Math 283, Spring 2006, Prof. Tesler - May 22, 2006
Markov chains and the number of occurrences of a word in a sequence (Chapter 4.5-4.9; 11.1,2,4,6)

1. Finite state machine for counting occurrences of a word or motif

We revisit the problem of counting the number of occurrences of a word in a sequence. This is a finite state machine for analyzing occurrences of the word $w=$ GAGA allowing for overlaps:

This one does not allow overlaps:

This one detects overlapping occurrences of the motif $\{$ GAGA, GTGA $\}$:

For non-overlapping occurrences, replace the outgoing edges from GAGA and GTGA by copies of 0's outgoing edges.

More generally, finite state machines can be constructed for any regular expression.
Using these finite state machines: Start in the state 0 . Scan a sequence $\tau=\tau_{1} \tau_{2} \ldots \tau_{N}$ one character at a time from left to right. When examining τ_{j}, move from the current state to the next state according to which edge τ_{j} is on.
(In a general Markov chain, there is not necessarily one starting state, but instead, a probability of choosing each state as the starting state.)
$M 3$ is shown in the regular notation for finite automata, with τ_{j} appearing on one of the edges; $M 1, M 2$ are shown in the notation for a Markov chain, with a probability appearing on the edge instead $(p A, \ldots, p T$ are the probabilities of each letter). In machines $M 1$ or $M 2$, the number of times we are in the state GAGA is the desired count of overlapping or non-overlapping occurrences. In M3, use the number of times in states GAGA or GTGA.

For example, suppose $\tau=$ CAGAGGTCGAGAGT . . ; this is what happens in machine M1:

Time t	State at t	τ_{t+1}	Time t	State at t	τ_{t+1}	Time t	State at t	τ_{t+1}
1	0	C	6	GAG	G	11	GA	G
2	0	A	7	G	T	12	GAG	A
3	0	G	8	0	C	13	GAGA	G
4	G	A	9	0	G	14	GAG	T
5	GA	G	10	G	A	15	0	

In machine $M 2$, the only difference is that $t=14$ is state G .
Names of states in overlapping case (M1): If we are in state $w_{1} \ldots w_{r}$ after examining τ_{j}, it means that the last r letters of τ ending at τ_{j} agreed with the first r letters of w, and that there is not a longer prefix of w that ends at τ_{j}.

Names of states in non-overlapping case (M2): It's almost the same as M1, except the outgoing edges of GAGA are replaced by copies of the outgoing edges of 0 (same probabilities and endpoints but starting at GAGA instead of starting at 0), so that the second GA cannot count towards an overlapping occurrence of GAGA.

Names of states in motif, overlapping case (M3): State $w_{1} \ldots w_{r}$ means the last r letters of τ ending at τ_{j} are $w_{1} \ldots w_{r}$; some word in the motif starts with $w_{1} \ldots w_{r}$; and there isn't a longer word ending at τ_{j} that is a prefix of any word in the motif.

This is how to design a machine like $M 1$ for any word (to analyze overlapping occurrences of the word $\left.w=w_{1} w_{2} \ldots w_{k}\right)$:
(a) Make a graph with $k+1$ nodes (called "states"): $\emptyset, w_{1}, w_{1} w_{2}, w_{1} w_{2} w_{3}, \ldots, w_{1} w_{2} \cdots w_{k}$.
(b) Each node has four outgoing edges (which may later be merged into fewer). For each node $w_{1} \ldots w_{r}$ and each letter $x=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$, determine the longest suffix s (possibly \emptyset) of $w_{1} \ldots w_{r} x$ that is one of the states. Draw an edge from $w_{1} \ldots w_{r}$ to s, with probability p_{x} on that edge. Note that if $r<k$ and $x=w_{r+1}$, this will be an edge to $w_{1} \ldots w_{r+1}$.
(c) If there are several edges in the same direction between two nodes, combine them into one edge by adding the probabilities together.

For non-overlapping occurrences of w (as in M2), replace the outgoing edges from w by copies of 0 's outgoing edges.

For motifs (overlapping or non-overlapping), the states are all the prefixes of all the words. If a prefix is common to more than one word, it is only used as one state.

2. Markov chains

A Markov chain is similar to a finite state machine, but incorporates probabilities.
Let S be a set of "states." We will take S to be a discrete finite set, such as $S=\{1,2, \ldots, s\}$.
Let $t=1,2, \ldots$ denote the "time."
Let X_{1}, X_{2}, \ldots denote a sequence of random variables, which take on values from S.
The X_{t} 's form a Markov chain if they obey these rules:
(1) The probability of being in a certain state at time $t+1$ only depends on the state at time t, not on any earlier states:

$$
P\left(X_{t+1}=x_{t+1} \mid X_{0}=x_{0}, \ldots, X_{t}=x_{t}\right)=P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right):
$$

(2) The probability of transitioning from state i at time t to state j at time $t+1$ only depends on i and j, and does not depend on the time: there are values $p_{i j}$ such that $P\left(X_{t+1}=j \mid X_{t}=\right.$ $i)=p_{i j}$ at all times t. These are put into an $s \times s$ transition matrix.
The transition matrix, $P 1$, of the Markov chain $M 1$ is

To state 1
From state 1: 0
From state 2: G
From state 3: GA
From state 4: GAG
From state 5: GAGA

p_{C}+p_{T} \& p_{G} \& p_{A} \& 0 \& 0

p_{A}+p_{C}+p_{T} \& 0 \& 0 \& p_{G} \& 0

p_{C}+p_{T} \& p_{G} \& 0 \& 0 \& p_{A}

p_{A}+p_{C}+p_{T} \& 0 \& 0 \& p_{G} \& 0\end{array}\right]=\left[$$
\begin{array}{lllll}P_{11} & P_{12} & P_{13} & P_{14} & P_{15} \\
P_{21} & P_{22} & P_{23} & P_{24} & P_{25} \\
P_{31} & P_{32} & P_{33} & P_{34} & P_{35} \\
P_{41} & P_{42} & P_{43} & P_{44} & P_{45} \\
P_{51} & P_{52} & P_{53} & P_{54} & P_{55}\end{array}
$$\right]\)

Notice that the entries in each row sum up to $p_{A}+p_{C}+p_{G}+p_{T}=1$. A matrix with all entries ≥ 0 and all row sums equal to 1 is called a stochastic matrix. The transition matrix of a Markov chain is always a stochastic matrix. (For state machines in other contexts than Markov Chains, the transition matrix would have weights $=0$ for no edge or $\neq 0$ for an edge, but the nonzero weights may be defined differently, and the matrices are usually not stochastic.)

For M2, since edges leaving GAGA were changed to copy 0's outgoing edges, the bottom row changes to a copy of the top row.

If all nucleotides have equal probabilities $p_{A}=p_{C}=p_{G}=p_{T}=\frac{1}{4}$, matrices $P 1$ and $P 2$ become

$$
P 1=\left[\begin{array}{ccccc}
3 / 4 & 1 / 4 & 0 & 0 & 0 \\
1 / 2 & 1 / 4 & 1 / 4 & 0 & 0 \\
3 / 4 & 0 & 0 & 1 / 4 & 0 \\
1 / 2 & 1 / 4 & 0 & 0 & 1 / 4 \\
3 / 4 & 0 & 0 & 1 / 4 & 0
\end{array}\right] \quad P 2=\left[\begin{array}{ccccc}
3 / 4 & 1 / 4 & 0 & 0 & 0 \\
1 / 2 & 1 / 4 & 1 / 4 & 0 & 0 \\
3 / 4 & 0 & 0 & 1 / 4 & 0 \\
1 / 2 & 1 / 4 & 0 & 0 & 1 / 4 \\
3 / 4 & 1 / 4 & 0 & 0 & 0
\end{array}\right]
$$

We will examine several questions that apply to Markov chains, using $P 1$ or $P 2$ as examples.
(1) What is the probability of being in a particular state after n steps?
(2) What is the probability of being in a particular state as $n \rightarrow \infty$?
(3) What is the "reverse" Markov chain?
(4) If you are in state i, what is the expected number of time steps until the next time you are in state j ? What is the variance of this? What is the complete probability distribution?
(5) Starting in state i, what is the expected number of visits to state j before reaching state k ?
2.1. Technical conditions. This Markov chain has a number of complications:

A Markov chain is irreducible if every state can be reached from every other state after enough steps. But M4 is reducible since there are states that cannot be reached from each other: after sufficient time, you are either stuck in state 3 , the component $\{4,5,6,7\}$, or the component $\{8,9,10\}$.

State i has period d if the Markov chain can only go from state i to itself in multiples of d steps, where d is the maximum number that satisfies that. If $d>1$ then state i is periodic. A Markov chain is periodic if at least one state is periodic and is aperiodic if no states are periodic. All states in a component have the same period. In $M 4$, component $\{4,5,6,7\}$ has period 2 and component $\{8,9,10\}$ has period 3 , so $M 4$ is periodic.

An absorbing state has all its outgoing edges going to itself. An irreducible Markov chain with two or more states cannot have any absorbing states. In $M 4$, state 3 is an absorbing state.

There are generalizations to infinite numbers of discrete or continuous states and to continuous time, which we do not consider. We will work with Markov chains that are finite, discrete, irreducible, and aperiodic, unless otherwise stated. For a finite discrete Markov chain on two or more states, being irreducible and aperiodic with no absorbing states is equivalent to P or a power of P having all entries be greater than 0 .

A Markov chain is k th order if the probability of $X_{t}=i$ depends on the values of X_{t-1}, \ldots, X_{t-k}. However, it can be converted to a first order Markov chain by making new states that essentially record the last k states into one new state. We will only look at first order Markov chains.

