Nonparametric hypothesis tests and permutation tests

1.7 & 2.3. Probability Generating Functions3.8.3. Wilcoxon Signed Rank Test3.8.2. Mann-Whitney Test

Prof. Tesler

Math 283 Fall 2018

Probability Generating Functions (pgf)

- Let *Y* be an integer-valued random variable with a lower bound (typically $Y \ge 0$).
- The *probability generating function* is defined as

$$\mathbb{P}_{Y}(t) = E(t^{Y}) = \sum_{y} P_{Y}(y)t^{y}$$

Simple example

Suppose
$$P_X(x) = x/10$$
 for $x = 1, 2, 3, 4$, $P_X(x) = 0$ otherwise. Then
 $\mathbb{P}_X(t) = .1t + .2t^2 + .3t^3 + .4t^4$

Poisson distribution

Let *X* be Poisson with mean μ . Then

$$\mathbb{P}_X(t) = \sum_{k=0}^{\infty} \frac{e^{-\mu} \mu^k}{k!} \cdot t^k = \sum_{k=0}^{\infty} \frac{e^{-\mu} (\mu t)^k}{k!} = e^{-\mu} e^{\mu t} = e^{\mu(t-1)}$$

Properties of pgfs

• Plugging in t = 1 gives total probability=1:

$$\mathbf{P}_Y(1) = \sum_{y} \mathbf{P}_Y(y) = 1$$

• Differentiating and plugging in t = 1 gives E(Y):

$$\mathbb{P}'_{Y}(t) = \sum_{y} P_{Y}(y) \cdot y t^{y-1}$$
$$\mathbb{P}'_{Y}(1) = \sum_{y} P_{Y}(y) \cdot y = E(Y)$$

• Variance is $\operatorname{Var}(Y) = \mathbb{P}_Y''(1) + \mathbb{P}_Y'(1) - (\mathbb{P}_Y'(1))^2$:

$$\begin{split} \mathbb{P}_{Y}''(t) &= \sum_{y} P_{Y}(y) \cdot y(y-1) t^{y-2} \\ \mathbb{P}_{Y}''(1) &= \sum_{y} P_{Y}(y) \cdot y(y-1) = E(Y(Y-1)) = E(Y^{2}) - E(Y) \\ \operatorname{Var}(Y) &= E(Y^{2}) - (E(Y))^{2} = \mathbb{P}_{Y}''(1) + \mathbb{P}_{Y}'(1) - (\mathbb{P}_{Y}'(1))^{2} \end{split}$$

Example of pgf properties: Poisson

Properties

$$\begin{aligned} \mathbb{P}_{Y}(t) &= \sum_{y} P_{Y}(y) t^{Y} \\ \mathbb{P}_{Y}(1) &= 1 \\ E(Y) &= \mathbb{P}_{Y}'(1) \\ \text{Var}(Y) &= E(Y^{2}) - (E(Y))^{2} = \mathbb{P}_{Y}''(1) + \mathbb{P}_{Y}'(1) - (\mathbb{P}_{Y}'(1))^{2} \end{aligned}$$

• For *X* Poisson with mean μ , we saw $\mathbb{P}_X(t) = e^{\mu(t-1)}$.

•
$$\mathbb{P}_X(1) = e^{\mu(1-1)} = e^0 = 1$$

• $\mathbb{P}'_X(t) = \mu e^{\mu(t-1)}$ and $\mathbb{P}'_X(1) = \mu e^{\mu(1-1)} = \mu$ Indeed, $E(X) = \mu$ for Poisson.

•
$$\mathbb{P}_{X}^{\prime\prime}(t) = \mu^{2} e^{\mu(t-1)}$$

 $\mathbb{P}_{X}^{\prime\prime}(1) = \mu^{2} e^{\mu(1-1)} = \mu^{2}$
 $\operatorname{Var}(X) = \mathbb{P}_{X}^{\prime\prime}(1) + \mathbb{P}_{X}^{\prime}(1) - (\mathbb{P}_{X}^{\prime}(1))^{2} = \mu^{2} + \mu - \mu^{2} = \mu$
Indeed, $\operatorname{Var}(X) = \mu$ for Poisson.

