Markov chains and the number of occurrences of a word in a sequence (4.5–4.9, 11.1,2,4,6)

Prof. Tesler

Math 283 Fall 2018

Locating overlapping occurrences of a word

• Consider a (long) single-stranded nucleotide sequence $\tau = \tau_1 \dots \tau_N$ and a (short) word $w = w_1 \dots w_k$, e.g., w = GAGA.

```
for i = 1 to N-3 {
if (\tau_i \tau_{i+1} \tau_{i+2} \tau_{i+3} == GAGA) {
}
```

- The above scan takes up to ≈ 4N comparisons to locate all occurrences of GAGA (kN comparisons for w of length k).
- A *finite state automaton* (FSA) is a "machine" that can locate all occurrences while only examining each letter of τ once.

Overlapping occurrences of GAGA

- The *states* are the nodes \emptyset , G, GA, GAG, GAGA (prefixes of w). For $w = w_1 w_2 \cdots w_k$, there are k + 1 states (one for each prefix).
- Start in the state \emptyset (shown on figure as 0).
- Scan $\tau = \tau_1 \tau_2 \dots \tau_N$ one character at a time left to right.
- *Transition edges:* When examining τ_j , move from the current state to the next state according to which edge τ_j is on.
 - For each node $u = w_1 \cdots w_r$ and each letter x = A, C, G, T, determine the longest suffix *s* (possibly \emptyset) of $w_1 \cdots w_r x$ that's among the states.
 - Draw an edge $u \xrightarrow{x} s$
- The number of times we are in the state GAGA is the desired count of number of occurrences.

Overlapping occurrences of GAGA in $\tau = CAGAGGTCGAGAGT \dots$

Time t	State at t	τ_t	Time t	State at t	τ_t
1	0	С	9	0	G
2	0	А	10	G	А
3	0	G	11	GA	G
4	G	А	12	GAG	A
5	GA	G	13	GAGA	G
6	GAG	G	14	GAG	Т
7	G	Т	15	0	• • •
8	0	С			

Non-overlapping occurrences of GAGA

- For non-overlapping occurrences of *w*:
 - Replace the outgoing edges from w by copies of the outgoing edges from Ø.
- On previous slide, the time 13 → 14 transition GAGA → GAG
 changes to GAGA → G.

Motif {GAGA, GTGA}, overlaps permitted

• *States:* All prefixes of all words in the motif.

If a prefix occurs multiple times, only create one node for it.

 Transition edges: they may jump from one word of the motif to another.

• GTGA \xrightarrow{G} GAG.

 Count the number of times we reach the states for any words in the motif (GAGA or GTGA).

Markov chains

- A Markov chain is similar to a finite state machine, but incorporates probabilities.
- Let S be a set of "states." We will take S to be a discrete finite set, such as $S = \{1, 2, \dots, s\}$.
- Let $t = 1, 2, \ldots$ denote the "time."
- Let X_1, X_2, \ldots denote a sequence of random variables, values $\in S$.

The X_t's form a *(first order) Markov chain* if they obey these rules

• The probability of being in a certain state at time t+1 only depends on the state at time t, not on any earlier states: $P(X_{t+1} = x_{t+1} | X_1 = x_1, \dots, X_t = x_t) = P(X_{t+1} = x_{t+1} | X_t = x_t)$

2 The probability of transitioning from state *i* at time *t* to state *j* at time t + 1 only depends on i and j, but not on the time t: $P(X_{t+1} = j | X_t = i) = p_{ij}$ at all times t

Transition matrix

The *transition matrix*, P1, of the Markov chain M1 is

From state	To state 1	2	3	4	5		
1: 0	$\int p_A + p_C + p_T$	p_G	0	0	0		$\begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} & P_{15} \end{bmatrix}$
2: G	$p_C + p_T$	p_G	p_A	0	0		$P_{21} P_{22} P_{23} P_{24} P_{25}$
3: GA	$p_A + p_C + p_T$	0	0	p_G	0	=	$P_{31} P_{32} P_{33} P_{34} P_{35}$
4: GAG	$p_C + p_T$	p_G	0	0	p_A		$P_{41} P_{42} P_{43} P_{44} P_{45}$
5: GAGA	$p_A + p_C + p_T$	0	0	p_G	0		$\begin{bmatrix} P_{51} & P_{52} & P_{53} & P_{54} & P_{55} \end{bmatrix}$

- Notice that the entries in each row sum up to $p_A + p_C + p_G + p_T = 1$.
- A matrix with all entries ≥ 0 and all row sums equal to 1 is called a stochastic matrix.
- The transition matrix of a Markov chain is always stochastic.
- All row sums = 1 can be written $P\vec{1} = \vec{1}$ where $\vec{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$

so $\vec{1}$ is a right eigenvector of P with eigenvalue 1.

Transition matrices for GAGA

- Edge labels are replaced by probabilities, e.g., $p_C + p_T$.
- The matrices are shown for the case that all nucleotides have equal probabilities 1/4.
- P2 (no overlaps) is obtained from P1 (overlaps allowed) by replacing the last row with a copy of the first row.

Other applications of automata

- Automata / state machines are also used in other applications in Math and Computer Science. The transition weights may be defined differently, and the matrices usually aren't stochastic.
- **Combinatorics:** Count walks through the automaton (instead of getting their probabilities) by setting transition weights $u \xrightarrow{x} s$ to 1.
- Computer Science (formal languages, classifiers, ...): Does the string τ contain GAGA? Output 1 if it does, 0 otherwise.
 - Modify *M*1: remove the outgoing edges on GAGA.
 - On reaching state GAGA, terminate with output 1.
 - If the end of τ is reached, terminate with output 0.
 - This is called a *deterministic finite acceptor* (DFA).
- Markov chains: Instead of considering a specific string τ, we'll compute probabilities, expected values, ... over the sample space of all strings of length n.