3. Transition probabilities after n steps

The two-step transition probability for going from state i at time t to state j at time $t+2$ is computed by considering all the states it could be at during time $t+1$:

$$
\begin{aligned}
P\left(X_{t+2}=j \mid X_{t}=i\right) & =\sum_{r} P\left(X_{t+1}=r \mid X_{t}=i\right) P\left(X_{t+2}=j \mid X_{t+1}=r, X_{t}=i\right) \\
& =\sum_{r} P\left(X_{t+1}=r \mid X_{t}=i\right) P\left(X_{t+2}=j \mid X_{t+1}=r\right)=\sum_{r} P_{i r} P_{r j}=\left(P^{2}\right)_{i j}
\end{aligned}
$$

(where P^{2} is the square of the matrix P). In the same way, the transition matrix from time t to time $t+n$ is P^{n} (for $n \geq 0$):

$$
\begin{aligned}
P\left(X_{t+n}\right. & \left.=j \mid X_{t}=i\right) \\
& =\sum_{r_{1}, \ldots, r_{n-1}} P\left(X_{t+1}=r_{1} \mid X_{t}=i\right) P\left(X_{t+2}=r_{2} \mid X_{t+1}=r_{1}\right) \cdots P\left(X_{t+n}=j \mid X_{t+n-1}=r_{n-1}\right) \\
& =\sum_{r_{1}, \ldots, r_{n-1}} P_{i r_{1}} P_{r_{1} r_{2}} \cdots P_{r_{n-1} j}=\left(P^{n}\right)_{i j}
\end{aligned}
$$

In this example, with $P=P 1$:

$$
\left.\left.\begin{array}{l}
P^{0}=I=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad P^{1}=\left[\begin{array}{ccccc}
\frac{3}{4} & \frac{1}{4} & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\
\frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 \\
\frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} \\
\frac{3}{4} & 0 & 0 & \frac{1}{4} & 0
\end{array}\right] \quad P^{2}=\left[\begin{array}{cccccccc}
\frac{11}{16} & \frac{15}{64} & \frac{1}{16} & \frac{1}{64} & 0 \\
\frac{11}{16} & \frac{15}{64} & \frac{3}{64} & \frac{1}{64} & \frac{1}{64} \\
\frac{11}{16} & \frac{15}{64} & \frac{1}{16} & \frac{1}{64} & 0 \\
\frac{11}{16} & \frac{15}{64} & \frac{3}{64} & \frac{1}{64} & \frac{1}{64} \\
\frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\
\frac{11}{16} & \frac{1}{4} & 0 & 0 & \frac{1}{16} \\
\frac{11}{16} & \frac{15}{64} & \frac{1}{16} & \frac{3}{16} & \frac{1}{64} & \frac{1}{16} & \frac{1}{16} & 0 \\
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\
\frac{11}{16} & \frac{1}{4} & 0 & 0 & \frac{1}{16}
\end{array}\right] \quad P^{4}=\left[\begin{array}{llll}
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} \\
\frac{1}{256} \\
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} \\
\frac{1}{256} \\
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64}
\end{array} \frac{1}{256}\right.
\end{array}\right] \quad P^{n}=P^{4} \text { for } n \geq 5\right\}
$$

Usually P^{n} just approaches a limit as n increases, rather than reaching it. We'll see other examples later (like P2).

In this example, no matter what the starting state, the probabilities of being in states $1,2,3,4,5$ at time t when t is large enough are $\frac{11}{16}, \frac{15}{64}, \frac{15}{256}, \frac{1}{64}, \frac{1}{256}$. (Usually these would be reached asymptotically as $n \rightarrow \infty$ rather than exactly.)

Suppose at time t, the probability of being in state i is $\alpha_{i}(t)=P\left(X_{t}=i\right)$. (For example, sometimes the starting state is not known, but instead, the probabilities of each state at time $t=0$ are specified.) Consider the column vector

$$
\vec{\alpha}(t)=\left(\begin{array}{c}
\alpha_{1}(t) \\
\vdots \\
\alpha_{s}(t)
\end{array}\right) \quad \begin{aligned}
& \text { or make it a row vector by using the transpose } \\
& \vec{\alpha}(t)^{\prime}=\left(\alpha_{1}(t), \ldots, \alpha_{s}(t)\right)
\end{aligned}
$$

The probabilities at time $t+n$ are
$\alpha_{j}(t+n)=P\left(X_{t+n}=j \mid \vec{\alpha}(t)\right)=\sum_{i} P\left(X_{t+n}=j \mid X_{t}=i\right) P\left(X_{t}=i\right)=\sum_{i} \alpha_{i}(t)\left(P^{n}\right)_{i j}=\left(\vec{\alpha}(t)^{\prime} P^{n}\right)_{j}$,
so $\vec{\alpha}(t+n)^{\prime}=\vec{\alpha}(t)^{\prime} P^{n}$ (row vector times matrix), or equivalently, $\left(P^{\prime}\right)^{n} \vec{\alpha}(t)=\vec{\alpha}(t+n)$ (matrix times column vector).

4. Stationary Distribution (A.k.a. steady state distribution)

If P is irreducible and aperiodic, P^{n} approaches a limit with this format as $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty} P^{n}=\left[\begin{array}{cccc}
\varphi_{1} & \varphi_{2} & \cdots & \varphi_{s} \\
\varphi_{1} & \varphi_{2} & \cdots & \varphi_{s} \\
\cdots & \cdots & \cdots & \cdots \\
\varphi_{1} & \varphi_{2} & \cdots & \varphi_{s}
\end{array}\right]
$$

In other words, no matter what the starting state, the probability of being in state j after n steps approaches φ_{j}. The row vector $\vec{\varphi}^{\prime}=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is called the stationary distribution of the Markov chain. It is "stationary" because these probabilities stay the same from one time to the next: in matrix notation, $\vec{\varphi}^{\prime} P=\vec{\varphi}^{\prime}$, or $P^{\prime} \vec{\varphi}=\vec{\varphi}$. So $\vec{\varphi}^{\prime}$ is a left eigenvector of P with eigenvalue 1 . Since it represents probabilities of being in each state, the components of $\vec{\varphi}$ add up to 1 .

A general method to compute $\vec{\varphi}$ is to find a left eigenvector of P with eigenvalue 1 (or right eigenvector of P^{\prime}), and then divide by the sum of the elements of the vector. It turns out that in a Markov chain, all eigenvalues have absolute value ≤ 1. If P is irreducible and aperiodic, there is just one eigenvalue equal to 1 and the others have absolute value ≤ 1.

In the $M 1$ example: solve $\vec{\varphi}^{\prime} P=\vec{\varphi}^{\prime}$, or $\left(\varphi_{1}, \ldots, \varphi_{5}\right) P=\left(\varphi_{1}, \ldots, \varphi_{5}\right)$:

$$
\begin{aligned}
\varphi_{1} & =\frac{3}{4} \varphi_{1}+\frac{1}{2} \varphi_{2}+\frac{3}{4} \varphi_{3}+\frac{1}{2} \varphi_{4}+\frac{3}{4} \varphi_{5} \\
\varphi_{2} & =\frac{1}{4} \varphi_{1}+\frac{1}{4} \varphi_{2}+0 \varphi_{3}+\frac{1}{4} \varphi_{4}+0 \varphi_{5} \\
\varphi_{3} & =0 \varphi_{1}+\frac{1}{4} \varphi_{2}+0 \varphi_{3}+0 \varphi_{4}+0 \varphi_{5} \\
\varphi_{4} & =0 \varphi_{1}+0 \varphi_{2}+\frac{1}{4} \varphi_{3}+0 \varphi_{4}+\frac{1}{4} \varphi_{5} \\
\varphi_{5} & =0 \varphi_{1}+0 \varphi_{2}+0 \varphi_{3}+\frac{1}{4} \varphi_{4}+0 \varphi_{5}
\end{aligned}
$$

and put in the total probability equation $\varphi_{1}+\varphi_{2}+\varphi_{3}+\varphi_{4}+\varphi_{5}=1$. This is 6 equations in 5 unknowns, so it is overdetermined; knock out the $\varphi_{5}=\cdots$ equation and solve the rest of them to get $\vec{\varphi}^{\prime}=\left(\frac{11}{16}, \frac{15}{64}, \frac{15}{256}, \frac{1}{64}, \frac{1}{256}\right) \approx(0.6875,0.2344,0.0586,0.0156,0.0039)$.
(Actually, the first 5 equations are underdetermined; they add up to $\varphi_{1}+\cdots+\varphi_{5}=\varphi_{1}+\cdots+\varphi_{5}$.)

5. Reverse Markov Chain

Given a Markov chain that accurately models the "forwards" progression of time, a "reverse" version of it can be constructed to make predictions about the past. For example, this is done in models of nucleotide evolution. The graph of the reverse Markov chain has the same nodes as the forwards chain; the same edges but reverse directions; and new probabilities for these edges.

The transition matrix P of the forwards Markov chain was defined so that $P\left(X_{t+1}=j \mid X_{t}=i\right)=$ $p_{i j}$ at all times t. The reverse Markov chain has transition matrix Q, where

$$
q_{i j}=P\left(X_{t}=j \mid X_{t+1}=i\right)=\frac{P\left(X_{t+1}=i \mid X_{t}=j\right) P\left(X_{t}=j\right)}{P\left(X_{t+1}=i\right)}=\frac{p_{j i} \varphi_{j}}{\varphi_{i}}
$$

We assumed the forwards machine has run long enough to reach the stationary distribution, $P\left(X_{t}=\right.$ $i)=\varphi_{i}$. For $M 1$, the graph and transition matrix of the reverse Markov chain are

$$
Q 1=\left[\begin{array}{ccccc}
\frac{3}{4} & \frac{15}{88} & \frac{45}{704} & \frac{1}{88} & \frac{3}{704} \\
\frac{11}{15} & \frac{1}{4} & 0 & \frac{1}{60} & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{15}{16} & 0 & \frac{1}{16} \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

For example, the edge $0 \rightarrow$ GA in the reverse chain has $q_{13}=p_{31} \varphi_{3} / \varphi_{1}=\left(\frac{3}{4}\right)\left(\frac{15}{256}\right) /\left(\frac{11}{16}\right)=\frac{45}{704}$. This means that in the steady state of the forwards chain, when 0 is entered, there is a probability $\frac{45}{704}$ that the previous state was GA.

