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Locating overlapping occurrences of a word

Consider a (long) single-stranded nucleotide sequence
τ = τ1 . . . τN and a (short) word w = w1 . . . wk, e.g., w = GAGA.

for i = 1 to N-3 {
if (τiτi+1τi+2τi+3 == GAGA) {

...
}

}

The above scan takes up to ≈ 4N comparisons to locate all
occurrences of GAGA (kN comparisons for w of length k).
A finite state automaton (FSA) is a “machine” that can locate all
occurrences while only examining each letter of τ once.
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Overlapping occurrences of GAGA
M1

0

A,C,T

GG
C,T

G

GAA

A,C,T

GAGG

C,T
G

GAGAA

A,C,T

G

The states are the nodes ∅, G, GA, GAG, GAGA (prefixes of w).
For w = w1w2 · · ·wk, there are k + 1 states (one for each prefix).
Start in the state ∅ (shown on figure as 0).
Scan τ = τ1τ2 . . . τN one character at a time left to right.
Transition edges: When examining τj, move from the current state
to the next state according to which edge τj is on.

For each node u = w1 · · ·wr and each letter x = A,C,G,T, determine
the longest suffix s (possibly ∅) of w1 · · ·wrx that’s among the states.
Draw an edge u x−→ s

The number of times we are in the state GAGA is the desired count
of number of occurrences.
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Overlapping occurrences of GAGA in
τ = CAGAGGTCGAGAGT...

M1
0

A,C,T

GG
C,T

G

GAA

A,C,T

GAGG

C,T
G

GAGAA

A,C,T

G

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
τt C A G A G G T C G A G A G T ...

Time t State at t τt
1 0 C
2 0 A
3 0 G
4 G A
5 GA G
6 GAG G
7 G T
8 0 C

Time t State at t τt
9 0 G

10 G A
11 GA G
12 GAG A
13 GAGA G
14 GAG T
15 0 · · ·
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Non-overlapping occurrences of GAGA
M1 =

0

A,C,T

GG
C,T

G

GAA

A,C,T

GAGG

C,T
G

GAGAA

A,C,T

G

M2 =
0

A,C,T

GG
C,T

G

GAA

A,C,T

GAGG

C,T

G

GAGAA

A,C,T

G

For non-overlapping occurrences of w:
Replace the outgoing edges from w by copies of the outgoing
edges from ∅.

On previous slide, the time 13→ 14 transition GAGA
G−→GAG

changes to GAGA
G−→G.
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Motif {GAGA,GTGA}, overlaps permitted

0

A,C,T               

GG
C

G
GAA

GT

T

A,C,T

GAGG

C

G

GAGAA

T

GTG

A,C,T                    

G

GTGA

A,C,T               

G

C

G
T

A
A,C,T                 

G

States: All prefixes of all words in the motif.
If a prefix occurs multiple times, only create one node for it.
Transition edges: they may jump from one word of the motif to
another.

GTGA
G−→GAG.

Count the number of times we reach the states for any words in
the motif (GAGA or GTGA).
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Markov chains

A Markov chain is similar to a finite state machine, but
incorporates probabilities.
Let S be a set of “states.”
We will take S to be a discrete finite set, such as S = {1, 2, . . . , s}.
Let t = 1, 2, . . . denote the “time.”
Let X1, X2, . . . denote a sequence of random variables, values∈ S.

The Xt’s form a (first order) Markov chain if they obey these rules
1 The probability of being in a certain state at time t + 1 only

depends on the state at time t, not on any earlier states:
P(Xt+1 = xt+1|X1 = x1, . . . , Xt = xt) = P(Xt+1 = xt+1|Xt = xt)

2 The probability of transitioning from state i at time t to state j at
time t + 1 only depends on i and j, but not on the time t:

P(Xt+1 = j|Xt = i) = pij at all times t
for some values pij, which form an s× s transition matrix.
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Transition matrix

