# Nonparametric hypothesis tests and permutation tests 

1.7 \& 2.3. Probability Generating Functions
3.8.3. Wilcoxon Signed Rank Test
3.8.2. Mann-Whitney Test

Prof. Tesler

Math 283
Fall 2018

## Probability Generating Functions (pgf)

- Let $Y$ be an integer-valued random variable with a lower bound (typically $Y \geqslant 0$ ).
- The probability generating function is defined as

$$
\mathbb{P}_{Y}(t)=E\left(t^{Y}\right)=\sum_{y} P_{Y}(y) t^{y}
$$

## Simple example

Suppose $P_{X}(x)=x / 10$ for $x=1,2,3,4, P_{X}(x)=0$ otherwise. Then

$$
\mathbb{P}_{X}(t)=.1 t+.2 t^{2}+.3 t^{3}+.4 t^{4}
$$

## Poisson distribution

Let $X$ be Poisson with mean $\mu$. Then

$$
\mathbb{P}_{X}(t)=\sum_{k=0}^{\infty} \frac{e^{-\mu} \mu^{k}}{k!} \cdot t^{k}=\sum_{k=0}^{\infty} \frac{e^{-\mu}(\mu t)^{k}}{k!}=e^{-\mu} e^{\mu t}=e^{\mu(t-1)}
$$

## Properties of pgfs

- Plugging in $t=1$ gives total probability=1:

$$
\mathbb{P}_{Y}(1)=\sum_{y} P_{Y}(y)=1
$$

- Differentiating and plugging in $t=1$ gives $E(Y)$ :

$$
\begin{aligned}
\mathbb{P}_{Y}^{\prime}(t) & =\sum_{y} P_{Y}(y) \cdot y t^{y-1} \\
\mathbb{P}_{Y}^{\prime}(1) & =\sum_{y} P_{Y}(y) \cdot y=E(Y)
\end{aligned}
$$

- Variance is $\operatorname{Var}(Y)=\mathbb{P}_{Y}^{\prime \prime}(1)+\mathbb{P}_{Y}^{\prime}(1)-\left(\mathbb{P}_{Y}^{\prime}(1)\right)^{2}$ :

$$
\begin{aligned}
\mathbb{P}_{Y}^{\prime \prime}(t) & =\sum_{y} P_{Y}(y) \cdot y(y-1) t^{y-2} \\
\mathbb{P}_{Y}^{\prime \prime}(1) & =\sum_{y} P_{Y}(y) \cdot y(y-1)=E(Y(Y-1))=E\left(Y^{2}\right)-E(Y) \\
\operatorname{Var}(Y) & =E\left(Y^{2}\right)-(E(Y))^{2}=\mathbb{P}_{Y}^{\prime \prime}(1)+\mathbb{P}_{Y}^{\prime}(1)-\left(\mathbb{P}_{Y}^{\prime}(1)\right)^{2}
\end{aligned}
$$

## Example of pgf properties: Poisson

## Properties

$$
\begin{aligned}
\mathbb{P}_{Y}(t) & =\sum_{y} P_{Y}(y) t^{Y} \\
\mathbb{P}_{Y}(1) & =1 \\
E(Y) & =\mathbb{P}_{Y}^{\prime}(1) \\
\operatorname{Var}(Y) & =E\left(Y^{2}\right)-(E(Y))^{2}=\mathbb{P}_{Y}^{\prime \prime}(1)+\mathbb{P}_{Y}^{\prime}(1)-\left(\mathbb{P}_{Y}^{\prime}(1)\right)^{2}
\end{aligned}
$$

- For $X$ Poisson with mean $\mu$, we saw $\mathbb{P}_{X}(t)=e^{\mu(t-1)}$.
- $\mathbb{P}_{X}(1)=e^{\mu(1-1)}=e^{0}=1$
- $\mathbb{P}_{X}^{\prime}(t)=\mu e^{\mu(t-1)} \quad$ and $\quad \mathbb{P}_{X}^{\prime}(1)=\mu e^{\mu(1-1)}=\mu$ Indeed, $E(X)=\mu$ for Poisson.
- $\mathbb{P}_{X}^{\prime \prime}(t)=\mu^{2} e^{\mu(t-1)}$
$\mathbb{P}_{X}^{\prime \prime}(1)=\mu^{2} e^{\mu(1-1)}=\mu^{2}$
$\operatorname{Var}(X)=\mathbb{P}_{X}^{\prime \prime}(1)+\mathbb{P}_{X}^{\prime}(1)-\left(\mathbb{P}_{X}^{\prime}(1)\right)^{2}=\mu^{2}+\mu-\mu^{2}=\mu$ Indeed, $\operatorname{Var}(X)=\mu$ for Poisson.