6. Expected time from state i till next time in state j

What is the expected number of steps from state i to the next time in state j ?
Fix j. For $i=1, \ldots, s$, let N_{i} be the number of steps from state i to the next time in state j (so if $i=j$ we are counting until the next time at state j, and $N_{j} \geq 1$). A system of equations for $E\left(N_{i}\right)$ can be found as follows:

Start in state i. There is a probability $P_{i r}$ of going one step to state r. If that is state j we are done, and otherwise the expected number of steps after that first step is $E\left(N_{r}\right)$, giving a total (including the first step) of $E\left(N_{r}+1\right)=E\left(N_{r}\right)+1$.

$$
E\left(N_{i}\right)=P_{i j} \cdot 1+\sum_{\substack{r=1 \\ r \neq j}}^{s} P_{i r} E\left(N_{r}+1\right)=P_{i j}+\sum_{\substack{r=1 \\ r \neq j}}^{s} P_{i r} \cdot\left(E\left(N_{r}\right)+1\right)=\sum_{r=1}^{s} P_{i r}+\sum_{\substack{r=1 \\ r \neq j}}^{s} P_{i r} \cdot E\left(N_{r}\right)=1+\sum_{\substack{r=1 \\ r \neq j}}^{s} P_{i r} \cdot E\left(N_{r}\right)
$$

Doing this for all s states, $i=1, \ldots, s$, gives s equations in the s unknowns $E\left(N_{1}\right), \ldots, E\left(N_{s}\right)$. For machine $M 1$, the expected times until reaching the final state are found as follows:

$$
\begin{aligned}
& E\left(N_{1}\right)=0+\frac{3}{4}\left(E\left(N_{1}\right)+1\right)+\frac{1}{4}\left(E\left(N_{2}\right)+1\right) \quad=1+\frac{3}{4} E\left(N_{1}\right)+\frac{1}{4} E\left(N_{2}\right) \\
& E\left(N_{2}\right)=0+\frac{1}{2}\left(E\left(N_{1}\right)+1\right)+\frac{1}{4}\left(E\left(N_{2}\right)+1\right)+\frac{1}{4}\left(E\left(N_{3}\right)+1\right)=1+\frac{1}{2} E\left(N_{1}\right)+\frac{1}{4} E\left(N_{2}\right)+\frac{1}{4} E\left(N_{3}\right) \\
& E\left(N_{3}\right)=0+\frac{3}{4}\left(E\left(N_{1}\right)+1\right)+\frac{1}{4}\left(E\left(N_{4}\right)+1\right) \quad=1+\frac{3}{4} E\left(N_{1}\right)+\frac{1}{4} E\left(N_{4}\right) \\
& E\left(N_{4}\right)=\frac{1}{4}+\frac{1}{2}\left(E\left(N_{1}\right)+1\right)+\frac{1}{4}\left(E\left(N_{2}\right)+1\right) \quad=1+\frac{1}{2} E\left(N_{1}\right)+\frac{1}{4} E\left(N_{2}\right) \\
& E\left(N_{5}\right)=0+\frac{3}{4}\left(E\left(N_{1}\right)+1\right)+\frac{1}{4}\left(E\left(N_{4}\right)+1\right) \quad=1+\frac{3}{4} E\left(N_{1}\right)+\frac{1}{4} E\left(N_{4}\right)
\end{aligned}
$$

This is five equations in five unknowns $E\left(N_{i}\right), i=1,2,3,4,5$. In matrix format,

$$
\left[\begin{array}{ccccc}
-1 / 4 & 1 / 4 & 0 & 0 & 0 \\
1 / 2 & -3 / 4 & 1 / 4 & 0 & 0 \\
3 / 4 & 0 & -1 & 1 / 4 & 0 \\
1 / 2 & 1 / 4 & 0 & -1 & 0 \\
3 / 4 & 0 & 0 & 1 / 4 & -1
\end{array}\right]\left[\begin{array}{l}
E\left(N_{1}\right) \\
E\left(N_{2}\right) \\
E\left(N_{3}\right) \\
E\left(N_{4}\right) \\
E\left(N_{5}\right)
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1 \\
-1 \\
-1 \\
-1
\end{array}\right]
$$

(General pattern on left side: Start with P. Zero out column j. Then subtract 1 from each diagonal entry. Right side: column vector of -1 's.)

Solving gives $E\left(N_{1}\right)=272, E\left(N_{2}\right)=268, E\left(N_{3}\right)=256, E\left(N_{4}\right)=204, E\left(N_{5}\right)=256$.
We may compute $E\left(g\left(N_{i}\right)\right)$ for any function g by setting up recurrences in the same way:

$$
E\left(g\left(N_{i}\right)\right)=P_{i j} g(1)+\sum_{r \neq j} P_{i r} E\left(g\left(N_{r}+1\right)\right)=\text { expansion depending on } g
$$

6.1. Variance of N_{i} 's: To compute $\operatorname{Var}\left(N_{i}\right)=E\left(N_{i}{ }^{2}\right)-E\left(N_{i}\right)^{2}$, we set up a system of equations for $E\left(N_{i}{ }^{2}\right)$:

$$
\begin{aligned}
E\left(N_{i}^{2}\right) & =P_{i j} \cdot 1^{2}+\sum_{\substack{r=1 \\
r \neq j}}^{s} P_{i r} E\left(\left(N_{r}+1\right)^{2}\right)=P_{i j}+\sum_{\substack{r=1 \\
r \neq j}}^{s} P_{i r}\left(E\left(N_{r}^{2}\right)+2 E\left(N_{r}\right)+1\right) \\
& =\left(P_{i j}+\sum_{\substack{r=1 \\
r \neq j}}^{s} P_{i r} \cdot 1\right)+2 \sum_{\substack{r=1 \\
r \neq j}}^{s} P_{i r} \cdot E\left(N_{r}\right)+\sum_{\substack{r=1 \\
r \neq j}}^{s} P_{i r} \cdot E\left(N_{r}^{2}\right) \\
& =1+2 \sum_{\substack{r=1 \\
r \neq j}}^{s} P_{i r} \cdot E\left(N_{r}\right)+\sum_{\substack{r=1 \\
r \neq j}} P_{i r} \cdot E\left(N_{r}{ }^{2}\right)
\end{aligned}
$$

Solve first for $E\left(N_{1}\right), \ldots, E\left(N_{s}\right)$ and plug in. That leaves s unknowns, $E\left(N_{1}{ }^{2}\right), \ldots, E\left(N_{s}{ }^{2}\right)$, and s equations, which could be solved.
6.2. Complete distribution of N_{i} 's: The complete distribution of N_{i} is encoded in its probability generating function $E\left(x^{N_{i}}\right)=\sum_{n=0}^{\infty} P\left(N_{i}=n\right) x^{n}$. We can solve for this through recursions:

$$
E\left(x^{N_{i}}\right)=P_{i j} \cdot x^{1}+\sum_{\substack{r=1 \\ r \neq j}}^{s} P_{i r} E\left(x^{N_{r}+1}\right)=P_{i j} \cdot x+\sum_{\substack{r=1 \\ r \neq j}}^{s} P_{i r} x E\left(x^{N_{r}}\right) \quad i=1, \ldots, s
$$

Write $f_{i}(x)=E\left(x^{N_{i}}\right)$ to change this into

$$
f_{i}(x)=P_{i j} \cdot x+\sum_{\substack{r=1 \\ r \neq j}}^{s} P_{i r} x f_{r}(x)=x\left(P_{i j}+\sum_{\substack{r=1 \\ r \neq j}}^{s} P_{i r} f_{r}(x)\right) \quad i=1, \ldots, s
$$

For machine $M 1$ and the expected times until reaching state $j=5$, this gives equations

$$
\begin{aligned}
f_{1}(x) & =x\left(\frac{3}{4} f_{1}(x)+\frac{1}{4} f_{2}(x)+0 f_{3}(x)+0 f_{4}(x)+0\right) \\
f_{2}(x) & =x\left(\frac{1}{2} f_{1}(x)+\frac{1}{4} f_{2}(x)+\frac{1}{4} f_{3}(x)+0 f_{4}(x)+0\right) \\
f_{3}(x) & =x\left(\frac{3}{4} f_{1}(x)+0 f_{2}(x)+0 f_{3}(x)+\frac{1}{4} f_{4}(x)+0\right) \\
f_{4}(x) & =x\left(\frac{1}{2} f_{1}(x)+\frac{1}{4} f_{2}(x)+0 f_{3}(x)+0 f_{4}(x)+\frac{1}{4}\right) \\
f_{5}(x) & =x\left(\frac{3}{4} f_{1}(x)+0 f_{2}(x)+0 f_{3}(x)+\frac{1}{4} f_{4}(x)+0\right)
\end{aligned}
$$

which in matrix form is

$$
\left[\begin{array}{ccccc}
\frac{3}{4} x-1 & \frac{1}{4} x & 0 & 0 & 0 \\
\frac{1}{2} x & \frac{1}{4} x-1 & \frac{1}{4} x & 0 & 0 \\
\frac{3}{4} x & 0 & -1 & \frac{1}{4} x & 0 \\
\frac{1}{2} x & \frac{1}{4} x & 0 & -1 & 0 \\
\frac{3}{4} x & 0 & 0 & \frac{1}{4} x & -1
\end{array}\right]\left[\begin{array}{l}
f_{1}(x) \\
f_{2}(x) \\
f_{3}(x) \\
f_{4}(x) \\
f_{5}(x)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-\frac{1}{4} x \\
0
\end{array}\right]
$$

Solving gives

$$
\begin{aligned}
f_{1}(x) & =x^{4} / D(x) \\
f_{2}(x) & =x^{3}(4-3 t) / D(x) \\
f_{3}(x) & =x^{2}\left(x^{2}-16 x+16\right) / D(x) \\
f_{4}(x) & =x\left(-3 x^{3}+4 x^{2}-64 x+64\right) / D(x) \\
f_{5}(x) & =x^{2}\left(x^{2}-16 x+16\right) / D(x)
\end{aligned}
$$

where $D(x)=x^{4}-16 x^{3}+16 x^{2}-256 x+256$. (Since this involves symbollic computation instead of numerical computation, Maple or Mathematica are much better suited to solving this than Matlab.)