Probability generating function of X + Y

Consider adding rolls of two biased dice together:

X = roll of biased 3-sided die Y = roll of biased 5-sided die

Probability generating function of X + Y

$$\mathbb{P}_{X}(t) = P_{X}(1)t + P_{X}(2)t^{2} + P_{X}(3)t^{3}$$

$$\mathbb{P}_{Y}(t) = P_{Y}(1)t + P_{Y}(2)t^{2} + P_{Y}(3)t^{3} + P_{Y}(4)t^{4} + P_{Y}(5)t^{5}$$

$$\begin{split} \mathbb{P}_{X}(t)\mathbb{P}_{Y}(t) &= \begin{pmatrix} P_{X}(1)P_{Y}(1) & t^{2} + \\ (P_{X}(1)P_{Y}(2) + P_{X}(2)P_{Y}(1) & t^{3} + \\ (P_{X}(1)P_{Y}(3) + P_{X}(2)P_{Y}(2) + P_{X}(3)P_{Y}(1))t^{4} + \\ (P_{X}(1)P_{Y}(4) + P_{X}(2)P_{Y}(3) + P_{X}(3)P_{Y}(2))t^{5} + \\ (P_{X}(1)P_{Y}(5) + P_{X}(2)P_{Y}(4) + P_{X}(3)P_{Y}(3))t^{6} + \\ (P_{X}(2)P_{Y}(5) + P_{X}(3)P_{Y}(4))t^{7} + \\ (P_{X}(3)P_{Y}(5))t^{8} \\ &= P(X + Y = 2)t^{2} + \dots + P(X + Y = 8)t^{8} \\ &= \mathbb{P}_{X + Y}(t) \end{split}$$

Probability generating function of X + Y

Suppose *X* and *Y* are independent random variables. Then $\mathbb{P}_{X+Y}(t) = \mathbb{P}_X(t) \cdot \mathbb{P}_Y(t)$

Proof.

$$\mathsf{P}_{X+Y}(t) = E(t^{X+Y}) = E(t^X t^Y) = E(t^X)E(t^Y) = \mathbb{P}_X(t)\mathbb{P}_Y(t) \quad \Box$$

Second proof.

•
$$\mathbb{P}_X(t) \cdot \mathbb{P}_Y(t) = \left(\sum_x P(X=x)t^x\right) \left(\sum_y P(Y=y)t^y\right)$$

- Multiply that out and collect by powers of *t*. The coefficient of t^w is $\sum_x P(X = x)P(Y = w x)$
- Since X, Y are independent, this simplifies to P(X + Y = w), which is the coefficient of t^w in ℙ_{X+Y}(t).

Binomial distribution

• Suppose X_1, \ldots, X_n are i.i.d. with $P(X_i = 1) = p$, $P(X_i = 0) = 1 - p$ (*Bernoulli distribution*).

•
$$\mathbb{P}_{X_i}(t) = (1-p)t^0 + pt^1 = 1 - p + pt$$

• The Binomial(n, p) distribution is $X = X_1 + \cdots + X_n$.

•
$$\mathbb{P}_X(t) = \mathbb{P}_{X_1}(t) \cdots \mathbb{P}_{X_n}(t) = (1 - p + pt)^n$$

• Check:

$$((1-p)+pt)^{n} = \sum_{k=0}^{n} \binom{n}{k} (1-p)^{n-k} p^{k} \cdot t^{k} = \sum_{k=0}^{n} P_{Y}(k)t^{k}$$

where *Y* is the Binomial(n, p) distribution.

• Note: If *X* and *Y* have the same pgf, then they have the same distribution.