Other Markov chain examples

- A Markov chain is *k*th order if the probability of $X_t = i$ depends on the values of X_{t-1}, \ldots, X_{t-k} . It can be converted to a first order Markov chain by making new states that record more history.
- Positional independence: Instead of a null hypothesis that a DNA sequence is generated by repeated rolls of a biased four-sided die, we could use a Markov chain. The simplest is a one-step transition matrix

	p_{AA}	$p_{ m AC}$	$p_{ m AG}$	p_{AT} p_{CT} p_{GT} p_{TT}
P =	p_{CA}	$p_{ m CC}$	$p_{ ext{CG}}$	$p_{ ext{CT}}$
	$p_{ m GA}$	$p_{ m GC}$	$p_{ m GG}$	$p_{ ext{GT}}$
	$p_{ ext{TA}}$	$p_{ t TC}$	$p_{ t TG}$	p_{TT}

P could be the same at all positions. In a coding region, it could be different for the first, second, and third positions of codons.

Nucleotide evolution: There are models of random point mutations over the course of evolution concerning Markov chains with the form *P* (same as above) in which *X_t* is the state A, C, G, T of the nucleotide at a given position in a sequence at time (generation) *t*.

- What is the probability of being in a particular state after *n* steps?
- 2 What is the probability of being in a particular state as $n \to \infty$?
- What is the "reverse" Markov chain?
- If you are in state *i*, what is the expected number of time steps until the next time you are in state *j*? What is the variance of this? What is the complete probability distribution?
- Starting in state *i*, what is the expected number of visits to state *j* before reaching state *k*?

Transition probabilities after two steps

To compute the probability for going from state *i* at time *t* to state *j* at time t + 2, consider all the states it could go through at time t + 1:

$$P(X_{t+2} = j | X_t = i) = \sum_{r} P(X_{t+1} = r | X_t = i) P(X_{t+2} = j | X_{t+1} = r, X_t = i)$$
$$= \sum_{r} P(X_{t+1} = r | X_t = i) P(X_{t+2} = j | X_{t+1} = r)$$
$$= \sum_{r} P_{ir} P_{rj} = (P^2)_{ij}$$

Prof. Tesler

For $n \ge 0$, the transition matrix from time *t* to time t + n is P^n :

$$P(X_{t+n} = j | X_t = i) = \sum_{r_1, \dots, r_{n-1}} P(X_{t+1} = r_1 | X_t = i) P(X_{t+2} = r_2 | X_{t+1} = r_1) \cdots$$
$$= \sum_{r_1, \dots, r_{n-1}} P_{ir_1} P_{r_1 r_2} \cdots P_{r_{n-1} j} = (P^n)_{ij}$$

(sum over possible states r_1, \ldots, r_{n-1} at times $t + 1, \ldots, t + (n-1)$)

State probability vector

• $\alpha_i(t) = P(X_t = i)$ is the probability of being in state *i* at time *t*.

• Column vector $\vec{\alpha}(t) = \begin{pmatrix} \alpha_1(t) \\ \vdots \\ \alpha_s(t) \end{pmatrix}$ or transpose it to get a row vector $\vec{\alpha}(t)' = (\alpha_1(t), \dots, \alpha_s(t))$

• The probabilities at time t + n are

$$\begin{aligned} x_{j}(t+n) &= P(X_{t+n} = j | \vec{\alpha}(t)) = \sum_{i} P(X_{t+n} = j | X_{t} = i) P(X_{t} = i) \\ &= \sum_{i} \alpha_{i}(t) (P^{n})_{ij} = (\vec{\alpha}(t)' P^{n})_{j} \end{aligned}$$

so $\vec{\alpha}(t+n)' = \vec{\alpha}(t)'P^n$ (row vector times matrix) or equivalently, $(P')^n \vec{\alpha}(t) = \vec{\alpha}(t+n)$ (matrix times column vector).

State vector after *n* steps for GAGA; P = P1

$$P = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\ \frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 \\ \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} \end{bmatrix} P^2 = \begin{bmatrix} \frac{11}{16} & \frac{1}{4} & \frac{1}{16} & 0 & 0 \\ \frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\ \frac{11}{16} & \frac{1}{4} & 0 & 0 & \frac{1}{16} \\ \frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\ \frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\ \frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\ \frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\ \frac{11}{16} & \frac{1}{4} & 0 & 0 & \frac{1}{16} \end{bmatrix} (P')^2 = \begin{bmatrix} \frac{11}{16} & \frac{11}{16} & \frac{11}{16} & \frac{11}{16} & \frac{11}{16} & \frac{11}{16} \\ \frac{1}{16} & \frac{1}{16} & 0 & \frac{1}{16} & 0 \\ 0 & \frac{1}{16} & 0 & \frac{1}{16} & 0 \\ 0 & 0 & \frac{1}{16} & 0 & \frac{1}{16} \end{bmatrix}$$

• At t = 10, suppose $\frac{1}{3}$ chance of being in the 1st state; $\frac{2}{3}$ chance of being in the 2nd state; and no chance of other states: $\vec{\alpha}(10)' = (\frac{1}{3}, \frac{2}{3}, 0, 0, 0).$

• Time t = 12 is n = 12 - 10 = 2 steps later: $\vec{\alpha}(12)' = (\frac{1}{3}, \frac{2}{3}, 0, 0, 0)P^2 = (\frac{11}{16}, \frac{5}{24}, \frac{1}{16}, \frac{1}{24}, 0)$