The transition matrix , P1, of the Markov chain M1 is


1: 0

From state To state 1
pA + pC + pT

2
pG

3
0

4
0

5
0

2: G pC + pT pG pA 0 0
3: GA pA + pC + pT 0 0 pG 0
4: GAG pC + pT pG 0 0 pA

5: GAGA pA + pC + pT 0 0 pG 0

 =


P11 P12 P13 P14 P15
P21 P22 P23 P24 P25
P31 P32 P33 P34 P35
P41 P42 P43 P44 P45
P51 P52 P53 P54 P55


Notice that the entries in each row sum up to pA + pC + pG + pT = 1.
A matrix with all entries > 0 and all row sums equal to 1 is called a
stochastic matrix .
The transition matrix of a Markov chain is always stochastic.
All row sums = 1 can be written

P~1 = ~1 where ~1 =

1
...
1


so ~1 is a right eigenvector of P with eigenvalue 1.
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Transition matrices for GAGA
M1 P1

0

pA+pC+pT

GpG
pC+pT

pG

GApA

pA+pC+pT

GAGpG

pC+pT
pG

GAGApA

pA+pC+pT

pG


3/4 1/4 0 0 0
1/2 1/4 1/4 0 0
3/4 0 0 1/4 0
1/2 1/4 0 0 1/4
3/4 0 0 1/4 0


M2 P2

0

pA+pC+pT

GpG
pC+pT

pG

GApA

pA+pC+pT

GAGpG

pC+pT

pG

GAGApA

pA+pC+pT

pG


3/4 1/4 0 0 0
1/2 1/4 1/4 0 0
3/4 0 0 1/4 0
1/2 1/4 0 0 1/4
3/4 1/4 0 0 0


Edge labels are replaced by probabilities, e.g., pC + pT .
The matrices are shown for the case that all nucleotides have
equal probabilities 1/4.
P2 (no overlaps) is obtained from P1 (overlaps allowed) by
replacing the last row with a copy of the first row.
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Other applications of automata

Automata / state machines are also used in other applications in
Math and Computer Science. The transition weights may be
defined differently, and the matrices usually aren’t stochastic.

Combinatorics: Count walks through the automaton (instead of
getting their probabilities) by setting transition weights u x−→ s to 1.

Computer Science (formal languages, classifiers, . . . ):
Does the string τ contain GAGA? Output 1 if it does, 0 otherwise.

Modify M1: remove the outgoing edges on GAGA.
On reaching state GAGA, terminate with output 1.
If the end of τ is reached, terminate with output 0.
This is called a deterministic finite acceptor (DFA).

Markov chains: Instead of considering a specific string τ, we’ll
compute probabilities, expected values, . . . over the sample space
of all strings of length n.
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Other Markov chain examples
A Markov chain is kth order if the probability of Xt = i depends on
the values of Xt−1, . . . , Xt−k. It can be converted to a first order
Markov chain by making new states that record more history.

Positional independence: Instead of a null hypothesis that a DNA
sequence is generated by repeated rolls of a biased four-sided
die, we could use a Markov chain. The simplest is a one-step
transition matrix

P =

pAA pAC pAG pAT
pCA pCC pCG pCT
pGA pGC pGG pGT
pTA pTC pTG pTT


P could be the same at all positions. In a coding region, it could be
different for the first, second, and third positions of codons.

Nucleotide evolution: There are models of random point mutations
over the course of evolution concerning Markov chains with the
form P (same as above) in which Xt is the state A,C,G,T of the
nucleotide at a given position in a sequence at time (generation) t.
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Questions about Markov chains

1 What is the probability of being in a particular state after n steps?

2 What is the probability of being in a particular state as n→∞?

3 What is the “reverse” Markov chain?

4 If you are in state i, what is the expected number of time steps
until the next time you are in state j? What is the variance of this?
What is the complete probability distribution?