## Probability generating function of $X+Y$

Consider adding rolls of two biased dice together:

$$
\begin{aligned}
X & =\text { roll of biased } 3 \text {-sided die } \\
Y & =\text { roll of biased } 5 \text {-sided die }
\end{aligned}
$$

$$
\begin{aligned}
& P(X+Y=2) \quad=P_{X}(1) P_{Y}(1) \\
& P(X+Y=3)=P_{X}(1) P_{Y}(2)+P_{X}(2) P_{Y}(1) \\
& P(X+Y=4)=P_{X}(1) P_{Y}(3)+P_{X}(2) P_{Y}(2)+P_{X}(3) P_{Y}(1) \\
& P(X+Y=5)=P_{X}(1) P_{Y}(4)+P_{X}(2) P_{Y}(3)+P_{X}(3) P_{Y}(2) \\
& P(X+Y=6)=P_{X}(1) P_{Y}(5)+P_{X}(2) P_{Y}(4)+P_{X}(3) P_{Y}(3) \\
& P(X+Y=7) \quad=\quad P_{X}(2) P_{Y}(5)+P_{X}(3) P_{Y}(4) \\
& P(X+Y=8)= \\
& P_{X}(3) P_{Y}(5)
\end{aligned}
$$

## Probability generating function of $X+Y$

$$
\begin{aligned}
\mathbb{P}_{X}(t)= & P_{X}(1) t+P_{X}(2) t^{2}+P_{X}(3) t^{3} \\
\mathbb{P}_{Y}(t)= & P_{Y}(1) t+P_{Y}(2) t^{2}+P_{Y}(3) t^{3}+P_{Y}(4) t^{4}+P_{Y}(5) t^{5} \\
\mathbb{P}_{X}(t) \mathbb{P}_{Y}(t)= & \left(P_{X}(1) P_{Y}(1)\right) t^{2}+ \\
& \left(P_{X}(1) P_{Y}(2)+P_{X}(2) P_{Y}(1) \quad t^{3}+\right. \\
& \left(P_{X}(1) P_{Y}(3)+P_{X}(2) P_{Y}(2)+P_{X}(3) P_{Y}(1)\right) t^{4}+ \\
& \left(P_{X}(1) P_{Y}(4)+P_{X}(2) P_{Y}(3)+P_{X}(3) P_{Y}(2)\right) t^{5}+ \\
& \left(P_{X}(1) P_{Y}(5)+P_{X}(2) P_{Y}(4)+P_{X}(3) P_{Y}(3)\right) t^{6}+ \\
& \left(\begin{array}{rr}
\left.P_{X}(2) P_{Y}(5)+P_{X}(3) P_{Y}(4)\right) t^{7}+ \\
& ( \\
\left.P_{X}(3) P_{Y}(5)\right) t^{8} \\
= & \\
& P(X+Y=2) t^{2}+\cdots+P(X+Y=8) t^{8} \\
= & \mathbb{P}_{X+Y}(t)
\end{array}\right.
\end{aligned}
$$

## Probability generating function of $X+Y$

Suppose $X$ and $Y$ are independent random variables. Then

$$
\mathbb{P}_{X+Y}(t)=\mathbb{P}_{X}(t) \cdot \mathbb{P}_{Y}(t)
$$

## Proof.

$$
\mathbb{P}_{X+Y}(t)=E\left(t^{X+Y}\right)=E\left(t^{X} t^{Y}\right)=E\left(t^{X}\right) E\left(t^{Y}\right)=\mathbb{P}_{X}(t) \mathbb{P}_{Y}(t)
$$

## Second proof.

- 

$$
\mathbb{P}_{X}(t) \cdot \mathbb{P}_{Y}(t)=\left(\sum_{x} P(X=x) t^{x}\right)\left(\sum_{y} P(Y=y) t^{y}\right)
$$

- Multiply that out and collect by powers of $t$. The coefficient of $t^{w}$ is

$$
\sum_{x} P(X=x) P(Y=w-x)
$$

- Since $X, Y$ are independent, this simplifies to $P(X+Y=w)$, which is the coefficient of $t^{w}$ in $\mathbb{P}_{X+Y}(t)$.


## Binomial distribution

- Suppose $X_{1}, \ldots, X_{n}$ are i.i.d. with $P\left(X_{i}=1\right)=p, P\left(X_{i}=0\right)=1-p$ (Bernoulli distribution).
- $\mathbb{P}_{X_{i}}(t)=(1-p) t^{0}+p t^{1}=1-p+p t$
- The $\operatorname{Binomial}(n, p)$ distribution is $X=X_{1}+\cdots+X_{n}$.
- $\mathbb{P}_{X}(t)=\mathbb{P}_{X_{1}}(t) \cdots \mathbb{P}_{X_{n}}(t)=(1-p+p t)^{n}$
- Check:

$$
((1-p)+p t)^{n}=\sum_{k=0}^{n}\binom{n}{k}(1-p)^{n-k} p^{k} \cdot t^{k}=\sum_{k=0}^{n} P_{Y}(k) t^{k}
$$

where $Y$ is the $\operatorname{Binomial}(n, p)$ distribution.

- Note: If $X$ and $Y$ have the same pgf, then they have the same distribution.


