: p = .5 (“coin is fair”)

Alternative hypothesis: H1: p , .5 (“coin is not fair”)

Draft of decision procedure
Flip a coin 100 times.
Let X be the number of heads.
If X is “close” to 50 then it’s fair, and otherwise it’s not fair.

How do we quantify “close”?
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Decision procedure — confidence interval
How do we quantify “close”?

Normal approximation to binomial n = 100, p = 0.5

µ = np = 100(.5) = 50

σ =
√

np(1 − p) =
√

100(.5)(1 − .5) =
√

25 = 5
Check that it’s OK to use the normal approximation:

µ− 3σ = 50 − 15 = 35 > 0
µ+ 3σ = 50 + 15 = 65 < 100 so it is OK.

≈ 95% acceptance region

(µ− 1.96σ,µ+ 1.96σ) = (50 − 1.96 · 5 , 50 + 1.96 · 5)
= (40.2 , 59.8)

Prof. Tesler z and t tests for mean Math 283 / Fall 2018 30 / 41



Decision procedure

Hypotheses
Null hypothesis: H0: p = .5 (“coin is fair”)

Alternative hypothesis: H1: p , .5 (“coin is not fair”)

Decision procedure
Flip a coin 100 times.
Let X be the number of heads.
If 40.2 < X < 59.8 then accept H0; otherwise accept H1.

Significance level: ≈ 5%
If H0 is true (coin is fair), this procedure will give the wrong answer (H1)
about 5% of the time.
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Measuring Type I error (a.k.a. Significance Level)
H0 is the true state of nature, but we mistakenly reject H0 / accept H1

If this were truly the normal distribution, the Type I error would be
α = .05 = 5% because we made a 95% confidence interval.
However, the normal distribution is just an approximation; it’s
really the binomial distribution. So:

α = P(accept H1|H0 true)
= 1 − P(accept H0|H0 true)
= 1 − P(40.2 < X < 59.8 |binomial with p = .5)
= 1 − .9431120664 = 0.0568879336 ≈ 5.7%

P(40.2 < X < 59.8 | p = .5) =

59∑
k=41

(
100

k

)
(.5)k(1 − .5)100−k

= .9431120664
So it’s a 94.3% confidence interval and
the Type I error rate is α = 5.7%.
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Measuring Type II error
H1 is the true state of nature but we mistakenly accept H0 / reject H1

If p = .7, the test will probably detect it.

If p = .51, the test will frequently conclude H0 is true when it
shouldn’t, giving a high Type II error rate.

If this were a game in which you won $1 for each heads and lost
$1 for tails, there would be an incentive to make a biased coin with
p just above .5 (such as p = .51) so it would be hard to detect.
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Measuring Type II error
Exact Type II error for p = .7 using binomial distribution

β = P(Type II error with p = .7)
= P(Accept H0 |X is binomial, p = .7)
= P(40.2 < X < 59.8 |X is binomial, p = .7)

=

59∑
k=41

(
100

k

)
(.7)k(.3)100−k = .0124984 ≈ 1.25%.

When p = 0.7, the Type II error rate, β, is 1.25%:
≈ 1.25% of decisions made with a biased coin (specifically biased
at p = 0.7) would incorrectly conclude H0 (the coin is fair, p = 0.5).

Since H1: p , .5 includes many different values of p, the Type II
error rate depends on the specific value of p.
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Measuring Type II error
Approximate Type II error using normal distribution

µ = np = 100(.7) = 70

σ =
√

np(1 − p) =
√

100(.7)(.3) =
√

21

β = P(Accept H0 |H1 true: X binomial with n = 100, p = .7)
≈ P(40.2 < X < 59.8 |X is normal with µ = 70, σ =

√
21)

= P
(

40.2 − 70√
21

<
X − 70√

21
<

59.8 − 70√
21

)
≈ P(−6.5029 < Z < −2.2258) (≈ due to rounding)
= Φ(−2.2258) −Φ(−6.5029)

≈ .0130 − .0000 = .0130 = 1.30%
which is close to the exact value, ≈ 1.25%.
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Power curve

The decision procedure is “Flip a coin 100 times, let X be the
number of heads, and accept H0 if 40.2 < X < 59.8”.
Plot the Type II error rate as a function of p:

β = β(p) =
59∑

k=41

(
100

k

)
pk(1 − p)100−k

Type II Error: Correct detection of H1:
Power = Sensitivity =

β = P(Accept H0 |H1 true) 1 − β = P(Accept H1 |H1 true)
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Choosing n to control Type I and II errors together

The decision procedure was designed to control α.

We calculated β afterwards, rather than using β to design it.

At fixed n, increasing α changes some negatives into positives,
thus reducing false negatives (β) while increasing false positives.

Likewise, decreasing α increases β.

By increasing n, we can decrease β without increasing α.
Increasing n results in a narrower power curve (previous slide).

Goal: Find n to detect p = .51 with α = 0.05.
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Choosing n to control Type I and II errors together
Goal: Find n to detect p = .51 with α = 0.05

General format of hypotheses for p in a binomial distribution
H0: p = p0

vs. one of these for H1:
H1: p > p0
H1: p < p0
H1: p , p0

where p0 is a specific value.

Our hypotheses
H0: p = .5 vs. H1: p > .5
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Choosing n to control Type I and II errors together

Hypotheses
H0: p = .5 vs. H1: p > .5

Flip the coin n times, and let x be the number of heads.
Under the null hypothesis, p0 = .5 so

z =
x − np0√

np0(1 − p0)
=

x − .5n√
n(.5)(.5)

=
x − .5n√

n/2

The z-score of x = .51n is z =
.51n − .5n√

n/2
= .02

√
n

We reject H0 when z > zα = z0.05 = 1.64 (one-sided cutoff), so

.02
√

n > 1.64
√

n >
1.64
.02

= 82 n > 822 = 6724

Thus, if the test consists of n = 6724 flips, only ≈ 5% of such tests
on a fair coin would give > 51% heads.
Increasing n further reduces the fraction α of tests giving > 51%
heads with a fair coin.
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Sign tests (nonparametric)

One-sample: Percentiles of a distribution
Let X be a random variable. Is the 75th percentile of X equal to C?
Get a sample x1, . . . , xn.
“Heads” is xi 6 C, “tails” is xi > C.
Test

H0 : p = .75 vs. H1 : p , .75

Of course this works for any percentile, not just the 75th.
For the median (50th percentile) of a continuous symmetric
distribution, the Wilcoxon signed rank test could also be used
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Sign tests (nonparametric)

Two-sample (paired): Equality of distributions
Assume X, Y are continuous distributions differing only by a shift,
X = Y + C. Is C = 0?
Get paired samples (x1, y1), . . . , (xn, yn).
Do a hypothesis test for a fair coin, where yi − xi > 0 is heads and
yi − xi < 0 is tails.
To test X = Y + 10, check the sign of yi − xi + 10 instead.
Wilcoxon on yi − xi could be used for paired data and
Mann-Whitney for unpaired data.
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