• Alternately: $\vec{\alpha}(10) = \begin{pmatrix} 1/3\\ 2/3\\ 0\\ 0\\ 0\\ 0 \end{pmatrix}$ $\vec{\alpha}(2) = (P')^2 \vec{\alpha}(10) = \begin{pmatrix} 11/16\\ 5/24\\ 1/16\\ 1/24\\ 0 \end{pmatrix}$

Transition probabilities after *n* steps for GAGA; P = P1

$$P^{0} = I = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{1} = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\ \frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 \\ \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} \\ \frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 \\ \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} \\ \frac{11}{16} & \frac{15}{64} & \frac{1}{16} & \frac{1}{64} & 0 \\ \frac{11}{16} & \frac{15}{64} & \frac{1}{16} & \frac{1}{64} & 0 \\ \frac{11}{16} & \frac{15}{64} & \frac{1}{64} & \frac{1}{64} \\ \frac{11}{16} & \frac{15}{64} & \frac{1}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{1}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{1}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{1}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{1}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{11}{16} & \frac{15}{64} & \frac{1}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{1}{16} & \frac{1}{64} & \frac{1}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{1}{16} & \frac{1}{64} & \frac{1}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{1}{16} & \frac{1}{64} & \frac{1}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{1}{16} & \frac{1}{64} & \frac{1}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{1}{16} & \frac{1}{64} & \frac{1}{256} & \frac{1}{64} & \frac{1}{256} \\ \frac{1}{16} & \frac{1}{64} & \frac{1}{256} & \frac{1}{64} & \frac{1}{256}$$

• Regardless of the starting state, the probabilities of being in states $1, \dots, 5$ at time *t* (when *t* is large enough) are $\frac{11}{16}, \frac{15}{64}, \frac{15}{256}, \frac{1}{64}, \frac{1}{256}$.

• Usually P^n just approaches a limit asymptotically as *n* increases, rather than reaching it. We'll see other examples later (like P2).

Matrix powers in Matlab and R

Matlab	R
>> P1 = [[3/4, 1/4, 0, 0, 0]; % [2/4, 1/4, 1/4, 0, 0]; % G [3/4, 0, 0, 1/4, 0]; % GA [2/4, 1/4, 0, 0, 1/4]; % GAG [3/4, 0, 0, 1/4, 0]; % GAGA]	<pre>> P1 = rbind(+ c(3/4,1/4, 0, 0, 0), # + c(2/4,1/4,1/4, 0, 0), # G + c(3/4, 0, 0,1/4, 0), # GA + c(2/4,1/4, 0, 0,1/4), # GAG + c(3/4, 0, 0,1/4, 0) # GAGA +)</pre>
P1 = 0.7500 0.2500 0 0 0 0.5000 0.2500 0.2500 0 0 0.7500 0 0 0.2500 0 0.5000 0.2500 0 0 0.2500 0.7500 0 0 0.2500 0	<pre>> P1 [,1] [,2] [,3] [,4] [,5] [1,] 0.75 0.25 0.00 0.00 0.00 [2,] 0.50 0.25 0.25 0.00 0.00 [3,] 0.75 0.00 0.00 0.25 0.00 [4,] 0.50 0.25 0.00 0.00 0.25 [5,] 0.75 0.00 0.00 0.25 0.00</pre>
>> P1 * P1 % or P1^2	
ans = 0.6875 0.2500 0.0625 0 0 0.6875 0.1875 0.0625 0.0625 0 0.6875 0.2500 0 0 0.0625 0.6875 0.1875 0.0625 0.0625 0 0.6875 0.2500 0 0 0.0625	<pre>> P1 %*% P1 [,1] [,2] [,3] [,4] [,5] [1,] 0.6875 0.2500 0.0625 0.0000 0.0000 [2,] 0.6875 0.1875 0.0625 0.0625 0.0000 [3,] 0.6875 0.2500 0.0000 0.0000 0.0625 [4,] 0.6875 0.1875 0.0625 0.0625 0.0000 [5,] 0.6875 0.2500 0.0000 0.0000 0.0625</pre>

Note: R doesn't have a built-in matrix power function. The > and + symbols above are prompts, not something you enter.

Stationary distribution, a.k.a. steady state distribution

• If *P* is irreducible and aperiodic (these will be defined soon) then P^n approaches a limit with this format as $n \to \infty$:

$$\lim_{n \to \infty} P^n = \begin{bmatrix} \varphi_1 & \varphi_2 & \cdots & \varphi_s \\ \varphi_1 & \varphi_2 & \cdots & \varphi_s \\ \cdots & \cdots & \cdots & \cdots \\ \varphi_1 & \varphi_2 & \cdots & \varphi_s \end{bmatrix}$$

- In other words, no matter what the starting state, the probability of being in state *j* after *n* steps approaches φ_j.
- The row vector $\vec{\varphi}' = (\varphi_1, \dots, \varphi_s)$ is called the *stationary distribution* of the Markov chain.
- It is "stationary" because these probabilities stay the same from one time to the next; in matrix notation, $\vec{\varphi}' P = \vec{\varphi}'$, or $P' \vec{\varphi} = \vec{\varphi}$.
- So $\vec{\varphi}'$ is a left eigenvector of *P* with eigenvalue 1.
- Since it represents probabilities of being in each state, the components of $\vec{\phi}$ add up to 1.