5 Starting in state i, what is the expected number of visits to state j
before reaching state k?
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Transition probabilities after two steps

i

1

2

3

4

5

j

Pi1

Pi2

Pi3

Pi4

Pi5

P1j

P2j

P3j

P4j

P5j

Time t t + 1 t + 2

To compute the probability for going from state i at time t to state j at
time t + 2, consider all the states it could go through at time t + 1:

P(Xt+2 = j|Xt = i) =
∑

r
P(Xt+1 = r|Xt = i)P(Xt+2 = j|Xt+1 = r, Xt = i)

=
∑

r
P(Xt+1 = r|Xt = i)P(Xt+2 = j|Xt+1 = r)

=
∑

r
PirPrj = (P2)ij
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Transition probabilities after n steps

For n > 0, the transition matrix from time t to time t + n is Pn:

P(Xt+n = j|Xt = i) =
∑

r1,...,rn−1

P(Xt+1 = r1|Xt = i)P(Xt+2 = r2|Xt+1 = r1) · · ·

=
∑

r1,...,rn−1

Pi r1Pr1 r2 · · ·Prn−1 j = (Pn)ij

(sum over possible states r1, . . . , rn−1 at times t + 1, . . . , t + (n − 1))
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State probability vector

αi(t) = P(Xt = i) is the probability of being in state i at time t.

Column vector ~α(t) =

α1(t)
...

αs(t)


or transpose it to get a row vector ~α(t) ′ = (α1(t), . . . ,αs(t))

The probabilities at time t + n are

αj(t + n) = P(Xt+n = j|~α(t)) =
∑

i
P(Xt+n = j|Xt = i)P(Xt = i)

=
∑

i
αi(t)(Pn)ij = (~α(t) ′Pn)j

so ~α(t + n) ′ = ~α(t) ′Pn (row vector times matrix)
or equivalently, (P ′)n~α(t) = ~α(t + n) (matrix times column vector).
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State vector after n steps for GAGA; P = P1

P =


3
4

1
4 0 0 0

1
2

1
4

1
4 0 0

3
4 0 0 1

4 0
1
2

1
4 0 0 1

4
3
4 0 0 1

4 0

 P2 =


11
16

1
4

1
16 0 0

11
16

3
16

1
16

1
16 0

11
16

1
4 0 0 1

16
11
16

3
16

1
16

1
16 0

11
16

1
4 0 0 1

16

 (P ′)2 =


11
16

11
16

11
16

11
16

11
16

1
4

3
16

1
4

3
16

1
4

1
16

1
16 0 1

16 0
0 1

16 0 1
16 0

0 0 1
16 0 1

16


At t = 10, suppose 1

3 chance of being in the 1st state; 2
3 chance of

being in the 2nd state; and no chance of other states:
~α(10) ′ = (1

3 , 2
3 , 0, 0, 0).

Time t = 12 is n = 12 − 10 = 2 steps later:
~α(12) ′ = (1

3 , 2
3 , 0, 0, 0)P2 = (11

16 , 5
24 , 1

16 , 1
24 , 0)

Alternately:

~α(10) =


1/3
2/3

0
0
0

 ~α(2) = (P ′)2~α(10) =


11/16
5/24
1/16
1/24

0
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Transition probabilities after n steps for GAGA; P = P1

P0 = I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 P1 =


3
4

1
4 0 0 0

1
2

1
4

1
4 0 0

3
4 0 0 1

4 0
1
2

1
4 0 0 1

4
3
4 0 0 1

4 0

 P2 =


11
16

1
4

1
16 0 0

11
16

3
16

1
16

1
16 0

11
16

1
4 0 0 1

16
11
16

3
16

1
16

1
16 0

11
16

1
4 0 0 1

16



P3 =


11
16

15
64

1
16

1
64 0

11
16

15
64

3
64

1
64

1
64

11
16

15
64

1
16

1
64 0

11
16

15
64

3
64

1
64

1
64

11
16

15
64

1
16

1
64 0

 P4 =


11
16

15
64

15
256

1
64

1
256

11
16

15
64

15
256

1
64

1
256

11
16

15
64

15
256

1
64

1
256

11
16

15
64

15
256

1
64

1
256

11
16

15
64

15
256

1
64

1
256

 Pn = P4 for n > 5

Regardless of the starting state, the probabilities of being in states
1, · · · , 5 at time t (when t is large enough) are 11