Several things can be done with these. We will just consider $f_{1}(x)$, giving the distribution of times from state 1 until state 5 . The Taylor series of $f_{1}(x)$ about $t=0$ can be computed:

$$
f_{1}(x)=\frac{1}{256} x^{4}+\frac{1}{256} x^{5}+\frac{15}{4096} x^{6}+\frac{15}{4096} x^{7}+\frac{15}{4096} x^{8}+\frac{239}{65536} x^{9}+\cdots
$$

so for example, $P\left(N_{1}=9\right)=239 / 65536$.
It's an irreducible Markov chain, so the probability of reaching state j is 1 : $\sum_{n=0}^{\infty} P\left(N_{1}=i\right)=1$. Indeed, plugging in $x=1$ gives $f_{1}(1)=1$.

The mean is $\mu_{1}=f_{1}^{\prime}(1)=272$ and the variance is $f_{1}^{\prime \prime}(1)+\mu_{1}-\mu_{1}^{2}=145856+272-272^{2}=72144$, so the standard deviation is $\sqrt{72144} \approx 268.596$.

If it wasn't irreducible, state 5 might not ever be reached, so $f_{i}(1)$ could be less than 1 . Replace $f_{i}(x)$ by $g_{i}(x)=f_{i}(x) / f_{i}(1)$ to get a conditional pgf, mean, and variance (conditioned on eventually reaching state 5).

7. Expected number of visits to a state before reaching another state

For $M 1$ or $M 2$, starting at 0 , what is the expected number of times GAG will be visited before the destination GAGA is first reached?

For $M 3$, starting at 0 , what is the expected number of times any particular intermediate word will be visited before either destination GAGA or GTGA is first reached?

Choose some destination states (and include all absorbing states in the list). Order all states so that destination states are last. Make a new machine \widetilde{M} by modifying M so that the destination states are turned into absorbing states, and call the transition matrix \widetilde{P}. We have block decompositions

$$
P=\left[\begin{array}{c|c}
R & T \\
\hline S & U
\end{array}\right] \quad \widetilde{P}=\left[\begin{array}{c|c}
R & T \\
\hline 0 & I
\end{array}\right]
$$

where R is the the submatrix of P with rows/columns of non-destination states. Row/column names in R, S, T are the same as in P even though some states are missing from each (i.e., do not renumber them to start at 1). If all states can reach some destination state, then some row sums of R are <1 and all eigenvalues of R have absolute value <1.

Fix i and j. Start in state i at $t=0$. In \widetilde{M}, let D_{t} be an indicator random variable, $D_{t}=1$ if $X_{t}=j, D_{t}=0$ otherwise. The total number of visits to state j is $N=\sum_{t} D_{t}$, and

$$
E(N)=\sum_{t=0}^{\infty} E\left(D_{t}\right)=\sum_{t=0}^{\infty} P\left(X_{t}=j \mid X_{0}=i\right)=\sum_{t=0}^{\infty}\left(R^{t}\right)_{i j}=\left((I-R)^{-1}\right)_{i j}=H_{i j}
$$

where $H=(I-R)^{-1}$. (We used R instead of P because P has one or more eigenvalues equal to 1 , so $I-P$ can't be inverted. R has all eigenvalues <1 in absolute value so the geometric series $\sum_{t=0}^{\infty} R^{t}=(I-R)^{-1}$ converges.) For $\widetilde{M 1}$ and $\widetilde{M 2}$, we have

$$
R=\left[\begin{array}{cccc}
3 / 4 & 1 / 4 & 0 & 0 \\
1 / 2 & 1 / 4 & 1 / 4 & 0 \\
3 / 4 & 0 & 0 & 1 / 4 \\
1 / 2 & 1 / 4 & 0 & 0
\end{array}\right] \quad H=(I-R)^{-1}=\left[\begin{array}{cccc}
188 & 64 & 16 & 4 \\
184 & 64 & 16 & 4 \\
176 & 60 & 16 & 4 \\
140 & 48 & 12 & 4
\end{array}\right]
$$

Interpretation of first row of \boldsymbol{H} (from state 0): Starting in state 0 and counting until GAGA is first encountered, the expected number of visits to 0 (including being there to start) is 188, and the expected number of visits to G, GA, and GAG, respectively, are 64, 16, and 4 .

In $M 1$ (original, not modified $\widetilde{M 1}$), we could also ask for the expected number of visits to state j between two visits to GAGA. In M (unmodified), if k is a destination state and j is a non-destination state, the expected number of visits to j after leaving k and before entering a destination state again, is $(S H)_{k j}$. For $M 1, S H=\left[\begin{array}{lll}3 / 4 & 0 & 0\end{array} / 4\right] H=\left[\begin{array}{lll}176 & 60 & 15\end{array} 4\right]$. Notice it's almost the 3rd row of H except for the 3rd entry because GA and GAGA have the same outgoing edges in $M 1 ; H_{33}$ includes 1 for starting at GA while $(S H)_{53}$ only counts later visits to GA.

Back to \widetilde{M}. The probability of ending in absorbing state k is $(H T)_{i k}$. This is obtained by considering the time t of the last state j before k, where j runs over non-absorbing states:

$$
\begin{aligned}
P\left(X_{\infty}=k \mid X_{0}=i\right) & =\sum_{t=0}^{\infty} \sum_{j} P\left(X_{t}=j \mid X_{0}=i\right) P\left(X_{t+1}=k \mid X_{t}=j\right) \\
= & \sum_{t=0}^{\infty} \sum_{j}\left(R^{t}\right)_{i j} T_{j k}=\sum_{t=0}^{\infty}\left(R^{t} T\right)_{i k}=(H T)_{i k} \\
\text { For } \widetilde{M 1}: & H T=\left[\begin{array}{llll}
188 & 64 & 16 & 4 \\
184 & 64 & 16 & 4 \\
176 & 60 & 16 & 4 \\
140 & 48 & 12 & 4
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 / 4
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

so starting from any of the first 4 states, the probability of reaching GAGA is 1. For $\widetilde{M 3}$ with 6 non-absorbing and 2 absorbing states, $H T$ would be 6×2 and the row sums would all equal 1 .

We previously computed $E(N)$. For the variance of N, we need

$$
\begin{aligned}
E\left(N^{2}\right) & =\sum_{t} E\left(\left(D_{t}\right)^{2}\right)+2 \sum_{t_{1}=0}^{\infty} \sum_{t_{2}=t_{1}+1}^{\infty} E\left(D_{t_{1}} D_{t_{2}}\right) \\
& =\sum_{t} E\left(D_{t}\right)+2 \sum_{t_{1}=0}^{\infty} \sum_{t_{2}=t_{1}+1}^{\infty} P\left(X_{t_{1}}=j \mid X_{0}=i\right) P\left(X_{t_{2}}=j \mid X_{t_{1}}=j\right) \\
& =E(N)+2 \sum_{t_{1}=0}^{\infty} \sum_{u_{2}=1}^{\infty}\left(R^{t_{1}}\right)_{i j}\left(R^{u_{2}}\right)_{j j} \quad \text { where } u_{2}=t_{2}-t_{1}>0 \\
& =E(N)+2\left(\sum_{t_{1}=0}^{\infty} R^{t_{1}}\right)_{i j}\left(\sum_{u_{2}=1}^{\infty} R^{u_{2}}\right)_{j j} \\
& =H_{i j}+2 H_{i j}\left(R(I-R)^{-1}\right)_{j j}=H_{i j}\left(1+2\left(H_{j j}-1\right)\right)=H_{i j}\left(2 H_{j j}-1\right)
\end{aligned}
$$

so $\operatorname{Var}(N)=E\left(N^{2}\right)-(E(N))^{2}=H_{i j}\left(2 H_{j j}-1\right)-\left(H_{i j}\right)^{2}$. Let $N_{i j}$ be the number of visits to j before absorption if we start in state i, where i, j are non-absorbing states. Then in matrix form,

$$
\left[\operatorname{Var}\left(N_{i j}\right)\right]=\left[\begin{array}{llll}
35156 & 4032 & 240 & 12 \\
35144 & 4032 & 240 & 12 \\
35024 & 4020 & 240 & 12 \\
32900 & 3792 & 228 & 12
\end{array}\right] \quad\left[\sigma\left(N_{i j}\right)\right]=\left[\sqrt{\operatorname{Var}\left(N_{i j}\right)}\right] \approx\left[\begin{array}{llll}
187.50 & 63.50 & 15.49 & 3.46 \\
187.47 & 63.50 & 15.49 & 3.46 \\
187.15 & 63.40 & 15.49 & 3.46 \\
181.38 & 61.58 & 15.10 & 3.46
\end{array}\right]
$$

8. Powers of matrices

While $P 1^{n}$ became constant for $n \geq 4$, this is not usually the case. The first several powers of $P=P 2$, to 6 decimal digits, are

As $n \rightarrow \infty$, the rows all approach the stationary distribution

$$
\vec{\varphi}^{\prime}=\left(\frac{11}{16}, \frac{4}{17}, \frac{1}{17}, \frac{1}{68}, \frac{1}{272}\right) \approx(0.687500,0.235294,0.0588235,0.0147059,0.00367647)
$$

8.1. Diagonalizeable matrices. Suppose an $s \times s$ matrix P has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{s}$.