Stationary distribution — computing it for example M1

• Solve
$$\vec{\phi}' P = \vec{\phi}'$$
, or $(\phi_1, \dots, \phi_5) P = (\phi_1, \dots, \phi_5)$:
 $\phi_1 = \frac{3}{4}\phi_1 + \frac{1}{2}\phi_2 + \frac{3}{4}\phi_3 + \frac{1}{2}\phi_4 + \frac{3}{4}\phi_5$
 $\phi_2 = \frac{1}{4}\phi_1 + \frac{1}{4}\phi_2 + 0\phi_3 + \frac{1}{4}\phi_4 + 0\phi_5$
 $\phi_3 = 0\phi_1 + \frac{1}{4}\phi_2 + 0\phi_3 + 0\phi_4 + 0\phi_5$
 $\phi_4 = 0\phi_1 + 0\phi_2 + \frac{1}{4}\phi_3 + 0\phi_4 + \frac{1}{4}\phi_5$
 $\phi_5 = 0\phi_1 + 0\phi_2 + 0\phi_3 + \frac{1}{4}\phi_4 + 0\phi_5$

and the total probability equation $\phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 = 1$.

- This is 6 equations in 5 unknowns, so it is overdetermined.
- Actually, the first 5 equations are underdetermined; they add up to

 $\varphi_1 + \cdots + \varphi_5 = \varphi_1 + \cdots + \varphi_5.$

• Knock out the $\varphi_5 = \cdots$ equation and solve the rest of them to get $\vec{\varphi}' = (\frac{11}{16}, \frac{15}{64}, \frac{15}{256}, \frac{1}{64}, \frac{1}{256}) \approx (0.6875, 0.2344, 0.0586, 0.0156, 0.0039).$

Solving equations in Matlab or R

(this method doesn't use the functions for eigenvectors)

<pre>1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0</pre>	<pre>> diag(1,5) % identity [,1] [,2] [,3] [,4] [,5] [1,] 1 0 0 0 0 [2,] 0 1 0 0 0 [3,] 0 0 1 0 0 [4,] 0 0 0 1 0 [5,] 0 0 0 0 1 > t(P1) - diag(1,5) % transpose minus identity [,1] [,2] [,3] [,4] [,5] [1,] -0.25 0.50 0.75 0.50 0.75 [2,] 0.25 -0.75 0.00 0.25 0.00 [3,] 0.00 0.25 -1.00 0.00 0.00 [4,] 0.00 0.00 0.25 -1.00 0.25 [5,] 0.00 0.00 0.00 0.25 -1.00 > rbind(t(P1) - diag(1,5), c(1,1,1,1,1)) [,1] [,2] [,3] [,4] [,5] [1,] -0.25 0.50 0.75 0.50 0.75 [2,] 0.25 -0.75 0.00 0.25 0.00 [3,] 0.00 0.25 -1.00 0.00 0.00 [4,] 0.00 0.00 0.25 -1.00 0.25 [5,] 0.00 0.00 0.00 0.25 -1.00 [6,] 1.00 1.00 1.00 1.00 > sstate = qr.solve(rbind(t(P1) - diag(1,5), + c(1,1,1,1)), c(0,0,0,0,1)) > sstate [1] 0.68750000 0.23437500 0.05859375 0.01562500 [5] 0.00390625</pre>

Eigenvalues of P

- A transition matrix is *stochastic*: all entries are ≥ 0 and its row sums are all 1. So $P\vec{1} = \vec{1}$ where $\vec{1} = \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}$
- Thus, $\lambda = 1$ is an eigenvalue of *P* and $\vec{1}$ is a *right eigenvector*. There is also a *left eigenvector* of *P* with eigenvalue 1: $\vec{w} P = 1\vec{w}$

where \vec{w} is a row vector. Normalize it so its entries add up to 1, to get the *stationary distribution* $\vec{\phi}'$.

- All eigenvalues λ of a stochastic matrix have $|\lambda| \leq 1$.
- An irreducible aperiodic Markov chain has just one eigenvalue =1. The 2nd largest |λ| determines how fast Pⁿ converges. For example, if it's diagonalizable, the spectral decomposition is:

 $P^n = 1^n M_1 + \lambda_2^n M_2 + \lambda_3^n M_3 + \cdots$

but there may be complications (periodic Markov chains, complex eigenvalues, ...).

Technicalities — reducibility

- A Markov chain is *irreducible* if every state can be reached from every other state after enough steps.
- The above example is *reducible* since there are states that cannot be reached from each other: after sufficient time, you are either stuck in state 3, the component {4, 5, 6, 7}, or the component {8, 9, 10}.

Technicalities — period

- State *i* has *period d* if the Markov chain can only go from state *i* to itself in multiples of *d* steps, where *d* is the maximum number that satisfies that.
- If d > 1 then state *i* is *periodic*.
- A Markov chain is *periodic* if at least one state is periodic and is *aperiodic* if no states are periodic.
- All states in a component have the same period.
- Component {4, 5, 6, 7} has period 2 and component {8, 9, 10} has period 3, so the Markov chain is periodic.

Technicalities — absorbing states

- An *absorbing state* has all its outgoing edges going to itself; e.g., state 3 above.
- An irreducible Markov chain with two or more states cannot have any absorbing states.

Technicalities — summary

- There are generalizations to infinite numbers of discrete or continuous states and to continuous time.
- We will work with Markov chains that are finite, discrete, irreducible, and aperiodic, unless otherwise stated.
- For a finite discrete Markov chain on two or more states: irreducible and aperiodic with no absorbing states is equivalent to

P or a power of *P* has all entries greater than 0 and in this case, $\lim_{n\to\infty} P^n$ exists and all its rows are the stationary distribution.

Reverse Markov Chain

- A Markov chain modeling forwards progression of time can be "reversed" to make "predictions" about the past. For example, this is done in models of nucleotide evolution.
- The graph of the reverse Markov chain has
 - the same nodes as the forwards chain;
 - the same edges but reversed directions and new probabilities.