16 , 15
64 , 15

256 , 1
64 , 1

256 .
Usually Pn just approaches a limit asymptotically as n increases,
rather than reaching it. We’ll see other examples later (like P2).
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Matrix powers in Matlab and R

Matlab
>> P1 = [
[ 3/4, 1/4, 0, 0, 0 ]; %
[ 2/4, 1/4, 1/4, 0, 0 ]; % G
[ 3/4, 0, 0, 1/4, 0 ]; % GA
[ 2/4, 1/4, 0, 0, 1/4 ]; % GAG
[ 3/4, 0, 0, 1/4, 0 ]; % GAGA
]

P1 =
0.7500 0.2500 0 0 0
0.5000 0.2500 0.2500 0 0
0.7500 0 0 0.2500 0
0.5000 0.2500 0 0 0.2500
0.7500 0 0 0.2500 0

>> P1 * P1 % or P1^2
ans =
0.6875 0.2500 0.0625 0 0
0.6875 0.1875 0.0625 0.0625 0
0.6875 0.2500 0 0 0.0625
0.6875 0.1875 0.0625 0.0625 0
0.6875 0.2500 0 0 0.0625

R
> P1 = rbind(
+ c(3/4,1/4, 0, 0, 0), #
+ c(2/4,1/4,1/4, 0, 0), # G
+ c(3/4, 0, 0,1/4, 0), # GA
+ c(2/4,1/4, 0, 0,1/4), # GAG
+ c(3/4, 0, 0,1/4, 0) # GAGA
+ )

> P1
[,1] [,2] [,3] [,4] [,5]

[1,] 0.75 0.25 0.00 0.00 0.00
[2,] 0.50 0.25 0.25 0.00 0.00
[3,] 0.75 0.00 0.00 0.25 0.00
[4,] 0.50 0.25 0.00 0.00 0.25
[5,] 0.75 0.00 0.00 0.25 0.00

> P1 %*% P1
[,1] [,2] [,3] [,4] [,5]

[1,] 0.6875 0.2500 0.0625 0.0000 0.0000
[2,] 0.6875 0.1875 0.0625 0.0625 0.0000
[3,] 0.6875 0.2500 0.0000 0.0000 0.0625
[4,] 0.6875 0.1875 0.0625 0.0625 0.0000
[5,] 0.6875 0.2500 0.0000 0.0000 0.0625

Note: R doesn’t have a built-in matrix power function.
The > and + symbols above are prompts, not something you
enter.
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Stationary distribution, a.k.a. steady state distribution
If P is irreducible and aperiodic (these will be defined soon) then
Pn approaches a limit with this format as n→∞:

lim
n→∞ Pn =

[
ϕ1 ϕ2 · · · ϕs
ϕ1 ϕ2 · · · ϕs
· · · · · · · · · · · ·
ϕ1 ϕ2 · · · ϕs

]

In other words, no matter what the starting state, the probability of
being in state j after n steps approaches ϕj.

The row vector ~ϕ ′ = (ϕ1, . . . ,ϕs) is called the stationary
distribution of the Markov chain.

It is “stationary” because these probabilities stay the same from
one time to the next; in matrix notation, ~ϕ ′P = ~ϕ ′, or P ′~ϕ = ~ϕ.

So ~ϕ ′ is a left eigenvector of P with eigenvalue 1.