Usually some of these are complex numbers, so we will use ' to denote the "adjoint" instead of the "transpose" of a matrix or vector: it is transpose combined with complex conjugate.

Then P can be written in the format $P=V D V^{-1}$ where D is the diagonal matrix

$$
D=\left[\begin{array}{ccccc}
\lambda_{1} & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{s-1} & 0 \\
0 & 0 & \cdots & 0 & \lambda_{s}
\end{array}\right]
$$

and column j of V is a (right) eigenvector of P, \vec{r}_{j}, with eigenvalue $\lambda_{j}: P \vec{r}_{j}=\lambda_{j} \vec{r}_{j}$. It turns out that row j of V^{-1} is a left eigenvector, $\vec{\ell}_{j}^{\prime}$, of P with eigenvalue $\lambda_{j}: \vec{\ell}_{j}^{\prime} P=\lambda_{j} \vec{\ell}_{j}^{\prime}$.

Then $P^{2}=V D V^{-1} V D V^{-1}=V D^{2} V^{-1}$, and in general, $P^{n}=V D^{n} V^{-1}$. Since D is diagonal, D^{n} is easy to compute:

$$
D^{n}=\left[\begin{array}{ccccc}
\lambda_{1}{ }^{n} & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2}{ }^{n} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{s-1}{ }^{n} & 0 \\
0 & 0 & \cdots & 0 & \lambda_{s}{ }^{n}
\end{array}\right]
$$

A shortcut to compute $P^{n}=V D^{n} V^{-1}$ is to use the spectral decomposition:

$$
\begin{gathered}
P^{n}=\sum_{j=1}^{s} \lambda_{j}{ }^{n} \vec{r}_{j} \vec{\ell}_{j}^{\prime} \quad \begin{array}{c}
\text { where } \vec{r}_{j} \vec{\ell}_{j}^{\prime} \text { is column vector times row vector } \\
=s \times s \text { square matrix }
\end{array}
\end{gathered}
$$

8.2. Jordan Canonical Form. Only some matrices can be diagonalized. There is a generalization of the factorization $P=V D V^{-1}$ to any matrix. Any matrix P, including one with repeated eigenvalues, can be written in the format $P=V J V^{-1}$, where J is mostly zeros except for the eigenvalues of P along its diagonal and some 1's just above the diagonal according to a certain rule (below). Then $P^{n}=V J^{n} V^{-1}$ and the powers J^{n} are easy to compute. Since the Jordan Canonical Form includes diagonalizeable matrices as a special case, the best approach is to compute the JCF in the first place, instead of trying to diagonalize and possibly failing to do so. This is the format:

$$
J=\left[\begin{array}{cccc}
B_{1} & 0 & 0 & \cdots \\
0 & B_{2} & 0 & \cdots \\
0 & 0 & B_{3} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \quad \text { and each } B_{i} \text { is a block matrix, } B_{i}=\left[\begin{array}{ccccccc}
\lambda_{i} & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & \lambda_{i} & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & \lambda_{i} & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \lambda_{i} & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & \lambda_{i}
\end{array}\right]
$$

The dimensions of the B_{i} 's are related to multiplicities of eigenvalues. Then $P^{n}=V J^{n} V^{-1}$, where

$$
J^{n}=\left[\begin{array}{cccc}
B_{1}{ }^{n} & 0 & 0 & \cdots \\
0 & B_{2}{ }^{n} & 0 & \cdots \\
0 & 0 & B_{3}{ }^{n} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \quad B_{i}{ }^{n}=\left[\begin{array}{ccccc}
\lambda_{i}{ }^{n} & \binom{n}{1} \lambda_{i}{ }^{n-1} & \binom{n}{2} \lambda_{i}{ }^{n-2} & \cdots & \cdots \\
0 & \lambda_{i}{ }^{n} & \binom{n}{1} \lambda_{i}{ }^{n-1} & \cdots & \cdots \\
\ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & \cdots & \lambda_{i}{ }^{n}
\end{array}\left(\begin{array}{c}
n \\
1 \\
1
\end{array}\right) \lambda_{i}{ }^{n-1}\right]
$$

where a row of $B_{i}{ }^{n}$ with fewer than n cells right of the diagonal would have the extra binomial terms dropped, and a row with more than n cells right of the diagonal would be padded with 0 's.

The columns of V (or rows of V^{-1}) are "generalized eigenvectors." An ordinary (right) eigenvector satisfies $P \vec{v}=\lambda \vec{v}$, or $(P-\lambda I) \vec{v}=\overrightarrow{0}$. The generalized ones satisfy $(P-\lambda I)^{k} \vec{v}=\overrightarrow{0}$ for various k 's.

Although the word "Canonical" is used, the factorization $P=V J V^{-1}$ for any matrix (or $P=$ $V D V^{-1}$ for diagonalizeable matrices) is not unique, so different programs and different people's hand computations can return different but correct answers. See a linear algebra book for details.
8.3. Eigenvalues. In a Markov chain, the absolute values of the eigenvalues are between 0 and 1 , and there is at least one eigenvalue equal to 1 (right eigenvector: $\overrightarrow{1}$; left eigenvector: stationary distribution). For an irreducible aperiodic Markov chain, there is only one eigenvalue equal to 1 and the others have smaller absolute value. So in $P^{n}=V D^{n} V^{-1}$ or $P^{n}=V J^{n} V^{-1}$, as $n \rightarrow \infty$, the diagonal term for eigenvalue 1 stays equal to 1 , and the others go to 0 , making P^{n} approach a constant limit. The second largest $\left|\lambda_{j}\right|$ determines how fast P^{n} converges to the stationary distribution, since its nth powers give the second largest term.

For an irreducible periodic Markov chain with period d, there are d eigenvalues equal to the d th roots of unity, $1, e^{2 \pi i / d}, e^{4 \pi i / d}, e^{6 \pi i / d}, \ldots, e^{2(d-1) \pi i / d}$. As $n \rightarrow \infty$, instead of a stationary distribution, the Markov chain cycles through d different distributions.

For a reducible Markov chain on s states, there are eigenvalues contributed from each component, as well as additional ones to bring it up to s eigenvalues in total (counting multiplicities).

So machine $M 4$ has an eigenvalue 1 for the component with state 3 ; an eigenvalue 1 and an eigenvalue -1 for the component with $\{4,5,6,7\}$ (since it has period 2); eigenvalues $1, e^{2 \pi i / 3}, e^{4 \pi i / 3}$ for the component with $\{8,9,10\}$; and 4 additional eigenvalues of absolute value less than 1 , so that there are 10 eigenvalues in all, counting multiplicities. At least two of those additional eigenvalues equal 0 , because P^{2} has columns 1 and 2 equal to 0 (no 2 -step transitions to states 1 or 2). The two remaining eigenvalues depend on the probabilities of the edges, which were not fully specified. Here is one possibility:

$$
\begin{aligned}
& P=\left[\begin{array}{cc|c|cccc|ccc}
0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]=V J V^{-1} \\
& V=\left[\begin{array}{cc|c|cccc|cccc}
1 & 0 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} & 0 & -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} e^{-2 \pi i / 3} & \frac{1}{3} e^{2 \pi i / 3} \\
0 & 3 & 1 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & -2 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & e^{2 \pi i / 3} & e^{-2 \pi i / 3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & e^{-2 \pi i / 3} & e^{2 \pi i / 3}
\end{array}\right], J=\left[\begin{array}{cc|c|cccc|ccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e^{-2 \pi i / 3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e^{2 \pi i / 3}
\end{array}\right] \\
& V^{-1}=\left[\begin{array}{cc|c|cccc|ccc}
1 & 0 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} \\
0 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{6} & 0 & -\frac{1}{6} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{4} & 0 & -\frac{1}{4} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{4} & 0 & -\frac{1}{4} & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} & \frac{1}{3} e^{-2 \pi i / 3} & \frac{1}{3} e^{2 \pi i / 3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} & \frac{1}{3} e^{2 \pi i / 3} & \frac{1}{3} e^{-2 \pi i / 3}
\end{array}\right]
\end{aligned}
$$

9. Matlab examples

9.1. Example 1. Here is a stochastic matrix and some of its powers. (Stochastic because its entries are ≥ 0 and its row sums are 1 . This one is actually doubly stochastic because the column sums are also 1.)

$\mathrm{M}=$								
0.5000	0.2500	0.2500						
0.2500	0.5000	0.2500						
0.2500	0.2500	0.5000						
>> M^2			>> M^3			>> M^10		
ans =			ans =			ans =		
0.3750	0.3125	0.3125	0.3438	0.3281	0.3281	0.3333	0.3333	0.3333
0.3125	0.3750	0.3125	0.3281	0.3438	0.3281	0.3333	0.3333	0.3333
0.3125	0.3125	0.3750	0.3281	0.3281	0.3438	0.3333	0.3333	0.3333

Eigenvalues and eigenvectors: Matlab's eig(M) returns [V,D]. Diagonal elements of D are eigenvalues. Columns of V are right eigenvectors if M is diagonalizeable, but some columns are garbage if it's not. There is no warning, so you have to check.

```
>> [V,D] = eig(M)
V =
\begin{tabular}{rrr}
0.4082 & 0.7071 & 0.5774 \\
0.4082 & -0.7071 & 0.5774 \\
-0.8165 & 0 & 0.5774
\end{tabular}
D =
\begin{tabular}{rrr}
0.2500 & 0 & 0 \\
0 & 0.2500 & 0 \\
0 & 0 & 1.0000
\end{tabular}
```

M has three eigenvalues: $\lambda_{1}=.25, \lambda_{2}=.25, \lambda_{3}=1$. Two of them are equal so it is possible that M is not diagonalizeable. Verify that $M=V D V^{-1}$:
>> V * D * inv(V)
ans =

0.5000	0.2500	0.2500
0.2500	0.5000	0.2500
0.2500	0.2500	0.5000

So M is diagonalizeable.
The right eigenvectors of M corresponding to these eigenvalues are the columns of V in the exact same order as in D :

$$
\vec{r}_{1}=\left[\begin{array}{c}
0.4082 \\
0.4082 \\
-0.8165
\end{array}\right] \quad \vec{r}_{2}=\left[\begin{array}{c}
0.7071 \\
-0.7071 \\
0
\end{array}\right] \quad \vec{r}_{3}=\left[\begin{array}{l}
0.5774 \\
0.5774 \\
0.5774
\end{array}\right]
$$

Remember, any scalar multiple of an eigenvector can be used in place of it, so a different program (or doing it by hand) would potentially return a different result, such as

$$
\vec{r}_{1}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right] \quad \vec{r}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \quad \vec{r}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Also, the eigenvalues could be in a different order on the diagonal of D, in which case the order of the eigenvectors (as columns of V and rows of V^{-1}) would have to change to match that.