## Moment generating function (mgf) in Chapter 1.1 \& 2.3

- Let $Y$ be a continuous or discrete random variable.
- The moment generating function (mgf) is $\mathbb{M}_{Y}(\theta)=E\left(e^{\theta Y}\right)$.
- Discrete: Same as the pgf with $t=e^{\theta}$, and not just for integer-valued variables:

$$
\mathbb{M}_{Y}(\theta)=\sum_{y} P_{Y}(y) e^{\theta y}
$$

- Continuous: It's essentially the "2-sided Laplace transform" of $f_{Y}(y)$ :

$$
\mathbb{M}_{Y}(\theta)=\int_{-\infty}^{\infty} f_{Y}(y) e^{\theta y} d y
$$

- The derivative tricks for pgf have analogues for mgf:

$$
\begin{aligned}
\frac{d^{k}}{d \theta^{k}} \mathbb{M}_{Y}(\theta) & =E\left(Y^{k} e^{\theta Y}\right) \\
\mathbb{M}_{Y}^{(k)}(0) & =E\left(Y^{k}\right)=k \text { th moment of } Y
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{M}_{Y}(0)=E(1)=1=\text { Total probability } \\
& \mathbb{M}_{Y}^{\prime}(0)=E(Y)=\text { Mean } \\
& \mathbb{M}_{Y}^{\prime \prime}(0)=E\left(Y^{2}\right) \quad \text { so } \quad \operatorname{Var}(Y)=\mathbb{M}_{Y}^{\prime \prime}(0)-\left(\mathbb{M}_{Y}^{\prime}(0)\right)^{2}
\end{aligned}
$$

## Non-parametric hypothesis tests

- Parametric hypothesis tests assume the random variable has a specific probability distribution (normal, binomial, geometric, ...). The competing hypotheses both assume the same type of distribution but with different parameters.
- A distribution free hypothesis test (a.k.a. non-parametric hypothesis test) doesn't assume any particular type of distribution. So it can be applied even if the distribution isn't known.
- If the type of distribution is known, a parametric test that takes it into account can be more precise (smaller Type II error for same Type I error) than a non-parametric test that doesn't.


## Wilcoxon Signed Rank Test

- Let $X$ be a continuous random variable with a symmetric distribution.
- Let $M$ be the median of $X$ :

$$
P(X>M)=P(X<M)=1 / 2, \text { or } F_{X}(M)=.5 .
$$

- Note that if the pdf of $X$ is symmetric, the median equals the mean. If it's not symmetric, they usually are not equal.
- We will develop a test for

$$
H_{0}: M=M_{0} \quad \text { vs. } \quad H_{1}: M \neq M_{0}\left(\text { or } M<M_{0} \text { or } M>M_{0}\right)
$$

based on analyzing a sample $x_{1}, \ldots, x_{n}$ of data.

- Example: If $U, V$ have the same distribution, then $X=U-V$ has a symmetric distribution centered around its median, 0.




## Computing the Wilcoxon test statistic

Is median $M_{0}=5$ plausible, given data 1.1, 8.2, 2.3, 4.4, 7.5, 9.6?

- Get a sample $x_{1}, \ldots, x_{n}: 1.1,8.2,2.3,4.4,7.5,9.6$
- Compute the following:
- Compute each $x_{i}-M_{0}$.
- Order $\left|x_{i}-M_{0}\right|$ from smallest to largest and assign ranks $1,2, \ldots, n$ ( $1=$ smallest, $n=$ largest).
- Let $r_{i}$ be the rank of $\left|x_{i}-M_{0}\right|$ and $z_{i}= \begin{cases}0 & \text { if } x_{i}-M_{0}<0 \\ 1 & \text { if } x_{i}-M_{0}>0\end{cases}$

Note: Since $X$ is continuous, $P\left(X-M_{0}=0\right)=0$.

- Compute test statistic $w=z_{1} r_{1}+\cdots+z_{n} r_{n}$ (sum of $r_{i}$ 's with $x_{i}>M_{0}$ )

| $i$ | $x_{i}$ | $x_{i}-M_{0}$ | $r_{i}$ | sign | $z_{i}$ |  |
| ---: | ---: | ---: | ---: | ---: | :---: | :--- |
| 1 | 1.1 | -3.9 | 5 | - | 0 |  |
| 2 | 8.2 | 3.2 | 4 | + | 1 | $\left\|x_{i}-M_{0}\right\|$ in order: |
| 3 | 2.3 | -2.7 | 3 | - | 0 | $.6,2.5,2.7,3.2,3.9,4.6$ |
| 4 | 4.4 | -.6 | 1 | - | 0 |  |
| 5 | 7.5 | 2.5 | 2 | + | 1 | $w=4+2+6=12$ |
| 6 | 9.6 | 4.6 | 6 | + | 1 |  |

## Computing the pdf of $W$

- The variable whose rank is $i$ contributes either 0 or $i$ to $W$. Under the null hypothesis, both of those have probability $1 / 2$.
Call this contribution $W_{i}$, either 0 or $i$ with prob. 1/2. Then

$$
W=W_{1}+\cdots+W_{n}
$$

- The $W_{i}$ 's are independent because the signs are independent.
- The pgf of $W_{i}$ is

$$
\mathbb{P}_{W_{i}}(t)=E\left(t^{W_{i}}\right)=\frac{1}{2} t^{0}+\frac{1}{2} t^{i}=\frac{1+t^{i}}{2}
$$

- The pgf of $W$ is

$$
\mathbb{P}_{W}(t)=\mathbb{P}_{W_{1}+\cdots+W_{n}}(t)=\mathbb{P}_{W_{1}}(t) \cdots \mathbb{P}_{W_{n}}(t)=2^{-n} \prod_{i=1}^{n}\left(1+t^{i}\right)
$$

- Expand the product. The coefficient of $t^{w}$ is $P(W=w)$, the pdf of $W$.