Since it represents probabilities of being in each state, the
components of ~ϕ add up to 1.
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Stationary distribution — computing it for example M1
M1 P1

0

pA+pC+pT

GpG
pC+pT

pG

GApA

pA+pC+pT

GAGpG

pC+pT
pG

GAGApA

pA+pC+pT

pG


3/4 1/4 0 0 0
1/2 1/4 1/4 0 0
3/4 0 0 1/4 0
1/2 1/4 0 0 1/4
3/4 0 0 1/4 0


Solve ~ϕ ′P = ~ϕ ′, or (ϕ1, . . . ,ϕ5)P = (ϕ1, . . . ,ϕ5):

ϕ1 = 3
4ϕ1 +

1
2ϕ2 +

3
4ϕ3 +

1
2ϕ4 +

3
4ϕ5

ϕ2 = 1
4ϕ1 +

1
4ϕ2 + 0ϕ3 +

1
4ϕ4 + 0ϕ5

ϕ3 = 0ϕ1 +
1
4ϕ2 + 0ϕ3 + 0ϕ4 + 0ϕ5

ϕ4 = 0ϕ1 + 0ϕ2 +
1
4ϕ3 + 0ϕ4 +

1
4ϕ5

ϕ5 = 0ϕ1 + 0ϕ2 + 0ϕ3 +
1
4ϕ4 + 0ϕ5

and the total probability equation ϕ1 +ϕ2 +ϕ3 +ϕ4 +ϕ5 = 1.

This is 6 equations in 5 unknowns, so it is overdetermined.
Actually, the first 5 equations are underdetermined; they add up to

ϕ1 + · · ·+ϕ5 = ϕ1 + · · ·+ϕ5.
Knock out the ϕ5 = · · · equation and solve the rest of them to get
~ϕ ′ = ( 11

16 , 15
64 , 15

256 , 1
64 , 1

256) ≈ (0.6875, 0.2344, 0.0586, 0.0156, 0.0039).
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Solving equations in Matlab or R
(this method doesn’t use the functions for eigenvectors)

Matlab
>> eye(5) # identity

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

>> P1’ - eye(5) # transpose minus identity
-0.2500 0.5000 0.7500 0.5000 0.7500
0.2500 -0.7500 0 0.2500 0

0 0.2500 -1.0000 0 0
0 0 0.2500 -1.0000 0.2500
0 0 0 0.2500 -1.0000

>> [P1’ - eye(5) ; 1 1 1 1 1]
-0.2500 0.5000 0.7500 0.5000 0.7500
0.2500 -0.7500 0 0.2500 0

0 0.2500 -1.0000 0 0
0 0 0.2500 -1.0000 0.2500
0 0 0 0.2500 -1.0000

1.0000 1.0000 1.0000 1.0000 1.0000
>> sstate=[P1’-eye(5); 1 1 1 1 1] \ [0 0 0 0 0 1]’
sstate =
0.6875
0.2344
0.0586
0.0156
0.0039

R
> diag(1,5) % identity

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 0
[4,] 0 0 0 1 0
[5,] 0 0 0 0 1
> t(P1) - diag(1,5) % transpose minus identity

[,1] [,2] [,3] [,4] [,5]
[1,] -0.25 0.50 0.75 0.50 0.75
[2,] 0.25 -0.75 0.00 0.25 0.00
[3,] 0.00 0.25 -1.00 0.00 0.00
[4,] 0.00 0.00 0.25 -1.00 0.25
[5,] 0.00 0.00 0.00 0.25 -1.00
> rbind(t(P1) - diag(1,5), c(1,1,1,1,1))

[,1] [,2] [,3] [,4] [,5]
[1,] -0.25 0.50 0.75 0.50 0.75
[2,] 0.25 -0.75 0.00 0.25 0.00
[3,] 0.00 0.25 -1.00 0.00 0.00
[4,] 0.00 0.00 0.25 -1.00 0.25
[5,] 0.00 0.00 0.00 0.25 -1.00
[6,] 1.00 1.00 1.00 1.00 1.00
> sstate = qr.solve(rbind(t(P1) - diag(1,5),
+ c(1,1,1,1,1)),c(0,0,0,0,0,1))
> sstate
[1] 0.68750000 0.23437500 0.05859375 0.01562500
[5] 0.00390625
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Eigenvalues of P
A transition matrix is stochastic: all entries are > 0 and its row
sums are all 1. So

P~1 = ~1 where ~1 =

[
1
...
1

]
Thus, λ = 1 is an eigenvalue of P and ~1 is a right eigenvector .
There is also a left eigenvector of P with eigenvalue 1:

~w P = 1~w
where ~w is a row vector. Normalize it so its entries add up to 1, to
get the stationary distribution ~ϕ ′.