Let's verify that \vec{r}_{1} is an eigenvector with eigenvalue λ_{1} :
>> $D(1,1)$
ans $=$
0.2500
>> M * V(:, 1$)$
ans $=$
0.1021
0.1021
-0.2041
>> $\mathrm{D}(1,1) * \mathrm{~V}(:, 1)$
ans $=$
0.1021
0.1021
-0.2041

```
>> V(:,1)
```

>> V(:,1)
ans =
ans =
0.4082
0.4082
0.4082
0.4082
-0.8165

```
    -0.8165
```

>> right1 $=\mathrm{V}(:, 1)$
right1 $=$
0.4082
0.4082
-0.8165
>> lambda1 $=\mathrm{D}(1,1)$
lambda1 =
0.2500
>> M * right1
ans $=$
0.1021
0.1021
-0.2041
>> lambda1 * right1
ans $=$
0.1021
0.1021
-0.2041

Next look at V^{-1} and the left eigenvectors.

```
>> Vi = inv(V)
```

Vi $=$

0.4082	0.4082	-0.8165
0.7071	-0.7071	0.0000
0.5774	0.5774	0.5774

The rows of V^{-1} (denoted Vi) are the left eigenvectors of M :

$$
\vec{\ell}_{1}^{\prime}=(0.4082,0.4082,-0.8165) \quad \vec{\ell}_{2}^{\prime}=(0.7071,-0.7071,0) \quad \vec{\ell}_{3}^{\prime}=(0.5774,0.5774,0.5774)
$$

Again, they can be rescaled, so by hand you would probably have used

$$
\vec{\ell}_{1}^{\prime}=(1,1,-2) \quad \vec{\ell}_{2}^{\prime}=(1,-1,0) \quad \vec{\ell}_{3}^{\prime}=(1,1,1)
$$

Verify $\vec{\ell}_{1}^{\prime}$ is a left eigenvector:

```
>> Vi(1,:)
```

ans =
$0.4082 \quad 0.4082 \quad-0.8165$

```
>> Vi(1,:) * M
```

ans =
$0.1021 \quad 0.1021 \quad-0.2041$
>> $\mathrm{D}(1,1) * \operatorname{Vi}(1,:)$
ans $=$
$0.1021 \quad 0.1021 \quad-0.2041$

Stationary distribution: We need to normalize the left eigenvector whose eigenvalue equals 1 . In this case it was $\lambda_{3}=1$, so we need to take $\vec{\ell}_{3}^{\prime}$, and normalize to make its components add to 1 ; do this by dividing by the sum of its entries:

```
>> Vi(3,:)
ans =
    0.5774 0.5774 0.5774
>> sstate = Vi(3,:) / sum(Vi(3,:))
sstate =
    0.3333 0.3333 0.3333
```

Spectral decomposition: $S 1=\vec{r}_{1} \vec{\ell}_{1}^{\prime}, S 2=\vec{r}_{2} \vec{\ell}_{2}^{\prime}, S 3=\vec{r}_{3} \vec{\ell}_{3}^{\prime}$, and $M^{n}=\lambda_{1}^{n} S 1+\lambda_{2}^{n} S 2+$ $\lambda_{3}{ }^{n} S 3=.25^{n}(S 1+S 2)+1^{n} S 3$ which approaches $S 3$ as n increases,

```
>> S1 = V(:,1) * Vi(1,:)
S1 =
    0.1667 0.1667 -0.3333
    0.1667 0.1667 -0.3333
    -0.3333 -0.3333 0.6667
>> S2 = V(:,2) * Vi(2,:)
S2 =
    0.5000
```

```
>> S1+S2
ans =
    0.6667 -0.3333 -0.3333
    -0.3333 0.6667 -0.3333
    -0.3333 -0.3333 0.6667
>> S3 = V (:,3) * Vi(3,:)
S3 =
    0.3333 0.3333 0.3333
    0.3333 0.3333 0.3333
    0.3333 0.3333 0.3333
```

Note that the rows of $S 3$ all equal the stationary distribution. (However, it's a coincidence that the columns do also.) Now we'll verify the spectral decomposition formula using M^{3} :

```
>> lambda1 = D(1,1)
lambda1 =
    0.2500
>> lambda2 = D (2,2)
lambda2 =
    0.2500
>> lambda3 = D (3,3)
lambda3 =
    1.0000
>> M^3
ans =
    0.3438 0.3281 0.3281
    0.3281 0.3438 0.3281
    0.3281 0.3281 0.3438
>> lambda1^3*S1 + lambda2^3*S2 + lambda3^3*S3
ans =
    0.3437 0.3281 0.3281
    0.3281 0.3437 0.3281
    0.3281 0.3281 0.3438
```


9.2. Example 2: Complex Numbers.

```
>> x = [1+2i,3+4i,5+6i]
x =
    1.0000 +2.0000i 3.0000 + 4.0000i 5.0000 + 6.0000i
    Note that ' is adjoint (conjugate and transpose combined):
>> x,
ans =
    1.0000-2.0000i
    3.0000-4.0000i
    5.0000-6.0000i
>> real(x)
ans =
>> imag(x)
ans =
    2 4 6
>> conj(x)
ans =
    1.0000-2.0000i 3.0000-4.0000i 5.0000-6.0000i
```


9.3. Example 3: The matrix $P 2$ for machine $M 2$: Complex Eigenvalues and Eigenvectors, and Jordan Canonical Form.

```
>> P2 = [
    [ 3/4, 1/4, 0, 0, 0]; %
    [ 2/4, 1/4, 1/4, 0, 0 ]; % G
    [3/4, 0, 0, 1/4, 0 ]; % GA
    [ 2/4, 1/4, 0, 0, 1/4 ]; % GAG
    [3/4, 1/4, 0, 0, 0 ]; % GAGA
]
P2 =
\begin{tabular}{rrrrr}
0.7500 & 0.2500 & 0 & 0 & 0 \\
0.5000 & 0.2500 & 0.2500 & 0 & 0 \\
0.7500 & 0 & 0 & 0.2500 & 0 \\
0.5000 & 0.2500 & 0 & 0 & 0.2500 \\
0.7500 & 0.2500 & 0 & 0 & 0
\end{tabular}
```


Eigenvalues and eigenvectors, first try:

>> [V2,D2] = eig(P2)
V2 =
$0.4472 \quad 0.2182+0.0000 i \quad 0.2182-0.0000 i \quad 0.0000+0.1857 i \quad 0.0000-0.1857 i$
$0.4472-0.6547-0.0000 i-0.6547+0.0000 i-0.1857-0.5571 i-0.1857+0.5571 i$
$0.4472 \quad 0.2182-0.0000 i \quad 0.2182+0.0000 i \quad 0.7428 \quad 0.7428$
$0.4472-0.6547 \quad-0.6547 \quad 0.0000+0.1857 i \quad 0.0000-0.1857 i$
$0.44720 .2182-0.0000 i \quad 0.2182+0.0000 i-0.0000+0.1857 i-0.0000-0.1857 i$
D2 $=$
$\begin{array}{rcccc}1.0000 & 0 & 0 & 0 & 0 \\ 0 & -0.0000+0.0000 i & 0 & 0 & 0 \\ 0 & 0 & -0.0000-0.0000 i & 0 & 0 \\ 0 & 0 & 0 & 0.0000+0.2500 i & 0 \\ 0 & 0 & 0 & 0 & 0.0000-0.2500 i\end{array}$
Notice the eigenvalues: 1 corresponds to the right eigenvector $\overrightarrow{1}$ that's a column of 1 's, and to the left eigenvector that's the stationary distribution. There are two 0's so $P 2$ has a duplicate eigenvalue and we will have to use Jordan Canonical form. The interpretation of one of them is that two rows of $P 2$ are equal, the top and bottom row, so $(1,0,0,0,-1)^{\prime}$ (' turns row vector into column vector) is a right eigenvector of $P 2$ with eigenvalue 0 . There are also two complex eigenvalues, $0 \pm i / 4$, which come in a conjugate pair (they must since $P 2$ is real), and their corresponding eigenvectors (columns 4 and 5 of $V 2$) also come in a complex conjugate pair.
$V 2$ is not invertible; it's determinant should be 0 , but Matlab has a numerical precision error:

```
>> det(V2)
ans =
    -4.5552e-009 +1.1903e-017i
```

So we redo this with the Jordan Canonical Form.