Moment generating function (mgf) in Chapter 1.1 & 2.3

- Let Y be a continuous or discrete random variable.
- The *moment generating function* (mgf) is $\mathbb{M}_Y(\theta) = E(e^{\theta Y})$.
- Discrete: Same as the pgf with $t = e^{\theta}$, and not just for integer-valued variables:

$$\mathbb{M}_{Y}(\theta) = \sum_{y} P_{Y}(y) e^{\theta y}$$

- Continuous: It's essentially the "2-sided Laplace transform" of $f_Y(y)$: $\mathbb{M}_Y(\theta) = \int_{-\infty}^{\infty} f_Y(y) e^{\theta y} dy$
- The derivative tricks for pgf have analogues for mgf:

$$\begin{split} \frac{d^{\kappa}}{d\theta^{k}} \mathbb{M}_{Y}(\theta) &= E(Y^{k} e^{\theta Y}) \\ \mathbb{M}_{Y}^{(k)}(0) &= E(Y^{k}) = k \text{th moment of } Y \\ \mathbb{M}_{Y}(0) &= E(1) = 1 = \text{Total probability} \\ \mathbb{M}_{Y}'(0) &= E(Y) = \text{Mean} \\ \mathbb{M}_{Y}''(0) &= E(Y^{2}) \quad \text{so} \quad \text{Var}(Y) = \mathbb{M}_{Y}''(0) - (\mathbb{M}_{Y}'(0)) \end{split}$$

<u>ک</u>

Non-parametric hypothesis tests

- Parametric hypothesis tests assume the random variable has a specific probability distribution (normal, binomial, geometric, ...). The competing hypotheses both assume the same type of distribution but with different parameters.
- A distribution free hypothesis test (a.k.a. non-parametric hypothesis test) doesn't assume any particular type of distribution. So it can be applied even if the distribution isn't known.
- If the type of distribution is known, a parametric test that takes it into account can be more precise (smaller Type II error for same Type I error) than a non-parametric test that doesn't.

Wilcoxon Signed Rank Test

- Let *X* be a continuous random variable with a symmetric distribution.
- Let *M* be the median of *X*:

P(X > M) = P(X < M) = 1/2, or $F_X(M) = .5$.

- Note that if the pdf of X is symmetric, the median equals the mean. If it's not symmetric, they usually are not equal.
- We will develop a test for

 $H_0: M = M_0$ vs. $H_1: M \neq M_0$ (or $M < M_0$ or $M > M_0$) based on analyzing a sample x_1, \ldots, x_n of data.

• Example: If U, V have the same distribution, then X = U - V has a symmetric distribution centered around its median, 0.

u

11/36

Х

Computing the Wilcoxon test statistic

Is median $M_0 = 5$ plausible, given data 1.1, 8.2, 2.3, 4.4, 7.5, 9.6?

- Get a sample x_1, \ldots, x_n : 1.1, 8.2, 2.3, 4.4, 7.5, 9.6
- Compute the following:
 - Compute each $x_i M_0$.
 - Order |x_i M₀| from smallest to largest and assign ranks 1, 2, ..., n (1=smallest, n=largest).
 - Let r_i be the rank of $|x_i M_0|$ and $z_i = \begin{cases} 0 & \text{if } x_i M_0 < 0 \\ 1 & \text{if } x_i M_0 > 0. \end{cases}$

Note: Since *X* is continuous, $P(X - M_0 = 0) = 0$.

• Compute test statistic $w = z_1r_1 + \cdots + z_nr_n$ (sum of r_i 's with $x_i > M_0$)

i	x_i	$x_i - M_0$	r _i	sign	Z_i	n = 6
1	1.1	-3.9	5		0	n = 0
2	8.2	3.2	4	+	1	$ x_i - M_0 $ in order:
3	2.3	-2.7	3		0	.6, 2.5, 2.7, 3.2, 3.9, 4.6
4	4.4	6	1		0	10, 213, 217, 312, 319, 410
5	7.5	2.5	2	+	1	w = 4 + 2 + 6 = 12
6	9.6	4.6	6	+	1	

• The variable whose rank is *i* contributes either 0 or *i* to *W*. Under the null hypothesis, both of those have probability 1/2. Call this contribution W_i , either 0 or *i* with prob. 1/2. Then $W = W_1 + \cdots + W_n$

• The
$$W_i$$
's are independent because the signs are independent.