- The transition matrix *P* of the forwards Markov chain was defined so that $P(X_{t+1} = j | X_t = i) = p_{ij}$ at all times *t*.
- Assume the forwards machine has run long enough to reach the stationary distribution, $P(X_t = i) = \varphi_i$.
- The reverse Markov chain has transition matrix Q, where

$$q_{ij} = P(X_t = j | X_{t+1} = i) = \frac{P(X_{t+1} = i | X_t = j)P(X_t = j)}{P(X_{t+1} = i)} = \frac{p_{ji}\varphi_j}{\varphi_i}$$

(Recall Bayes' Theorem: P(B|A) = P(A|B)P(B)/P(A).)

Reverse Markov Chain of M1

- Stationary distribution of *P*1 is $\vec{\phi}' = (\frac{11}{16}, \frac{15}{64}, \frac{15}{256}, \frac{1}{64}, \frac{1}{256})$
- Example of one entry: The edge $0 \rightarrow GA$ in the reverse chain has $q_{13} = p_{31}\varphi_3/\varphi_1 = (\frac{3}{4})(\frac{15}{256})/(\frac{11}{16}) = \frac{45}{704}$.
- This means that in the steady state of the forwards chain, when 0 is entered, there is a probability $\frac{45}{704}$ that the previous state was GA.

Matlab and R

Matlab

>> d_sstate =	diag(sst	ate)			
d_sstate =					
0.6875	0	0	0	0	
0	0.2344	0	0	0	
0	0	0.0586	0	0	
0	0	0	0.0156	0	
0	0	0	0	0.0039	
>> Q1 = inv(d	_sstate)	* P1′ * d_	sstate		
Q1 =					
0.7500	0.1705	0.0639	0.0114	0.0043	
0.7333	0.2500	0	0.0167	0	
0	1.0000	0	0	0	
0	0	0.9375	0	0.0625	
0	0	0	1.0000	0	
R					
> d_sstate =	-				
> Q1 = solve(d_sstate)	%*% t(P1)	%*% d_sst	ate	
Prof. Tesler	Prof. Tesler Markov Chains Math 283 / Fall 2018 30 / 44				

Expected time from state *i* till next time in state *j*

If M1 is in state \emptyset , what is the expected number of steps until the next time it is in state GAGA?

More generally, what's the expected # steps from state *i* to state *j*?

- Fix the end state *j* once and for all.
 Simultaneously solve for expected # steps from all start states *i*.
- For i = 1,..., s, let N_i be a random variable for the number of steps from state i to the next time in state j.
- Next time means that if i = j, we count until the next time at state j, with $N_j \ge 1$; we don't count it as already there in 0 steps.
- We'll develop systems of equations for $E(N_i)$, $Var(N_i)$, and $\mathbb{P}_{N_i}(x)$.

Expected time from state *i* till next time in state *j*

• Random variable $N_r = \#$ steps from state r to next time in state j.

- Dotted paths have no occurrences of state j in the middle.
- Expected # steps from state i = 1 to j = 5 (repeat this for all *i*): $E(N_1^{(\text{time } t)}) = P_{11} E(N_1^{(\text{time } t+1)} + 1) + P_{12} E(N_2 + 1) + P_{13} E(N_3 + 1) + P_{14} E(N_4 + 1) + P_{15} E(1)$

Both N_1 's have same distribution, and we can expand E()'s:

$$E(N_1) = \sum_{r:r \neq j} P_{1r} E(N_r) + \sum_r P_{1r} = \left(\sum_{r:r \neq j} P_{1r} E(N_r)\right) + 1$$

Expected time from state *i* till next time in state *j*

- Recall we fixed j, and defined N_i relative to it.
- Start in state *i*.
- There is a probability P_{ir} of going one step to state r.
- If r = j, we are done in one step: $E(N_i | \text{1st step is } i \to j) = 1$ If $r \neq j$, the expected number of steps after the first step is $E(N_r)$: $E(N_i | \text{1st step is } i \to r) = E(N_r + 1) = E(N_r) + 1$
- Combine with the probability of each value of r: $E(N_i) = P_{ij} \cdot 1 + \sum_{r=1, r \neq j}^{s} P_{ir} E(N_r + 1) = P_{ij} + \sum_{r=1, r \neq j}^{s} P_{ir} \cdot (E(N_r) + 1)$ $= \sum_{r=1}^{s} P_{ir} + \sum_{r=1, r \neq j}^{s} P_{ir} \cdot E(N_r) = 1 + \sum_{r=1, r \neq j}^{s} P_{ir} \cdot E(N_r)$
- Doing this for all s states, i = 1,..., s, gives s equations in the s unknowns E(N₁),..., E(N_s).

Expected times between states in M1: times to state 5

$$\begin{split} E(N_1) &= 0 + \frac{3}{4}(E(N_1) + 1) + \frac{1}{4}(E(N_2) + 1) &= 1 + \frac{3}{4}E(N_1) + \frac{1}{4}E(N_2) \\ E(N_2) &= 0 + \frac{1}{2}(E(N_1) + 1) + \frac{1}{4}(E(N_2) + 1) + \frac{1}{4}(E(N_3) + 1) = 1 + \frac{1}{2}E(N_1) + \frac{1}{4}E(N_2) + \frac{1}{4}E(N_3) \\ E(N_3) &= 0 + \frac{3}{4}(E(N_1) + 1) + \frac{1}{4}(E(N_4) + 1) &= 1 + \frac{3}{4}E(N_1) + \frac{1}{4}E(N_4) \\ E(N_4) &= \frac{1}{4} + \frac{1}{2}(E(N_1) + 1) + \frac{1}{4}(E(N_2) + 1) &= 1 + \frac{1}{2}E(N_1) + \frac{1}{4}E(N_2) \\ E(N_5) &= 0 + \frac{3}{4}(E(N_1) + 1) + \frac{1}{4}(E(N_4) + 1) &= 1 + \frac{3}{4}E(N_1) + \frac{1}{4}E(N_2) \\ &= 1 + \frac{3}{4}E(N_1) + \frac{1}{4}E(N_2) \\ &= 1 + \frac{3}{4}E(N_1) + \frac{1}{4}E(N_4) \end{split}$$

• This is 5 equations in 5 unknowns $E(N_1), \ldots, E(N_5)$. Matrix format:

Then subtract 1 from each diagonal entry.