## Distribution of $W$ for $n=6$

- $\quad \mathbb{P}_{W}(t)=\frac{1}{2^{6}}\left(1+t^{1}\right)\left(1+t^{2}\right)\left(1+t^{3}\right)\left(1+t^{4}\right)\left(1+t^{5}\right)\left(1+t^{6}\right)$

$$
=\frac{1}{64}\left(1+t+t^{2}+2 t^{3}+2 t^{4}+3 t^{5}+4 t^{6}+4 t^{7}\right.
$$

$$
+4 t^{8}+5 t^{9}+5 t^{10}+5 t^{11}+5 t^{12}+4 t^{13}
$$

$$
\left.+4 t^{14}+4 t^{15}+3 t^{16}+2 t^{17}+2 t^{18}+t^{19}+t^{20}+t^{21}\right)
$$

- Example: $P(W=6)=4 / 64=1 / 16=.0625$


## Cumulative distribution of $W$

| w | $P(W \leqslant w)$ | w | $P(W \leqslant w)$ | w | $P(W \leqslant w)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $1 / 64=0.015625$ | 8 | $22 / 64=0.343750$ | 16 | $57 / 64=0.890625$ |
| 1 | $2 / 64=0.031250$ | 9 | $27 / 64=0.421875$ | 17 | $59 / 64=0.921875$ |
| 2 | $3 / 64=0.046875$ | 10 | $32 / 64=0.500000$ | 18 | $61 / 64=0.953125$ |
| 3 | $5 / 64=0.078125$ | 11 | $37 / 64=0.578125$ | 19 | $62 / 64=0.968750$ |
| 4 | $7 / 64=0.109375$ | 12 | $42 / 64=0.656250$ | 20 | $63 / 64=0.984375$ |
| 5 | $10 / 64=0.156250$ | 13 | $46 / 64=0.718750$ | 21 | $64 / 64=1.000000$ |
| 6 | $14 / 64=0.218750$ | 14 | $50 / 64=0.781250$ |  |  |
| 7 | $18 / 64=0.281250$ | 15 | $54 / 64=0.843750$ |  |  |

(The cdf is defined at all reals. It jumps at $w=0, \ldots, 21$ and is constant in-between.)

## Distribution of $W$ for $n=6$

## PDF

Wilcoxon Signed Rank Statistic for $\mathrm{n}=\mathbf{6}$


## CDF

Wilcoxon Signed Rank Statistic for $\mathrm{n}=\mathbf{6}$


## Properties of $W$ (assuming $H_{0}: M=M_{0}$ )

## Range

- When all signs are negative, $w=0+0+\cdots=0$.
- When all signs are positive, $w=1+2+\cdots+n=n(n+1) / 2$.
- $w$ ranges from 0 to $n(n+1) / 2$.


## Properties of $W$ (assuming $H_{0}: M=M_{0}$ )



## Reflecting a point

Reflecting point $x$ around $M_{0}$ gives $M_{0}-x=y-M_{0}$, so $y=2 M_{0}-x$.

## Symmetry

If $H_{0}$ is correct, then reflecting all data in the sample around $M_{0}$ by setting $y_{i}=2 M_{0}-x_{i}$ for all $i$ :

- gives new values $y_{1}, \ldots, y_{n}$ equally probable to $x_{1}, \ldots, x_{n}$;
- keeps same magnitudes $\left|x_{i}-M_{0}\right|=\left|y_{i}-M_{0}\right|$ and same ranks;
- inverts all signs, switching whether a rank is / isn't included in $w$;
- sends $w$ to $\frac{n(n+1)}{2}-w$.

So the pdf of $W$ is symmetric about the center value $w=\frac{n(n+1)}{4}$.

## Properties of $W$ (assuming $H_{0}: M=M_{0}$ )

## Mean and variance

Mean: $E(W)=\frac{1}{4} n(n+1) \quad$ Variance: $\operatorname{Var}(W)=\frac{1}{24} n(n+1)(2 n+1)$

## Central Limit Theorem

When $n>12$, the $Z$-score of $W$ is approximately standard normal:

$$
Z=\frac{W-n(n+1) / 4}{\sqrt{n(n+1)(2 n+1) / 24}} \quad F_{W}(w) \approx \Phi(z) \text { for } n>12
$$

- $W_{1}, W_{2}, \ldots$ are independent but not identically distributed.
- A generalization of CLT by Lyapunov applies; see "Lyapunov CLT" in the Central Limit Theorem article on Wikipedia.