>> [V2,J2] = jordan(P2)				
$\mathrm{V} 2=$				
-0.0625	-0.5170	-0.1728	$0.1176+0.0294 i$	$0.1176-0.0294 i$
0.1875	1.3011	-0.1728	$-0.3824+0.0294 i$	-0.3824-0.0294i
-0.0625	0.4830	-0.1728	$0.1176-0.4706 i$	$0.1176+0.4706 i$
0.1875	1.3011	-0.1728	$0.1176+0.0294 i$	$0.1176-0.0294 i$
-0.0625	0.4830	-0.1728	$0.1176+0.0294 i$	0.1176-0.0294i
$\mathrm{J} 2=$				
0	1.0000	0	0	0
0	0	0	0	0
0	0	1.0000	0	0
0	0	0	$0+0.2500 i$	0
0	0	0	0	0-0.2500i

Inverse of corrected V2 to get left eigenvectors:

```
>> V2i = inv(V2)
```

V2i =

3.2727	0	-0.0000	4.0000	-7.2727
-1.0000	0	0.0000	0	1.0000
-3.9787	-1.3617	-0.3404	-0.0851	-0.0213
0	-1.0000	$0+1.0000 i$	1.0000	$0-1.0000 i$
0	-1.0000	$0-1.0000 i$	1.0000	$0+1.0000 i$

Stationary distribution: The eigenvalue equal to 1 is the third one $\left(\lambda_{3}=1\right)$, so the stationary distribution is row 3 of $\mathrm{V} 2 \mathrm{i}=\mathrm{V} 2^{-1}$, suitably normalized:

```
>> V2i(3,:) / sum(V2i(3,:))
```

ans $=$
$\begin{array}{lllll}0.6875 & 0.2353 & 0.0588 & 0.0147 & 0.0037\end{array}$

This agrees with the computation stated earlier in this document, $\vec{\varphi}^{\prime}=\left(\frac{11}{16}, \frac{4}{17}, \frac{1}{17}, \frac{1}{68}, \frac{1}{272}\right) \approx$ ($0.687500,0.235294,0.0588235,0.0147059,0.00367647$). It also agrees with a high power of P2:

```
>> P2^10
```

ans $=$

0.6875	0.2353	0.0588	0.0147	0.0037
0.6875	0.2353	0.0588	0.0147	0.0037
0.6875	0.2353	0.0588	0.0147	0.0037
0.6875	0.2353	0.0588	0.0147	0.0037
0.6875	0.2353	0.0588	0.0147	0.0037

Spectral decomposition: Since P2 wasn't diagonalizeable, the Jordan Canonical Form must be used and the spectral form gets harder. The general formula $P=V J V^{-1}$ gives $P=V J^{n} V^{-1}$. Here, $P=\mathrm{P} 2$ and $J=\mathrm{J} 2$. The powers of J 2 will be (fill in 0's for blanks):

$$
(\mathrm{J} 2)^{n}=\left[\begin{array}{lll}
{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{n}} & & \\
& 1^{n} & \\
& & \\
& & (i / 4)^{n} \\
& & \\
& & \\
& & (-i / 4)^{n}
\end{array}\right] \quad \begin{array}{ll}
{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{n}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \quad \text { for } n \geq 2}
\end{array}
$$

By writing (J2) ${ }^{n}$ as a sum of the four blocks shown, this gives a block expansion (in terms of left and right eigenvectors; \vec{r}_{j} is column j of $\mathrm{V} 2, \vec{\ell}_{j}^{\prime}$ is row j of $\mathrm{V} 2^{-1}$)

$$
(\mathrm{P} 2)^{n}=(\mathrm{V} 2)(\mathrm{J} 2)^{n}(\mathrm{~V} 2)^{-1}=\left[\begin{array}{ll}
\vec{r}_{1} & \vec{r}_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
\vec{\ell}_{1}^{\prime} \\
\vec{\ell}_{2}^{\prime}
\end{array}\right]+\vec{r}_{3}(1)^{n} \vec{\ell}_{3}^{\prime}+\vec{r}_{4}(i / 4)^{n} \vec{\ell}_{4}^{\prime}+\vec{r}_{5}(-i / 4)^{n} \vec{\ell}_{5}^{\prime}
$$

When $n \geq 2$, the first term vanishes, so for $n \geq 2$, we will have (P2) ${ }^{n}=1^{n} \mathrm{~S} 3+(i / 4)^{n} \mathrm{~S} 4+(-i / 4)^{n} \mathrm{~S} 5=$ $\mathrm{S} 3+(i / 4)^{n} \mathrm{~S} 4+(-i / 4)^{n} \mathrm{~S} 5$, where

```
>> S3 = v2(:,3) * v2i(3,:)
```

S3 =

0.6875	0.2353	0.0588	0.0147	0.0037
0.6875	0.2353	0.0588	0.0147	0.0037
0.6875	0.2353	0.0588	0.0147	0.0037
0.6875	0.2353	0.0588	0.0147	0.0037
0.6875	0.2353	0.0588	0.0147	0.0037

```
>> S4 = V2(:,4) * V2i(4,:)
```

S4 $=$

$-0.1176-0.0294 i$	$-0.0294+0.1176 i$	$0.1176+0.0294 i$	$0.0294-0.1176 i$
$0.3824-0.0294 i$	$-0.0294-0.3824 i$	$-0.3824+0.0294 i$	$0.0294+0.3824 i$
$-0.1176+0.4706 i$	$0.4706+0.1176 i$	$0.1176-0.4706 i$	$-0.4706-0.1176 i$
$-0.1176-0.0294 i$	$-0.0294+0.1176 i$	$0.1176+0.0294 i$	$0.0294-0.1176 i$
$-0.1176-0.0294 i$	$-0.0294+0.1176 i$	$0.1176+0.0294 i$	$0.0294-0.1176 i$

```
>> S5 = V2(:,5) * V2i(5,:)
```

S5 =

$-0.1176+0.0294 i$	$-0.0294-0.1176 i$	$0.1176-0.0294 i$	$0.0294+0.1176 i$
$0.3824+0.0294 i$	$-0.0294+0.3824 i$	$-0.3824-0.0294 i$	$0.0294-0.3824 i$
$-0.1176-0.4706 i$	$0.4706-0.1176 i$	$0.1176+0.4706 i$	$-0.4706+0.1176 i$
$-0.1176+0.0294 i$	$-0.0294-0.1176 i$	$0.1176-0.0294 i$	$0.0294+0.1176 i$
$-0.1176+0.0294 i$	$-0.0294-0.1176 i$	$0.1176-0.0294 i$	$0.0294+0.1176 i$

S3 corresponds to the stationary distribution. S4 and S5 are complex conjugates, so $(i / 4)^{n} \mathrm{~S} 4+$ $(-i / 4)^{n} \mathrm{~S} 5$ is a sum of two complex conjugates; thus, it is real-valued, even though complex numbers are involved in the computation. Now verify the formula:

0.6875	0.2344	0.0625	0.0156	0
0.6875	0.2344	0.0469	0.0156	0.0156
0.6875	0.2500	0.0625	0	0
0.6875	0.2344	0.0625	0.0156	0
0.6875	0.2344	0.0625	0.0156	0
>> $1 \wedge 3 * S 3+(i / 4) \wedge 3 * S 4+(-i / 4) \wedge 3 * S 5$				
ans =				
0.6875	0.2344	0.0625	0.0156	0.0000
0.6875	0.2344	0.0469	0.0156	0.0156
0.6875	0.2500	0.0625	-0.0000	0.0000
0.6875	0.2344	0.0625	0.0156	0.0000
0.6875	0.2344	0.0625	0.0156	0.0000

9.4. Example 4: The matrix $P 1$ for machine $M 1$: Jordan Canonical Form.
>> P1 = [
$[3 / 4,1 / 4, \quad 0,0,0] ; \%$
$[2 / 4,1 / 4,1 / 4,0,0] ; \% G$
$[3 / 4,0,0,1 / 4,0] ; \%$ GA
$[2 / 4,1 / 4,0,0,1 / 4]$; $\%$ GAG $[3 / 4,0,0,1 / 4,0] ; \%$ GAGA
]

P1 =

0.7500	0.2500	0	0	0
0.5000	0.2500	0.2500	0	0
0.7500	0	0	0.2500	0
0.5000	0.2500	0	0	0.2500
0.7500	0	0	0.2500	0

>> [V1,D1] = eig(P1)
V1 =
0.4472
4
0.4472
0.4472
0.4472
0.4472
D1 =
1.0000
0
0.0000
0
0
0
0
0
$0.0000-0.0000 i$
0
0

0	0
0	0
0	0
$0.0000+0.0000 i$	0
0	$0.0000-0.0000 i$

```
>> imag(D1)
```

ans =
1.0e-08*

0	0	0	0	0
0	0.3596	0	0	0
0	0	-0.3596	0	0
0	0	0	0.1803	0
0	0	0	0	-0.1803

```
>> imag(V1)
ans =
    1.0e-07 *
\begin{tabular}{rrrrr}
0 & 0.0105 & -0.0105 & -0.0052 & 0.0052 \\
0 & 0 & 0 & 0 & 0 \\
0 & -0.1151 & 0.1151 & 0.0577 & -0.0577 \\
0 & -0.0000 & 0.0000 & -0.0000 & 0.0000 \\
0 & -0.1151 & 0.1151 & 0.0577 & -0.0577
\end{tabular}
>> V1 * D1 * inv(V1)
Warning: Matrix is close to singular or badly scaled.
            Results may be inaccurate. RCOND = 3.355158e-25.
ans =
    1.0e+07 *
    0.0000 + 0.0000i 0.0000-0.3549i 0.0000 + 0.7099i 0.0000 + 0.3549i -0.0000 - 0.7099i
    0.0000 + 0.0000i 0.0000-0.9693i 0.0000 + 1.9386i 0.0000 + 0.9693i -0.0000 - 1.9386i
    0.0000 + 0.0000i 0.0000-0.3549i 0.0000 + 0.7099i 0.0000 + 0.3549i -0.0000-0.7099i
    0.0000 + 0.0000i 0.0000-0.9693i 0.0000 + 1.9386i -0.0000 + 0.9693i -0.0000-1.9386i
    0.0000 + 0.0000i 0.0000-0.3549i 0.0000 + 0.7099i 0.0000 + 0.3549i -0.0000-0.7099i
```

We see that there is one eigenvalue equal to 1 and four eigenvalues equal to 0 , and that V1 is not invertible and P1 is not diagonalizeable. Use the Jordan Canonical Form instead:
>> [V1,J1] = jordan(P1)
$\mathrm{V} 1=$