• The pgf of W_i is

$$\mathbb{P}_{W_i}(t) = E(t^{W_i}) = \frac{1}{2}t^0 + \frac{1}{2}t^i = \frac{1+t^i}{2}$$

• The pgf of W is

$$\mathbb{P}_{W}(t) = \mathbb{P}_{W_{1}+\dots+W_{n}}(t) = \mathbb{P}_{W_{1}}(t) \cdots \mathbb{P}_{W_{n}}(t) = 2^{-n} \prod_{i=1}^{n} (1+t^{i})$$

• Expand the product. The coefficient of t^w is P(W=w), the pdf of W.

n

Distribution of *W* for n = 6

•
$$\mathbb{P}_{W}(t) = \frac{1}{2^{6}} (1+t^{1}) (1+t^{2}) (1+t^{3}) (1+t^{4}) (1+t^{5}) (1+t^{6})$$

 $= \frac{1}{64} (1+t+t^{2}+2t^{3}+2t^{4}+3t^{5}+4t^{6}+4t^{7}+4t^{8}+5t^{9}+5t^{10}+5t^{11}+5t^{12}+4t^{13}+4t^{14}+4t^{15}+3t^{16}+2t^{17}+2t^{18}+t^{19}+t^{20}+t^{21})$
• Example: $P(W = 6) = 4/64 = 1/16 = .0625$

Cumulative distribution of *W*

W	$P(W \leqslant w)$	W	$P(W \leqslant w)$	W	$P(W \leqslant w)$
0	1/64 = 0.015625	8	22/64 = 0.343750	16	57/64 = 0.890625
1	2/64 = 0.031250	9	27/64 = 0.421875	17	59/64 = 0.921875
2	3/64 = 0.046875	10	32/64 = 0.500000	18	61/64 = 0.953125
3	5/64 = 0.078125	11	37/64 = 0.578125	19	62/64 = 0.968750
4	7/64 = 0.109375	12	42/64 = 0.656250	20	63/64 = 0.984375
5	10/64 = 0.156250	13	46/64 = 0.718750	21	64/64 = 1.000000
6	14/64 = 0.218750	14	50/64 = 0.781250		
7	18/64 = 0.281250	15	54/64 = 0.843750		

(The cdf is defined at all reals. It jumps at w = 0, ..., 21 and is constant in-between.)

Distribution of *W* for n = 6

PDF

CDF

Properties of W (assuming H_0 : $M = M_0$)

Range

- When all signs are negative, $w = 0 + 0 + \cdots = 0$.
- When all signs are positive, $w = 1 + 2 + \cdots + n = n(n+1)/2$.
- w ranges from 0 to n(n+1)/2.

Properties of W (assuming H_0 : $M = M_0$)

Reflecting a point

Reflecting point *x* around M_0 gives $M_0 - x = y - M_0$, so $y = 2M_0 - x$.

Symmetry

If H_0 is correct, then reflecting all data in the sample around M_0 by setting $y_i = 2M_0 - x_i$ for all *i*:

- gives new values y_1, \ldots, y_n equally probable to x_1, \ldots, x_n ;
- keeps same magnitudes $|x_i M_0| = |y_i M_0|$ and same ranks;
- inverts all signs, switching whether a rank is / isn't included in w;
 sends w to \frac{n(n+1)}{2} w.

So the pdf of W is symmetric about the center value $w = \frac{n(n+1)}{4}$.

Properties of W (assuming H_0 : $M = M_0$)

Mean and variance

Mean: $E(W) = \frac{1}{4}n(n+1)$

Variance:
$$Var(W) = \frac{1}{24}n(n+1)(2n+1)$$

Central Limit Theorem

When n > 12, the *Z*-score of *W* is approximately standard normal:

$$Z = \frac{W - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}} \qquad F_W(w) \approx \Phi(z) \text{ for } n > 1$$

- W_1, W_2, \ldots are independent but not identically distributed.
- A generalization of CLT by Lyapunov applies; see "Lyapunov CLT" in the Central Limit Theorem article on Wikipedia.