## Computing $P$-value

- Note that $P(W \geqslant w)=P\left(W \leqslant \frac{n(n+1)}{2}-w\right)$ by symmetry of the pdf. Let $w_{1}=\min \left\{w, \frac{n(n+1)}{2}-w\right\}$ and $w_{2}=\max \left\{w, \frac{n(n+1)}{2}-w\right\}$.
- Intuitively, $w$ is close to $n(n+1) / 4$ when $H_{0}$ is true, and much smaller or much larger when $H_{0}$ is false.
- Two-sided test: $H_{0}: M=5$ vs. $H_{1}: M \neq 5$.

Values "more extreme than $w$ " are those farther away from $n(n+1) / 4$ than $w$ in either direction:

$$
P=P\left(W \leqslant w_{1}\right)+P\left(W \geqslant w_{2}\right)=2 P\left(W \leqslant w_{1}\right)
$$

- In the example, $w=12$ and $\frac{n(n+1)}{2}=\frac{6 \cdot 7}{2}=21$, giving

$$
P=P(W \geqslant 12)+P(W \leqslant 9)=2 P(W \leqslant 9)=2(27 / 64)=0.843750 .
$$

## Performing the Wilcoxon Signed Rank Test

- Hypotheses:

$$
H_{0}: M=5 \quad \text { vs. } \quad H_{1}: M \neq 5
$$

- Choose a significance level $\alpha$ : $\quad \alpha=5 \%$
- Get a sample $x_{1}, \ldots, x_{n}$ : 1.1, 8.2, 2.3, 4.4, 7.5, 9.6
- Compute test statistic $w: \quad w=12$
- Compute $P$-value:
$P=0.843750$
- Decision:

Reject $H_{0}$ if $P \leqslant \alpha$.
Accept $H_{0}$ if $P>\alpha$.
$.843750>.05$ so accept $H_{0}$.

## One-sided tests

Example: Test $H_{0}: M=5$ but true median=10

- $>\frac{1}{2}$ chance for $x_{i}-M=x_{i}-5$ to be positive and $<\frac{1}{2}$ chance to be negative.
- This increases the chance of including each rank in the sum for $W$, and leads to higher values of $W$.

- One-sided test: $H_{0}: M=5$ vs. $H_{1}: M>5$. Higher medians lead to higher values of $w$, so values "more extreme than $w$ " are $\geqslant w$ :

$$
P=P(W \geqslant w)=P(W \geqslant 12)=1-P(W \leqslant 11)=27 / 64=0.421875
$$

- One-sided test: $H_{0}: M=5$ vs. $H_{1}: M<5$.

Lower medians lead to lower values of $w$, so values "more extreme than $w$ " are $\leqslant w$ :

$$
P=P(W \leqslant w)=P(W \leqslant 12)=42 / 64=0.656250
$$

## Computing $w$ and $P$-value in Matlab or R

## Matlab

$\gg x=[1.1,8.2,2.3,4.4,7.5,9.6]$;
$\gg \mathrm{MO}=5$;
>> signrank (x, MO)
0.8438
$\gg[p, h, s t a t s]=$ signrank $(x, M 0)$
$\mathrm{p}=0.8438$
$\mathrm{h}=0$
stats $=$
signedrank: 9
>> stats.signedrank
9
signedrank: 9
>> stats.signedrank
9

## R

```
> x = c(1.1,8.2,2.3,4.4,7.5,9.6)
> test = wilcox.test (x,mu=5)
> test$statistic
    V
12
> test$p.value
    [1] 0.84375
```

Note stats.signedrank $=9$ is our $w_{1}$, which is not necessarily $w$.

## Critical region for a given significance level $\alpha$

## Cumulative distribution of $W$

| w | $P(W \leqslant w)$ | w | $P(W \leqslant w)$ | w | $P(W \leqslant w)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $1 / 64=0.015625$ | 8 | $22 / 64=0.343750$ | 16 | $57 / 64=0.890625$ |
| 1 | $2 / 64=0.031250$ | 9 | $27 / 64=0.421875$ | 17 | $59 / 64=0.921875$ |
| 2 | $3 / 64=0.046875$ | 10 | $32 / 64=0.500000$ | 18 | $61 / 64=0.953125$ |
| 3 | $5 / 64=0.078125$ | 11 | $37 / 64=0.578125$ | 19 | $62 / 64=0.968750$ |
| 4 | $7 / 64=0.109375$ | 12 | $42 / 64=0.656250$ | 20 | $63 / 64=0.984375$ |
| 5 | $10 / 64=0.156250$ | 13 | $46 / 64=0.718750$ | 21 | $64 / 64=1.000000$ |
| 6 | $14 / 64=0.218750$ | 14 | $50 / 64=0.781250$ |  |  |
| 7 | $18 / 64=0.281250$ | 15 | $54 / 64=0.843750$ |  |  |

Significance level $\alpha=.05$

- $P \leqslant .05$ for " $w \leqslant 0$ or $w \geqslant 21$ "
- The critical region (where $H_{0}$ is rejected) is $w=0$ or 21.
- The acceptance region (where $H_{0}$ is accepted) is $1 \leqslant w \leqslant 20$.
- The Type I error rate is really $2 / 64=0.031250$.