All eigenvalues λ of a stochastic matrix have |λ| 6 1.

An irreducible aperiodic Markov chain has just one eigenvalue=1.
The 2nd largest |λ| determines how fast Pn converges. For
example, if it’s diagonalizable, the spectral decomposition is:

Pn = 1nM1 + λ2
nM2 + λ3

nM3 + · · ·
but there may be complications (periodic Markov chains, complex
eigenvalues, . . . ).

Prof. Tesler Markov Chains Math 283 / Fall 2018 22 / 44



Technicalities — reducibility

1

2 4 8

3 5

7

6

9

10

A Markov chain is irreducible if every state can be reached from
every other state after enough steps.
The above example is reducible since there are states that cannot
be reached from each other: after sufficient time, you are either
stuck in state 3, the component {4, 5, 6, 7}, or the component
{8, 9, 10}.
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Technicalities — period

1

2 4 8

3 5

7

6

9

10

State i has period d if the Markov chain can only go from state i to
itself in multiples of d steps, where d is the maximum number that
satisfies that.
If d > 1 then state i is periodic.
A Markov chain is periodic if at least one state is periodic and is
aperiodic if no states are periodic.
All states in a component have the same period.
Component {4, 5, 6, 7} has period 2 and component {8, 9, 10} has
period 3, so the Markov chain is periodic.
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Technicalities — absorbing states

1

2 4 8

3 5

7

6

9

10

An absorbing state has all its outgoing edges going to itself;
e.g., state 3 above.
An irreducible Markov chain with two or more states cannot have
any absorbing states.
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Technicalities — summary
1

2 4 8

3 5

7

6

9

10

There are generalizations to infinite numbers of discrete or
continuous states and to continuous time.
We will work with Markov chains that are finite, discrete,
irreducible, and aperiodic, unless otherwise stated.
For a finite discrete Markov chain on two or more states:

irreducible and aperiodic with no absorbing states
is equivalent to

P or a power of P has all entries greater than 0
and in this case, limn→∞ Pn exists and all its rows are the
stationary distribution.
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Reverse Markov Chain

M1
0

pA+pC+pT

GpG
pC+pT

pG

GApA

pA+pC+pT

GAGpG

pC+pT
pG

GAGApA

pA+pC+pT

pG

Reverse
0 G GA GAG GAGA

A Markov chain modeling forwards progression of time can be
“reversed” to make “predictions” about the past. For example, this
is done in models of nucleotide evolution.

The graph of the reverse Markov chain has
the same nodes as the forwards chain;
the same edges but reversed directions and new probabilities.
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Reverse Markov Chain

The transition matrix P of the forwards Markov chain was defined
so that P(Xt+1 = j|Xt = i) = pij at all times t.

Assume the forwards machine has run long enough to reach the
stationary distribution, P(Xt = i) = ϕi.

The reverse Markov chain has transition matrix Q, where

qij = P(Xt = j|Xt+1 = i) =
P(Xt+1 = i|Xt = j)P(Xt = j)

P(Xt+1 = i)
=

pjiϕj

ϕi

(Recall Bayes’ Theorem: P(B|A) = P(A|B)P(B)/P(A).)
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Reverse Markov Chain of M1
M1 P1