• $E(N_1) = 272, E(N_2) = 268, E(N_3) = 256, E(N_4) = 204, E(N_5) = 256.$

Matlab and R: Enter matrix C and vector r. Solve C\$\vec{x}\$ = \$\vec{r}\$ with Matlab: x=C\r Or x=inv(C) *r R: x=solve(C,r)

Variance and PGF of number of steps between states

• We may compute $E(g(N_i))$ for any function g by setting up recurrences in the same way. For each i = 1, ..., s: $E(g(N_i)) = P_{ij}g(1) + \sum_{r \neq j} P_{ir}E(g(N_r+1)) = \text{expansion depending on } g$

• Variance of N_i 's: $\operatorname{Var}(N_i) = E(N_i^2) - (E(N_i))^2$ $E(N_i^2) = P_{ij} \cdot 1^2 + \sum_{r=1, r \neq j}^{s} P_{ir} E((N_r+1)^2) = 1 + 2 \sum_{r=1, r \neq j}^{s} P_{ir} E(N_r) + \sum_{r=1, r \neq j}^{s} P_{ir} E(N_r^2)$ Plug in the previous solution of $E(N_1), \ldots, E(N_s)$. Then solve the *s* equations for the *s* unknowns $E(N_1^2), \ldots, E(N_s^2)$.

• **PGF:** $\mathbb{P}_{N_i}(x) = E(x^{N_i}) = \sum_{n=0}^{\infty} P(N_i = n) x^n$ $E(x^{N_i}) = P_{ij} \cdot x^1 + \sum_{r=1, r \neq j}^{s} P_{ir} E(x^{N_r+1}) = P_{ij} \cdot x + \sum_{r=1, r \neq j}^{s} P_{ir} \cdot x \cdot E(x^{N_r})$ Solve the *s* equations for *s* unknowns $E(x^{N_1}), \dots, E(x^{N_s})$. See the old handout for a worked out example.

Powers of matrices (see separate slides)

- Sample matrix: Diagonalization: $P = VDV^{-1}$ $P = \begin{bmatrix} 8 & -1 \\ 6 & 3 \end{bmatrix}$ $V = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ $D = \begin{bmatrix} 5 & 0 \\ 0 & 6 \end{bmatrix}$ $V^{-1} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$ • $P^n = (VDV^{-1})(VDV^{-1})\cdots(VDV^{-1}) = VD^nV^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5^n & 0 \\ 0 & 6^n \end{bmatrix} \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$
- When a square $(s \times s)$ matrix *P* has distinct eigenvalues, it can be *diagonalized*

$P = VDV^{-1}$

where *D* is a diagonal matrix of the eigenvalues of *P* (any order); the columns of *V* are right eigenvectors of *P* (in same order as *D*); the rows of V^{-1} are left eigenvectors of *P* (in same order as *D*);

• If any eigenvalues are equal, it may or may not be diagonalizeable, but there is a generalization called *Jordan Canonical Form*, $P = VJV^{-1}$ giving $P^n = VJ^nV^{-1}$.

J has eigenvalues on the diagonal and 1's and 0's just above it, and is also easy to raise to powers.

Matrix powers — spectral decomposition (distinct eigenvalues)

• Powers of P:
$$P^{n} = (VDV^{-1})(VDV^{-1}) \dots = VD^{n}V^{-1}$$

 $P^{n} = VD^{n}V^{-1} = V \begin{bmatrix} 5^{n} & 0 \\ 0 & 6^{n} \end{bmatrix} V^{-1} = V \begin{bmatrix} 5^{n} & 0 \\ 0 & 0 \end{bmatrix} V^{-1} + V \begin{bmatrix} 0 & 0 \\ 0 & 6^{n} \end{bmatrix} V^{-1}$
 $V \begin{bmatrix} 5^{n} & 0 \\ 0 & 0 \end{bmatrix} V^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5^{n} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1.5 & -.5 \end{bmatrix} = \begin{bmatrix} (1)(5^{n})(-2) & (1)(5^{n})(1) \\ (3)(5^{n})(-2) & (3)(5^{n})(1) \end{bmatrix}$
 $= 5^{n} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} -2 & 1 \end{bmatrix} = \lambda_{1}^{n}\vec{r}_{1}\vec{\ell}_{1}' = 5^{n} \begin{bmatrix} -2 & 1 \\ -6 & 3 \end{bmatrix}$
 $V \begin{bmatrix} 0 & 0 \\ 0 & 6^{n} \end{bmatrix} V^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 6^{n} \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1.5 & -.5 \end{bmatrix} = \begin{bmatrix} 2(6^{n})(1.5) & 2(6^{n})(-.5) \\ 4(6^{n})(1.5) & 4(6^{n})(-.5) \end{bmatrix}$
 $= 6^{n} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 1.5 & -.5 \end{bmatrix} = \lambda_{2}^{n}\vec{r}_{2}\vec{\ell}_{2}' = 6^{n} \begin{bmatrix} 3 & -1 \\ 6 & -2 \end{bmatrix}$