Discrete distributions will often have Type I error rate $<\alpha$.

## Critical region for a given significance level $\alpha$

## Cumulative distribution of $W$

| w | $P(W \leqslant w)$ | w | $P(W \leqslant w)$ | w | $P(W \leqslant w)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $1 / 64=0.015625$ | 8 | $22 / 64=0.343750$ | 16 | $57 / 64=0.890625$ |
| 1 | $2 / 64=0.031250$ | 9 | $27 / 64=0.421875$ | 17 | $59 / 64=0.921875$ |
| 2 | $3 / 64=0.046875$ | 10 | $32 / 64=0.500000$ | 18 | $61 / 64=0.953125$ |
| 3 | $5 / 64=0.078125$ | 11 | $37 / 64=0.578125$ | 19 | $62 / 64=0.968750$ |
| 4 | $7 / 64=0.109375$ | 12 | $42 / 64=0.656250$ | 20 | $63 / 64=0.984375$ |
| 5 | $10 / 64=0.156250$ | 13 | $46 / 64=0.718750$ | 21 | $64 / 64=1.000000$ |
| 6 | $14 / 64=0.218750$ | 14 | $50 / 64=0.781250$ |  |  |
| 7 | $18 / 64=0.281250$ | 15 | $54 / 64=0.843750$ |  |  |

## Other significance levels

- $\alpha=.01: P \geqslant 2(.015625)=.031250$ for all $w$.

So we never have $P \leqslant .01$. Thus, $H_{0}$ is always accepted.

- $\alpha=.10$ : Accept $H_{0}$ for $3 \leqslant w \leqslant 18$.


## Mann-Whitney Test, a.k.a. "Wilcoxon two-sample test"

- Let $X, Y$ be random variables whose distributions are the same except for a possible shift, $Y \sim X+C$ for some constant $C$.
- We will test the hypotheses
$H_{0}: X$ and $Y$ have the same median (i.e., $C=0$ ).
$H_{1}: X$ and $Y$ do not have the same median (i.e., $C \neq 0$ ).
- This is a non-parametric test. In practice, it's used if the plots look similar but possibly shifted. However, if there are other differences in the distributions than just the shift, the $P$-values will be off.
- Two sets of authors (Mann-Whitney vs. Wilcoxon) developed essentially equivalent tests for this; we'll do the one due to Wilcoxon.


## Computing the statistic $U$

Wilcoxon's definition

- Data:
$\begin{array}{ll}\text { Sample } x_{1}, \ldots, x_{m} \text { for } X \text { : } & 11,13(m=2) \\ \text { Sample } x_{m+1}, \ldots, x_{m+n} \text { for } Y: & 12,15,14(n=3)\end{array}$
- Replace data by ranks from smallest (1) to largest $(m+n)$ :

Ranks for $X$ :
Ranks for $Y$ :

- $\boldsymbol{U}$ is the sum of the $\boldsymbol{X}$ ranks: $U_{0}=1+3=4$
- Ties may happen in discrete case. If there's a tie for 2nd and 3rd smallest, use 2.5 for both of them.
- This is a two sample test.

The Wilcoxon Signed Rank test previously covered is a one sample test.

## Computing the statistic $U$

- We'll call Mann-Whitney's statistic $\widetilde{U}$, although they called it $U$.
- $\widetilde{U}$ is the number of pairs $(x, y)$ with $x$ in the $X$ sample, $y$ in the $Y$ sample, and $x<y$.
- Data:

Sample $x_{1}, \ldots, x_{m}$ for $X: \quad 11,13(m=2)$
Sample $x_{m+1}, \ldots, x_{m+n}$ for $Y$ : $12,15,14(n=3)$

- $11<12,11<15,11<14,13<15,13<14$ so $\widetilde{U}=5$.
- The statistics are related by $\widetilde{U}=m n+m(m+1) / 2-U$.
- We'll stick with Wilcoxon's definition and ignore this one.


## Computing the distribution of $U$ : permutation test

- Under $H_{0}, X$ and $Y$ have the same distribution. So we are just as likely to have seen any $m=2$ of those numbers for the $X$ sample and the other $n=3$ for $Y$. Resample them as follows:
- Permute the $m+n=2+3=5$ numbers in all $(m+n)!=120$ ways.
- Treat the first $m$ of them as a new sample of $X$ and the last $n$ as a new sample of $Y$, compute $U$ for each.