Computing *P*-value

- Note that $P(W \ge w) = P(W \le \frac{n(n+1)}{2} w)$ by symmetry of the pdf. Let $w_1 = \min\left\{w, \frac{n(n+1)}{2} - w\right\}$ and $w_2 = \max\left\{w, \frac{n(n+1)}{2} - w\right\}$.
- Intuitively, w is close to n(n+1)/4 when H_0 is true, and much smaller or much larger when H_0 is false.
- **Two-sided test:** H_0 : M = 5 vs. H_1 : $M \neq 5$. Values "more extreme than w" are those farther away from n(n+1)/4 than w in either direction: $P = P(W \leq w_n) + P(W \geq w_n) = 2P(W \leq w_n)$

 $P = P(W \leq w_1) + P(W \geq w_2) = 2P(W \leq w_1)$

• In the example, w = 12 and $\frac{n(n+1)}{2} = \frac{6 \cdot 7}{2} = 21$, giving $P = P(W \ge 12) + P(W \le 9) = 2P(W \le 9) = 2(27/64) = 0.843750.$

Performing the Wilcoxon Signed Rank Test

- Hypotheses:
- Choose a significance level α : α =
- Get a sample x_1, \ldots, x_n :
- Compute test statistic *w*:
- Compute *P*-value:
- Decision: Reject H_0 if $P \leq \alpha$. Accept H_0 if $P > \alpha$.

 $H_0: M = 5$ VS. $H_1: M \neq 5$ $\alpha = 5\%$ 1.1, 8.2, 2.3, 4.4, 7.5, 9.6 w = 12P = 0.843750

.843750 > .05 so accept H_0 .

One-sided tests

Example: Test H_0 : M = 5 but true median=10

- > $\frac{1}{2}$ chance for $x_i M = x_i 5$ to be positive and < $\frac{1}{2}$ chance to be negative.
- This increases the chance of including each rank in the sum for W, and leads to higher values of W.

One-sided test: H₀: M = 5 vs. H₁: M > 5.
 Higher medians lead to higher values of w, so values "more extreme than w" are ≥ w:

 $P = P(W \ge w) = P(W \ge 12) = 1 - P(W \le 11) = 27/64 = 0.421875$

One-sided test: H₀: M = 5 vs. H₁: M < 5.
 Lower medians lead to lower values of w, so values "more extreme than w" are ≤ w:

$$P = P(W \le w) = P(W \le 12) = 42/64 = 0.656250$$

Matlab	R
>> $x = [1.1, 8.2, 2.3, 4.4, 7.5, 9.6];$	
>> M0 = 5; >> signrank(x,M0)	<pre>> test = wilcox.test(x,mu=5) > test\$statistic</pre>
0.8438	V
>> [p,h,stats] = signrank(x,M0)	12
p = 0.8438	> test\$p.value
h = 0	[1] 0.84375
stats =	
signedrank: 9	
>> stats.signedrank	
9	
Note <i>stats.signedrank</i> = 9 is our w_1 , which is not necessarily w .	

Critical region for a given significance level α

Cumulative distribution of *W*

W	$P(W \leqslant w)$	W	$P(W \leqslant w)$	W	$P(W \leqslant w)$
0	1/64 = 0.015625	8	22/64 = 0.343750	16	57/64 = 0.890625
1	2/64 = 0.031250	9	27/64 = 0.421875	17	59/64 = 0.921875
2	3/64 = 0.046875	10	32/64 = 0.500000	18	61/64 = 0.953125
3	5/64 = 0.078125	11	37/64 = 0.578125	19	62/64 = 0.968750
4	7/64 = 0.109375	12	42/64 = 0.656250	20	63/64 = 0.984375
5	10/64 = 0.156250	13	46/64 = 0.718750	21	64/64 = 1.000000
6	14/64 = 0.218750	14	50/64 = 0.781250		
7	18/64 = 0.281250	15	54/64 = 0.843750		

Significance level $\alpha = .05$

- $P \leq .05$ for " $w \leq 0$ or $w \geq 21$ "
- The *critical region* (where H_0 is rejected) is w = 0 or 21.
- The *acceptance region* (where H_0 is accepted) is $1 \le w \le 20$.
- The Type I error rate is really 2/64 = 0.031250. Discrete distributions will often have Type I error rate $< \alpha$.