• Spectral decomposition of P^n :

$$P^{n} = VD^{n}V^{-1} = \lambda_{1}^{n}\vec{r}_{1}\vec{\ell}_{1}' + \lambda_{2}^{n}\vec{r}_{2}\vec{\ell}_{2}' = 5^{n}\begin{bmatrix}-2 & 1\\-6 & 3\end{bmatrix} + 6^{n}\begin{bmatrix}3 & -1\\6 & -2\end{bmatrix}$$

Jordan Canonical Form

- Matrices with two or more equal eigenvalues cannot necessarily be diagonalized. Matlab and R do not give an error or warning.
- The *Jordan Canonical Form* is a generalization that turns into diagonalization when possible, and still works otherwise:

$$P = VJV^{-1} \quad J = \begin{bmatrix} B_1 & 0 & 0 & \cdots \\ 0 & B_2 & 0 & \cdots \\ 0 & 0 & B_3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \quad B_i = \begin{bmatrix} \lambda_i & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_i & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \lambda_i & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \lambda_i & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & \lambda_i \end{bmatrix}$$

•
$$P^n = VJ^nV^{-1}$$
 where

$$J^{n} = \begin{bmatrix} B_{1}^{n} & 0 & 0 & \cdots \\ 0 & B_{2}^{n} & 0 & \cdots \\ 0 & 0 & B_{3}^{n} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \quad B_{i}^{n} = \begin{bmatrix} \lambda_{i}^{n} \binom{n}{1} \lambda_{i}^{n-1} \binom{n}{2} \lambda_{i}^{n-2} & \cdots & \cdots & \cdots \\ 0 & \lambda_{i}^{n} \binom{n}{1} \lambda_{i}^{n-1} & \cdots & \cdots & \cdots \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \cdots & \lambda_{i}^{n} \binom{n}{1} \lambda_{i}^{n-1} \\ 0 & 0 & 0 & \cdots & 0 & \lambda_{i}^{n} \end{bmatrix}$$

(10) (10) (10)

 In applications when repeated eigenvalues are a possibility, it's best to use the Jordan Canonical Form.

Prof. Tesler

Markov Chains

Jordan Canonical Form for P1 in Matlab

(R doesn't currently have JCF available either built-in or as an add-on)

» P1 = [» Vli = inv(Vl)
[3/4, 1/4, 0, 0, 0]; %	Vli =
[2/4,1/4,1/4,0,0]; %G	0 52.3636 -64.0000 11.6364 0
[3/4, 0, 0, 1/4, 0]; % GA	-16.0000 16.0000 13.0909 -16.0000 2.9091
[2/4, 1/4, 0, 0, 1/4]; % GAG	0 -4.0000 4.0000 4.0000 -4.0000
[3/4, 0, 0, 1/4, 0]; % GAGA	0 0 -1.0000 0 1.0000
]	-16.0000 -5.4545 -1.3636 -0.3636 -0.0909
P1 =	» V1 * J1 * V1i
0.7500 0.2500 0 0 0	ans =
0.5000 0.2500 0.2500 0 0	0.7500 0.2500 -0.0000 -0.0000 0.0000
0.7500 0 0.2500 0	0.5000 0.2500 0.2500 -0.0000 0.0000
0.5000 0.2500 0 0 0.2500	0.7500 -0.0000 -0.0000 0.2500 -0.0000
0.7500 0 0.2500 0	0.5000 0.2500 0.0000 -0.0000 0.2500
	0.7500 -0.0000 -0.0000 0.2500 -0.0000
» [V1,J1] = jordan(P1)	
V1 =	
-0.0039 -0.0195 -0.0707 -0.2298 -0.0430	
0.0117 0.0430 0.1339 0.4066 -0.0430	
-0.0039 0.0430 0.1793 0.5884 -0.0430	
0.0117 0.0430 0.3839 1.4066 -0.0430	
-0.0039 0.0430 0.1793 1.5884 -0.0430	
J1 =	
0 1 0 0 0	
0 0 1 0 0	
0 0 0 1 0	
0 0 0 0 0	
0 0 0 0 1	

• $P = VJV^{-1}$ gives $P^n = VJ^nV^{-1}$, and J^n is easy to compute:

» J1	» J1^2	» J1^3	» J1^4	» J1^5
J1 =	ans =	ans =	ans =	ans =
0 1 0 0 0	0 0 1 0 0	0 0 0 1 0	0 0 0 0 0	0 0 0 0 0
0 0 1 0 0	0 0 0 1 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
0 0 0 1 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
0 0 0 0 1	0 0 0 0 1	0 0 0 0 1	0 0 0 0 1	0 0 0 0 1

• For this matrix, $J^n = J^4$ when $n \ge 4$, so $P^n = VJ^nV^{-1} = VJ^4V^{-1} = P^4$ for $n \ge 4$.