| $X$ | $Y$ | $U$ |
| :---: | :---: | :---: |
| 11,13 | $12,15,14$ | 4 |
| 11,13 | $12,14,15$ | 4 |
| 11,13 | $14,12,15$ | 4 |
| 11,13 | $14,15,12$ | 4 |
| 11,13 | $15,12,14$ | 4 |
| 11,13 | $15,14,12$ | 4 |
| 13,11 | $12,15,14$ | 4 |
| 13,11 | $12,14,15$ | 4 |
| 13,11 | $14,12,15$ | 4 |
| 13,11 | $14,15,12$ | 4 |
| 13,11 | $15,12,14$ | 4 |
| 13,11 | $15,14,12$ | 4 |
| 11,12 | $13,15,14$ | 3 |
| 11,12 | $13,14,15$ | 3 |

- $m!n!=2!3!=2 \cdot 6=12$ of the permutations give the same partition of numbers for $X$ and $Y$.
- So it would suffice to list partitions instead of permutations.
- There are $\frac{(m+n)!}{m!n!}=\binom{m+n}{n}$ partitions; $\binom{5}{2}=10$ partitions in this case.


## Computing the distribution of $U$ : permutation test

- Resample the data by partitioning the numbers between $X \& Y$ in all $\binom{m+n}{m}=\binom{2+3}{2}=\binom{5}{2}=10$ possible ways. Compute $U$ for each. As a short cut, we can just work with the ranks:

| $X$ ranks | $Y$ ranks | $U$ |
| :---: | :---: | :---: |
| 1,2 | $3,4,5$ | 3 |
| 1,3 | $2,4,5$ | 4 |
| 1,4 | $2,3,5$ | 5 |
| 1,5 | $2,3,4$ | 6 |
| 2,3 | $1,4,5$ | 5 |
| 2,4 | $1,3,5$ | 6 |
| 2,5 | $1,3,4$ | 7 |
| 3,4 | $1,2,5$ | 7 |
| 3,5 | $1,2,4$ | 8 |
| 4,5 | $1,2,3$ | 9 |

- Compute the PDF and CDF of $U$ from this (all 10 cases are equally likely):

$$
\begin{array}{ccc}
U & P_{U}(u) & F_{U}(u) \\
\hline<3 & 0 / 10 & 0 / 10 \\
3 & 1 / 10 & 1 / 10 \\
4 & 1 / 10 & 2 / 10 \\
5 & 2 / 10 & 4 / 10 \\
6 & 2 / 10 & 6 / 10 \\
7 & 2 / 10 & 8 / 10 \\
8 & 1 / 10 & 9 / 10 \\
9 & 1 / 10 & 10 / 10
\end{array}
$$

- $P$-value of $U_{0}=4$ : The mirror image of 4 is 8 .