Cumulative distribution of W

W	$P(W \leqslant w)$	W	$P(W\leqslant w)$	W	$P(W\leqslant w)$
0	1/64 = 0.015625	8	22/64 = 0.343750	16	57/64 = 0.890625
1	2/64 = 0.031250	9	27/64 = 0.421875	17	59/64 = 0.921875
2	3/64 = 0.046875	10	32/64 = 0.500000	18	61/64 = 0.953125
3	5/64 = 0.078125	11	37/64 = 0.578125	19	62/64 = 0.968750
4	7/64 = 0.109375	12	42/64 = 0.656250	20	63/64 = 0.984375
5	10/64 = 0.156250	13	46/64 = 0.718750	21	64/64 = 1.000000
6	14/64 = 0.218750	14	50/64 = 0.781250		
7	18/64 = 0.281250	15	54/64 = 0.843750		

Other significance levels

- $\alpha = .01$: $P \ge 2(.015625) = .031250$ for all *w*. So we never have $P \le .01$. Thus, H_0 is always accepted.
- $\alpha = .10$: Accept H_0 for $3 \leq w \leq 18$.

Mann-Whitney Test, a.k.a. "Wilcoxon two-sample test"

- Let *X*, *Y* be random variables whose distributions are the same except for a possible shift, $Y \sim X + C$ for some constant *C*.
- We will test the hypotheses
 H₀: X and Y have the same median (i.e., C = 0).
 H₁: X and Y do not have the same median (i.e., C ≠ 0).
- This is a non-parametric test.
 In practice, it's used if the plots look similar but possibly shifted.
 However, if there are other differences in the distributions than just the shift, the *P*-values will be off.
- Two sets of authors (Mann-Whitney vs. Wilcoxon) developed essentially equivalent tests for this; we'll do the one due to Wilcoxon.

• Data:

Sample x_1, \ldots, x_m for X: Sample x_{m+1}, \ldots, x_{m+n} for Y: 11, 13 (m = 2) 12, 15, 14 (n = 3)

• Replace data by ranks from smallest (1) to largest (m + n): Ranks for X: 1, 3 Ranks for Y: 2, 5, 4

• *U* is the sum of the *X* ranks: $U_0 = 1 + 3 = 4$

- Ties may happen in discrete case. If there's a tie for 2nd and 3rd smallest, use 2.5 for both of them.
- This is a *two sample test*.

The Wilcoxon Signed Rank test previously covered is a *one sample test*.

- We'll call Mann-Whitney's statistic \widetilde{U} , although they called it U.
- \widetilde{U} is the number of pairs (x, y) with x in the X sample, y in the Y sample, and x < y.
- Data:

Sample x_1, \ldots, x_m for X:11, 13 (m = 2)Sample x_{m+1}, \ldots, x_{m+n} for Y:12, 15, 14 (n = 3)

- 11 < 12, 11 < 15, 11 < 14, 13 < 15, 13 < 14 so $\widetilde{U} = 5$.
- The statistics are related by $\tilde{U} = mn + m(m+1)/2 U$.
- We'll stick with Wilcoxon's definition and ignore this one.

Computing the distribution of *U*: permutation test

- Under H₀, X and Y have the same distribution. So we are just as likely to have seen any m = 2 of those numbers for the X sample and the other n = 3 for Y. *Resample* them as follows:
- Permute the m + n = 2 + 3 = 5 numbers in all (m + n)! = 120 ways.
- Treat the first *m* of them as a new sample of *X* and the last *n* as a new sample of *Y*, compute *U* for each.

X	Y	U
11,13	12, 15, 14	4
11,13	12, 14, 15	4
11,13	14, 12, 15	4
11,13	14, 15, 12	4
11,13	15, 12, 14	4
11,13	15, 14, 12	4
13,11	12, 15, 14	4
13,11	12, 14, 15	4
13,11	14, 12, 15	4
13,11	14, 15, 12	4
13,11	15, 12, 14	4
13, 11	15, 14, 12	4
11,12	13, 15, 14	3
11, 12	13, 14, 15	3

- m!n! = 2!3! = 2 · 6 = 12 of the permutations give the same partition of numbers for X and Y.
- So it would suffice to list partitions instead of permutations.
- There are $\frac{(m+n)!}{m!n!} = \binom{m+n}{n}$ partitions; $\binom{5}{2} = 10$ partitions in this case.