Non-overlapping occurrences of GAGA

pA+pC+pT	pG	M2		P2
	pG pA pC+pT pA+pC+pT - pC+pT pA+pC+pT - pC+p	pG pG	GAG pA GAGA	$\begin{bmatrix} 3/4 & 1/4 & 0 & 0 & 0 \\ 1/2 & 1/4 & 1/4 & 0 & 0 \\ 3/4 & 0 & 0 & 1/4 & 0 \\ 1/2 & 1/4 & 0 & 0 & 1/4 \\ 3/4 & 1/4 & 0 & 0 & 0 \end{bmatrix}$
	= jordan(P2)			
V2 =				
-0.0625	-0.5170	-0.1728		+ 0.0294i 0.1176 - 0.0294i
0.1875	1.3011	-0.1728		+ 0.0294i -0.3824 - 0.0294i
-0.0625	0.4830	-0.1728		- 0.4706i 0.1176 + 0.4706i
0.1875	1.3011	-0.1728		+ 0.0294i 0.1176 - 0.0294i
-0.0625	0.4830	-0.1728	0.1176 -	+ 0.0294i 0.1176 - 0.0294i
J2 = 0	1.0000	0	0	0
0	0	0	0	0
0	0	1.0000	0	0
0	0	0	0 -	+ 0.2500i 0
0	0	0	0	0 - 0.2500i
» V2i = inv V2i =	v (V2)			
3.2727	0	-0.0000	4.0000	-7.2727
-1.0000	0	0.0000	0	1.0000
-3.9787	-1.3617	-0.3404	-0.0851	-0.0213
0	-1.0000	0	+ 1.0000i 1.0000	0 - 1.0000i
0	-1.0000	0	- 1.0000i 1.0000	0 + 1.0000i
F	Prof. Tesler	Markov	Chains	Math 283 / Fall 2018 41 / 44

Non-overlapping occurrences of GAGA — JCF

$$(J2)^{n} = \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^{n} & & \\ & 1^{n} & \\ & & (i/4)^{n} \\ & & & (-i/4)^{n} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^{1} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^{n} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ for } n \ge 2$$

One eigenvalue = 1. It's the third one listed, so the stationary distribution is the third row of (V2)⁻¹ normalized:
 » V2i(3,:) / sum(V2i(3,:))

ans = 0.6875 0.2353 0.0588 0.0147 0.0037

- Two eigenvalues = 0. The interpretation of one of them is that the first and last rows of P2 are equal, so (1,0,0,0,-1)' is a right eigenvector of P2 with eigenvalue 0.
- Two complex eigenvalues, 0 ± i/4. Since P2 is real, all complex eigenvalues must come in conjugate pairs.
 The eigenvectors also come in conjugate pairs (last 2 columns of V2; last 2 rows of (V2)⁻¹.

$$(J2)^{n} = \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^{n} & & \\ & 1^{n} & \\ & & (i/4)^{n} \\ & & & (-i/4)^{n} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^{1} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^{n} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ for } n \ge 2$$

$$(\mathbb{P}2)^{n} = (\mathbb{V}2)(\mathbb{J}2)^{n}(\mathbb{V}2)^{-1}$$

= $\begin{bmatrix} \vec{r}_{1} & \vec{r}_{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^{n} \begin{bmatrix} \vec{\ell}_{1}' \\ \vec{\ell}_{2}' \end{bmatrix} + \vec{r}_{3}(1)^{n} \vec{\ell}_{3}' + \vec{r}_{4}(i/4)^{n} \vec{\ell}_{4}' + \vec{r}_{5}(-i/4)^{n} \vec{\ell}_{5}'$

The first term vanishes when $n \ge 2$, so when $n \ge 2$ the format is = $1^n S3 + (i/4)^n S4 + (-i/4)^n S5 = S3 + (i/4)^n S4 + (-i/4)^n S5$ Spectral decomposition with JCF and complex eigenvalues

For $n \ge 2$	2, ($(P2)^n = S$	33 + (i/	$(4)^n S 4 + (-i)$	$(4)^n$ S5 w	here
» S3 = V2(:,	3) * V2i(3.:)				
S3 =	0, 122(
0.6875	0.2353	0.0588	0.0147	0.0037		
0.6875	0.2353	0.0588	0.0147	0.0037		
0.6875	0.2353	0.0588	0.0147	0.0037		
0.6875	0.2353	0.0588	0.0147	0.0037		
0.6875	0.2353	0.0588	0.0147	0.0037		
» S4 = V2(:,	4) * V2i(4,:)				
S4 = 0		-0.1176 - 0.	0294i -0	.0294 + 0.1176i	0.1176 + 0.0294i	0.0294 - 0.1176i
0		0.3824 - 0.	0294i -0	.0294 - 0.3824i	-0.3824 + 0.0294i	0.0294 + 0.3824i
0		-0.1176 + 0.	4706i 0	.4706 + 0.1176i	0.1176 - 0.4706i	-0.4706 - 0.1176i
0		-0.1176 - 0.	0294i -0	.0294 + 0.1176i	0.1176 + 0.0294i	0.0294 - 0.1176i
0		-0.1176 - 0.	0294i -0	.0294 + 0.1176i	0.1176 + 0.0294i	0.0294 - 0.1176i
» S5 = V2(:,	5) * V2i(5 ,:)				
S5 = 0		-0.1176 + 0.	0294i -0	.0294 - 0.1176i	0.1176 - 0.0294i	0.0294 + 0.1176i
0		0.3824 + 0.	0294i -0	.0294 + 0.3824i	-0.3824 - 0.0294i	0.0294 - 0.3824i
0		-0.1176 - 0.	4706i 0	.4706 - 0.1176i	0.1176 + 0.4706i	-0.4706 + 0.1176i
0		-0.1176 + 0.	0294i -0	.0294 - 0.1176i	0.1176 - 0.0294i	0.0294 + 0.1176i
0		-0.1176 + 0.	0294i -0	.0294 - 0.1176i	0.1176 - 0.0294i	0.0294 + 0.1176i

- S3 corresponds to the stationary distribution.
- S4 and S5 are complex conjugates, so $(i/4)^n$ S4 + $(-i/4)^n$ S5 is a sum of two complex conjugates; thus, it is real-valued, even though complex numbers are involved in the computation.