$$
P=P(U \leqslant 4)+P(U \geqslant 8)=2 P(U \leqslant 4)=2(.2)=.4
$$

## Computing $P$-value and $U$ in Matlab or R

## Matlab <br> R

```
>> ranksum([11,13],[12,15,14])
```

        0.4000
    ```
\(>\) test \(=\) wilcox.test \((c(11,13)\),
\(+\)
                                    \(c(12,15,14))\)
> test\$p.value
[1] 0.4
> test\$statistic
W
1
```

$\mathrm{p}=0.4000$
$\mathrm{~h}=0$
stats $=$
ranksum: 4
>> stats.ranksum
4

Note: ". . ." lets you break a command onto two lines, both at the command line and in scripts. If you type it on one line, don't use ". . ."

## Properties of $U$

- Minimum: $1+2+\cdots+m=m(m+1) / 2$

Maximum: $(n+1)+(n+2)+\cdots+(n+m)=m(2 n+m+1) / 2$

- Assuming $H_{0}$ :

Expected value: $E(U)=m(m+n+1) / 2$
Variance: $\operatorname{Var}(U)=m n(m+n+1) / 12$

- Symmetry of PDF: In the sample data, switch the $i$ th least and $i$ th largest elements for all $i$.

The ranks added together are replaced by the complementary ranks, so $U$ goes to its mirror image around $m(m+n+1) / 2$.

## Expected value of $U$

- Each rank has probability $\frac{m}{m+n}$ to be in the $X$ group and hence in the rank sum.
- Let $U_{j}=\left\{\begin{array}{ll}0 & \text { prob. } n /(m+n) ; \\ j & \text { prob. } m /(m+n)\end{array} \quad\right.$ and $U=U_{1}+\cdots+U_{m+n}$.
- The $U_{j}$ 's are dependent!
- $E\left(U_{j}\right)=0 \cdot \frac{n}{m+n}+j \cdot \frac{m}{m+n}=j \cdot \frac{m}{m+n}$
- Expectation is still additive, even though the $U_{j}$ 's are dependent:

$$
\begin{aligned}
E(U) & =E\left(U_{1}\right)+\cdots+E\left(U_{m+n}\right) \\
& =(1+2+\cdots+(m+n)) \frac{m}{m+n} \\
& =\frac{(m+n)(m+n+1)}{2} \cdot \frac{m}{m+n}=\frac{m(m+n+1)}{2}
\end{aligned}
$$

- Variance is harder: it is not additive since the $U_{j}$ 's are dependent.


## Covariance

- Let $X$ and $Y$ be random variables, possibly dependent.
- Let $\mu_{X}=E(X), \mu_{Y}=E(Y)$
- $\operatorname{Var}(X+Y)=E\left(\left(X+Y-\mu_{X}-\mu_{Y}\right)^{2}\right)=E\left(\left(\left(X-\mu_{X}\right)+\left(Y-\mu_{Y}\right)\right)^{2}\right)$

$$
\begin{aligned}
& =E\left(\left(X-\mu_{X}\right)^{2}\right)+E\left(\left(Y-\mu_{Y}\right)^{2}\right)+2 E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right) \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

where the covariance of $X$ and $Y$ is defined as

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)
$$

- Expanding gives an alternate formula

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)
$$

$$
=E(X Y)-\mu_{X} E(Y)-\mu_{Y} E(X)+\mu_{X} \mu_{Y}=E(X Y)-E(X) E(Y)
$$

- $\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)+\underset{1 \leqslant i<j \leqslant n}{2 \sum_{1}} \operatorname{Cov}\left(X_{i}, X_{j}\right)$


## Variance of $U$

## Variance of $U_{j}$

- Let $U_{j}=\left\{\begin{array}{ll}0 & \text { prob. } n /(m+n) ; \\ j & \text { prob. } m /(m+n)\end{array} \quad\right.$ and $U=U_{1}+\cdots+U_{m+n}$.
- $E\left(U_{j}\right)=j \cdot \frac{m}{m+n}$ and $E\left(U_{j}^{2}\right)=j^{2} \cdot \frac{m}{m+n}$
- $\operatorname{Var}\left(U_{j}\right)=E\left(U_{j}^{2}\right)-\left(E\left(U_{j}\right)\right)^{2}=j^{2} \frac{m}{m+n}-j^{2} \frac{m^{2}}{(m+n)^{2}}=j^{2} \frac{m n}{(m+n)^{2}}$

Covariance between $U_{i}$ and $U_{j}$ for $i \neq j$

- $U_{i} U_{j}$ is 0 if the rank $i$ and/or $j$ element is in the $Y$ sample. It's $i \cdot j$ if both are in the $X$ sample, which has prob. $\frac{m(m-1)}{(m+n)(m+n-1)}$.
- $E\left(U_{i} U_{j}\right)=i j \cdot \frac{m(m-1)}{(m+n)(m+n-1)}$
- $\operatorname{Cov}\left(U_{i}, U_{j}\right)=E\left(U_{i} U_{j}\right)-E\left(U_{i}\right) E\left(U_{j}\right)$

$$
=i j \cdot\left(\frac{m(m-1)}{(m+n)(m+n-1)}-\frac{m^{2}}{(m+n)^{2}}\right)=-i j \frac{m n}{(m+n)^{2}(m+n-1)}
$$

## Variance of $U$

## Variance computation

- $\operatorname{Var}\left(U_{j}\right)=j^{2} \frac{m n}{(m+n)^{2}} \quad$ and $\quad \operatorname{Cov}\left(U_{i}, U_{j}\right)=-i j \frac{m n}{(m+n)^{2}(m+n-1)}$ (if $i \neq j$ )
- $\operatorname{Var}(U)=$ sum of variances + twice the sum of covariances:
$\sum_{j=1}^{m+n} j^{2} \frac{m n}{(m+n)^{2}}-2 \sum_{1 \leqslant i<j \leqslant m+n} i j \cdot \frac{m n}{(m+n)^{2}(m+n-1)}=\cdots=\frac{\boldsymbol{m} \boldsymbol{n}(\boldsymbol{m}+\boldsymbol{n}+\mathbf{1})}{\mathbf{1 2}}$


## Details

Plug in these identities (at $k=m+n$ ) and simplify:

- $1+2+\cdots+k=k(k+1) / 2$
- $1^{2}+2^{2}+\cdots+k^{2}=k(k+1)(2 k+1) / 6$
- $2 \sum_{1 \leqslant i<j \leqslant k} i \cdot j=(1+2+\cdots+k)^{2}-\left(1^{2}+2^{2}+\cdots+k^{2}\right)=k(k-1)(k+1)(3 k+2) / 12$


## Variations

## Unpaired data

- Let $f\left(\left[x_{1}, \ldots, x_{m}\right],\left[x_{m+1}, \ldots, x_{m+n}\right]\right)$ be any test statistic on two vectors of samples (a two sample test statistic).
- Follow the same procedure as for computing $U$ and its $P$-value, but compute $f$ instead of $U$ on each permutation of the $x$ 's.
- Ewens \& Grant explains this for the $t$-statistic, pages 141 \& 464.


## Paired data

- Unpaired: If $m$ subjects are measured who do not have a condition and $n$ subjects are measured who do have it, and these are independent, then the Mann-Whitney test could be used.
- Paired: Suppose there are $n$ subjects, with
$x_{i}=$ measurement before treatment
$y_{i}=$ measurement after treatment, $i=1, \ldots, n$.
- Mann-Whitney on $\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right]$ ignores the pairing.
- Use Wilcoxon Signed Rank test on $x_{1}-y_{1}, \ldots, x_{n}-y_{n}$ : median=0?