Computing the distribution of *U*: permutation test

• *Resample* the data by partitioning the numbers between X & Y in all $\binom{m+n}{m} = \binom{2+3}{2} = \binom{5}{2} = 10$ possible ways. Compute *U* for each. As a short cut, we can just work with the ranks:

X ranks	Y ranks	$\mid U$
1,2	3, 4, 5	3
1,3	2, 4, 5	4
1,4	2, 3, 5	5
1,5	2, 3, 4	6
2,3	1,4,5	5
2,4	1, 3, 5	6
2,5	1, 3, 4	7
3,4	1, 2, 5	7
3,5	1, 2, 4	8
4,5	1, 2, 3	9

• Compute the PDF and CDF of *U* from this (all 10 cases are equally likely):

U	$P_U(u)$	$F_U(u)$
< 3	0/10	0/10
3	1/10	1/10
4	1/10	2/10
5	2/10	4/10
6	2/10	6/10
7	2/10	8/10
8	1/10	9/10
9	1/10	10/10

• P-value of $U_0 = 4$: The mirror image of 4 is 8. $P = P(U \leq 4) + P(U \geq 8) = 2P(U \leq 4) = 2(.2) = .4.$

Computing *P*-value and *U* in Matlab or R

Matlab	R
>> ranksum([11,13],[12,15,14])	<pre>> test = wilcox.test(c(11,13),</pre>
0.4000	+ c(12,15,14))
	> test\$p.value
>> [p,h,stats] =	[1] 0.4
ranksum([11,13],[12,15,14])	> test\$statistic
	W
p = 0.4000	1
h = 0	
stats =	Notes:
ranksum: 4	R computes a different statistic "W"
>> stats.ranksum	instead of U
4	• $W = U - m(m+1)/2$
7	In this case, $W = 4 - 2(2+1)/2 = 1$.
<i>Note:</i> "" lets you break a command onto two lines, both at the command line and in scripts. If you type it on one line, don't use ""	 The + prompt is given when you break a command onto two lines at the command line. Don't type it in.

Wilcoxon and Mann-Whitney Tests

- Minimum: $1 + 2 + \dots + m = m(m+1)/2$ Maximum: $(n+1) + (n+2) + \dots + (n+m) = m(2n+m+1)/2$
- Assuming H_0 : Expected value: E(U) = m(m+n+1)/2Variance: Var(U) = mn(m+n+1)/12
- Symmetry of PDF: In the sample data, switch the *i*th least and *i*th largest elements for all *i*.

The ranks added together are replaced by the complementary ranks, so *U* goes to its mirror image around m(m + n + 1)/2.

Expected value of U

• Each rank has probability $\frac{m}{m+n}$ to be in the X group and hence in the rank sum.

• Let
$$U_j = \begin{cases} 0 & \text{prob. } n/(m+n); \\ j & \text{prob. } m/(m+n) \end{cases}$$
 and U

and
$$U = U_1 + \cdots + U_{m+n}$$
.

• The U_j 's are dependent!

•
$$E(U_j) = 0 \cdot \frac{n}{m+n} + j \cdot \frac{m}{m+n} = j \cdot \frac{m}{m+n}$$

- Expectation is still additive, even though the U_j 's are dependent: $E(U) = E(U_1) + \dots + E(U_{m+n})$ $= (1 + 2 + \dots + (m+n))\frac{m}{m+n}$ $= \frac{(m+n)(m+n+1)}{2} \cdot \frac{m}{m+n} = \frac{m(m+n+1)}{2}$
- Variance is harder: it is *not additive* since the U_j 's are dependent.

Covariance

• Let *X* and *Y* be random variables, possibly dependent.