-0.0039	-0.0195	-0.0707	-0.2298	-0.0430
0.0117	0.0430	0.1339	0.4066	-0.0430
-0.0039	0.0430	0.1793	0.5884	-0.0430
0.0117	0.0430	0.3839	1.4066	-0.0430
-0.0039	0.0430	0.1793	1.5884	-0.0430

$\mathrm{J} 1=$					
0	1	0	00		
0	0	1	00		
0	0	0	10		
0	0	0	00		
0	0	0	01		
>> V1i $=\operatorname{inv}(\mathrm{V} 1)$					
V1i =					
0		52.3636	-64.0000	11.6364	0
-16.0000		16.0000	13.0909	-16.0000	2.9091
0		-4.0000	4.0000	4.0000	-4.0000
0		0	-1.0000	0	1.0000
-16.0000		-5.4545	-1.3636	-0.3636	-0.0909
>> V1 * J1 * V1i					
ans $=$					
0.7500		0.2500	-0.0000	-0.0000	0.0000
0.5000		0.2500	0.2500	-0.0000	0.0000
0.7500		-0.0000	-0.0000	0.2500	-0.0000
0.5000		0.2500	0.0000	-0.0000	0.2500
0.7500		-0.0000	-0.0000	0.2500	-0.0000

Eigenvalues and eigenvectors: The eigenvalues are on the diagonal of J1: $0,0,0,0,1$. The right eigenvector for eigenvalue $\lambda_{5}=1$ is the 5 th column of V1:

```
>> V1(:,5)
ans =
    -0.0430
    -0.0430
    -0.0430
    -0.0430
    -0.0430
```

which you would probably rescale to all 1's.
Since the first 4 eigenvalues $\lambda_{1}=\cdots=\lambda_{4}=0$ are in a 4×4 block of J1 with 1's above the diagonal, the first of them corresponds to a right eigenvector

```
>> V1(:,1)
ans =
    -0.0039
    0.0117
    -0.0039
    0.0117
    -0.0039
```

and the other three $\left(\lambda_{2}=\lambda_{3}=\lambda_{4}=0\right)$ correspond to "generalized eigenvectors."
Stationary distribution:

```
>> sstate = V1i(5,:) / sum(V1i(5,:))
sstate =
    0.6875 0.2344 0.0586 0.0156 0.0039
```

This agrees with the computation from the text:

$$
\vec{\varphi}^{\prime}=\left(\frac{11}{16}, \frac{15}{64}, \frac{15}{256}, \frac{1}{64}, \frac{1}{256}\right) \approx(0.6875,0.2344,0.0586,0.0156,0.0039)
$$

Powers of P1: The "spectral decomposition" formula as given was only for diagonalizeable matrices. For a Jordan Canonical Form, $P=V J V^{-1}$ gives $P^{n}=V J^{n} V^{-1}$, and J^{n} is easy to compute:

Reverse Markov Chain:

```
>> d_sstate = diag(sstate)
d_sstate =
    0.6875 
>> Q1 = inv(d_sstate) * P1' * d_sstate
Q1 =
\begin{tabular}{rrrrr}
0.7500 & 0.1705 & 0.0639 & 0.0114 & 0.0043 \\
0.7333 & 0.2500 & 0 & 0.0167 & 0 \\
0 & 1.0000 & 0 & 0 & 0 \\
0 & 0 & 0.9375 & 0 & 0.0625 \\
0 & 0 & 0 & 1.0000 & 0
\end{tabular}
```

Solving for $E\left(N_{i}\right)$: We had a system of equations $C \vec{x}=\vec{r}$. Enter the coefficient matrix C and the vector r and use C \r to solve it. You could enter the matrices C and r directly, but I will show how to get C directly from P for the case considered in this handout (P is 5×5 and we want the expected time until state 5); the rule to construct C from P was to zero out column j (here $j=5$) of P and then subtract 1 from each diagonal entry, and the rule to construct r is that it's a column vector of -1 's.

```
>> C = P1
C =
\begin{tabular}{rrrrr}
0.7500 & 0.2500 & 0 & 0 & 0 \\
0.5000 & 0.2500 & 0.2500 & 0 & 0 \\
0.7500 & 0 & 0 & 0.2500 & 0 \\
0.5000 & 0.2500 & 0 & 0 & 0.2500 \\
0.7500 & 0 & 0 & 0.2500 & 0
\end{tabular}
>> C(:,5) = 0
C =
\begin{tabular}{rrrrr}
0.7500 & 0.2500 & 0 & 0 & 0 \\
0.5000 & 0.2500 & 0.2500 & 0 & 0 \\
0.7500 & 0 & 0 & 0.2500 & 0 \\
0.5000 & 0.2500 & 0 & 0 & 0 \\
0.7500 & 0 & 0 & 0.2500 & 0
\end{tabular}
>> eye(5
% gives a 5 x 5 identity matrix
ans =
\begin{tabular}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{tabular}
>> C = C - eye(5)
C =
    -0.2500 0.2500 0.7rrr
    0.5000 
    0.5000 0.2500 0 -1.0000 0
    0.7500 0
>> rhs = -1 * ones(5,1)
rhs =
    -1
    -1
    -1
    -1
    -1
>> C \ rhs
ans =
    272.0000
    268.0000
    256.0000
    204.0000
    256.0000
```

Expected number of visits to each state before reaching GAGA:
>> R1 = P1 $(1: 4,1: 4)$
$\mathrm{R}=$
0.7500

0.5000	0.2500	0.2500	0
0.7500	0	0	0.2500
0.5000	0.2500	0	0

>> H1 = inv(eye(4)-R1)
H1 =
$\begin{array}{llll}188.0000 & 64.0000 & 16.0000 & 4.0000\end{array}$

184.0000	64.0000	16.0000	4.0000

$176.0000 \quad 60.0000 \quad 16.0000 \quad 4.0000$
$140.0000 \quad 48.0000 \quad 12.0000 \quad 4.0000$

Variance of that: In Matlab, diag(matrix)=vector, diag(vector)=matrix, and m .^ k is elementwise k th powers instead of the matrix k th power.
>> diag(H1)
ans =
188.0000
64.0000
16.0000
4.0000

```
>> diag(diag(H1))
ans =
\begin{tabular}{rrrr}
188.0000 & 0 & 0 & 0 \\
0 & 64.0000 & 0 & 0 \\
0 & 0 & 16.0000 & 0 \\
0 & 0 & 0 & 4.0000
\end{tabular}
>> VarN1 = H1 * (2*diag(diag(H1))-eye(4)) - (H1 .` 2)
VarN1 =
    1.0e+04 *
        3.5156 0.4032 0.0240 0.0012
        3.5144 0.4032 0.0240 0.0012
        3.5024 0.4020 0.0240 0.0012
        3.2900 0.3792 0.0228 0.0012
>> SigmaN1 = VarN1 .^ (1/2)
SigmaN1 =
    187.4993 63.4980 15.4919 3.4641
    187.4673 63.4980 15.4919 3.4641
    187.1470 63.4035 15.4919 3.4641
    181.3836 61.5792 15.0997 3.4641
```

Probability of eventually reaching GAGA from each state:
>> $\mathrm{T} 1=\mathrm{P} 1(1: 4,5)$
T1 =
0
0
0.2500
>> H1 * T1
ans $=$
1.0000
1.0000
1.0000
1.0000

10. Maple example: PGF For complete distribution of N_{i} 's

Here is how to use Maple to solve the system of equations for $f_{1}(x), \ldots, f_{5}(x)$ from Sec. 6.2 in this handout; and then get the pgf for N_{1} by computing the Taylor series of $f_{1}(x)$; and then compute total probability for $N_{1}\left(f_{1}(1)=1\right)$, the mean $E\left(N_{1}\right)=f_{1}^{\prime}(1)$, and variance $\operatorname{Var}\left(N_{1}\right)=$ $f_{1}^{\prime \prime}(1)+f_{1}^{\prime}(1)-\left(f_{1}^{\prime}(1)\right)^{2}:$

```
> sols :=
    solve({f1(x)=x*(3/4*f1(x) + 1/4*f2(x)),
                f2(x)=x*(1/2*f1(x) + 1/4*f2(x) + 1/4*f3(x)),
                f3(x)=x*(3/4*f1(x) + 1/4*f4(x)),
                f4(x)=x*(1/2*f1(x) + 1/4*f2(x) + 1/4),
                f5(x)=x*(3/4*f1(x) + 1/4*f4(x))},
                {f1(x),f2(x),f3(x),f4(x),f5(x)});
```


$f 4(x)=-\frac{x\left(-4 x^{2}+3 x^{3}-64+64 x\right)}{\% 1}, f 5(x)=\frac{x^{2}\left(x^{2}+16-16 x\right)}{\% 1}$
$\% 1:=16 x^{2}-16 x^{3}+256-256 x+x^{4}$
> g1 := sols[1];

> g1 := rhs(sols[1]);

> taylor ($\mathrm{g} 1, \mathrm{x}=0,10$) ;

> N1_totalprob := $\operatorname{subs}(x=1, \mathrm{~g} 1)$;

$$
\text { N1_totalprob := } 1
$$

```
> diff(g1,x);
```

 \(x^{4}\left(32 x-48 x^{2}-256+4 x^{3}\right) \quad 4 x^{3}\)

> N1_mean $:=\operatorname{subs}(x=1, \operatorname{diff}(\mathrm{~g} 1, \mathrm{x}))$;
N1_mean := 272
> N1_var $:=\operatorname{subs}(x=1, \operatorname{diff}(\mathrm{~g} 1, \mathrm{x}, \mathrm{x}))+\mathrm{N} 1 _$mean - $\mathrm{N} 1 _$mean ${ }^{\text {~ } 2 ; ~}$
N1_var := 72144