• Let
$$\mu_X = E(X)$$
, $\mu_Y = E(Y)$

• $\operatorname{Var}(X + Y) = E((X + Y - \mu_X - \mu_Y)^2) = E\left(\left((X - \mu_X) + (Y - \mu_Y)\right)^2\right)$ = $E\left((X - \mu_X)^2\right) + E\left((Y - \mu_Y)^2\right) + 2E\left((X - \mu_X)(Y - \mu_Y)\right)$ = $\operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y)$

where the *covariance* of *X* and *Y* is defined as

$$\operatorname{Cov}(X, Y) = E\left((X - \mu_X)(Y - \mu_Y)\right)$$

Expanding gives an alternate formula Cov(X, Y) = E(XY) - E(X)E(Y): Cov(X, Y) = E ((X - µ_X)(Y - µ_Y)) = E(XY) - µ_XE(Y) - µ_YE(X) + µ_Xµ_Y = E(XY) - E(X)E(Y)
Var(X₁+X₂+···+X_n) = Var(X₁) + ···+ Var(X_n) + 2∑ Cov(X_i, X_i)

 $1 \leq i < i \leq n$

Variance of U

Variance of U_j

• Let
$$U_j = \begin{cases} 0 & \text{prob. } n/(m+n); \\ j & \text{prob. } m/(m+n) \end{cases}$$
 and $U = U_1 + \dots + U_{m+n}$.
• $E(U_j) = j \cdot \frac{m}{m+n}$ and $E(U_j^2) = j^2 \cdot \frac{m}{m+n}$
• $Var(U_j) = E(U_j^2) - (E(U_j))^2 = j^2 \frac{m}{m+n} - j^2 \frac{m^2}{(m+n)^2} = j^2 \frac{mn}{(m+n)^2}$

Covariance between U_i and U_j for $i \neq j$

• $U_i U_j$ is 0 if the rank *i* and/or *j* element is in the *Y* sample. It's $i \cdot j$ if both are in the *X* sample, which has prob. $\frac{m(m-1)}{(m+n)(m+n-1)}$.

•
$$E(U_i U_j) = ij \cdot \frac{m(m-1)}{(m+n)(m+n-1)}$$

•
$$\operatorname{Cov}(U_i, U_j) = E(U_i U_j) - E(U_i)E(U_j)$$

= $ij \cdot \left(\frac{m(m-1)}{(m+n)(m+n-1)} - \frac{m^2}{(m+n)^2}\right) = -ij\frac{mn}{(m+n)^2(m+n-1)}$

Variance of U

Variance computation

•
$$\operatorname{Var}(U_j) = j^2 \frac{mn}{(m+n)^2}$$
 and $\operatorname{Cov}(U_i, U_j) = -ij \frac{mn}{(m+n)^2(m+n-1)}$ (if $i \neq j$)

• Var(U) = sum of variances + twice the sum of covariances:

$$\sum_{j=1}^{m+n} j^2 \frac{mn}{(m+n)^2} - 2\sum_{1 \le i < j \le m+n} \frac{mn}{(m+n)^2(m+n-1)} = \dots = \boxed{\frac{mn(m+n+1)}{12}}$$

Details

Plug in these identities (at k = m + n) and simplify:

•
$$1 + 2 + \dots + k = k(k+1)/2$$

• $1^2 + 2^2 + \dots + k^2 = k(k+1)(2k+1)/6$
• $2\sum_{1 \le i < j \le k} i \cdot j = (1+2+\dots+k)^2 - (1^2+2^2+\dots+k^2) = k(k-1)(k+1)(3k+2)/12$

Variations

Unpaired data

- Let $f([x_1, ..., x_m], [x_{m+1}, ..., x_{m+n}])$ be any test statistic on two vectors of samples (a *two sample test statistic*).
- Follow the same procedure as for computing *U* and its *P*-value, but compute *f* instead of *U* on each permutation of the *x*'s.
- Ewens & Grant explains this for the *t*-statistic, pages 141 & 464.

Paired data

- **Unpaired:** If *m* subjects are measured who do not have a condition and *n* subjects are measured who do have it, and these are independent, then the Mann-Whitney test could be used.
- **Paired:** Suppose there are *n* subjects, with
 - x_i = measurement before treatment

 y_i = measurement after treatment, i = 1, ..., n.

- Mann-Whitney on $[x_1, \ldots, x_n]$, $[y_1, \ldots, y_n]$ ignores the pairing.
- Use Wilcoxon Signed Rank test on $x_1 y_1, \ldots, x_n y_n$: median=0?