0

pA+pC+pT

GpG
pC+pT

pG

GApA

pA+pC+pT

GAGpG

pC+pT
pG

GAGApA

pA+pC+pT

pG



3
4

1
4 0 0 0

1
2

1
4

1
4 0 0

3
4 0 0 1

4 0
1
2

1
4 0 0 1

4
3
4 0 0 1

4 0


Reverse of M1 Q1

0 G GA GAG GAGA


3
4

15
88

45
704

1
88

3
704

11
15

1
4 0 1

60 0
0 1 0 0 0
0 0 15

16 0 1
16

0 0 0 1 0


Stationary distribution of P1 is ~ϕ ′ = (11

16 , 15
64 , 15

256 , 1
64 , 1

256)

Example of one entry: The edge 0→ GA in the reverse chain
has q13 = p31ϕ3/ϕ1 = (3

4)(
15
256)/(

11
16) =

45
704 .

This means that in the steady state of the forwards chain, when 0
is entered, there is a probability 45

704 that the previous state was GA.
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Matlab and R
Matlab
>> d_sstate = diag(sstate)
d_sstate =

0.6875 0 0 0 0
0 0.2344 0 0 0
0 0 0.0586 0 0
0 0 0 0.0156 0
0 0 0 0 0.0039

>> Q1 = inv(d_sstate) * P1’ * d_sstate
Q1 =

0.7500 0.1705 0.0639 0.0114 0.0043
0.7333 0.2500 0 0.0167 0

0 1.0000 0 0 0
0 0 0.9375 0 0.0625
0 0 0 1.0000 0

R
> d_sstate = diag(sstate)
> Q1 = solve(d_sstate) %*% t(P1) %*% d_sstate
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Expected time from state i till next time in state j

0

pA+pC+pT

GpG
pC+pT

pG

GApA

pA+pC+pT

GAGpG

pC+pT
pG

GAGApA

pA+pC+pT

pG

If M1 is in state ∅, what is the expected number of steps until the next
time it is in state GAGA?

More generally, what’s the expected # steps from state i to state j?
Fix the end state j once and for all.
Simultaneously solve for expected # steps from all start states i.
For i = 1, . . . , s, let Ni be a random variable for the number of
steps from state i to the next time in state j.
Next time means that if i = j, we count until the next time at state j,
with Nj > 1; we don’t count it as already there in 0 steps.
We’ll develop systems of equations for E(Ni), Var(Ni), and PNi(x).
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Expected time from state i till next time in state j

1

1

2

3

4

5

5

1

1

1

1

1

N1

N2

N3

N4

Time t t + 1 t + 1 + Ni # Steps Probability

N1 + 1

N2 + 1

N3 + 1

N4 + 1

1

P11

P12

P13

P14

P15Fix j = 5 .
Random variable Nr = # steps from state r to next time in state j.
Dotted paths have no occurrences of state j in the middle.
Expected # steps from state i = 1 to j = 5 (repeat this for all i):

E(N(time t)
1 ) = P11 E(N(time t + 1)

1 + 1) + P12 E(N2 + 1)
+ P13 E(N3 + 1) + P14 E(N4 + 1) + P15 E(1)

Both N1’s have same distribution, and we can expand E()’s:
E(N1) =

∑
r : r,j

P1r E(Nr) +
∑

r

P1r =
(∑

r : r,j

P1r E(Nr)
)
+ 1
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Expected time from state i till next time in state j

Recall we fixed j, and defined Ni relative to it.
Start in state i.
There is a probability Pir of going one step to state r.
If r = j, we are done in one step: E(Ni |1st step is i→ j) = 1
If r , j, the expected number of steps after the first step is E(Nr):

E(Ni |1st step is i→ r) = E(Nr + 1) = E(Nr) + 1

Combine with the probability of each value of r:

E(Ni) = Pij · 1 +

s∑
r=1, r,j

PirE(Nr + 1) = Pij +

s∑
r=1, r,j

Pir · (E(Nr) + 1)

=

s∑
r=1

Pir +

s∑
r=1, r,j

Pir · E(Nr) = 1 +

s∑
r=1, r,j

Pir · E(Nr)

Doing this for all s states, i = 1, . . . , s, gives s equations in the s
unknowns E(N1), . . . , E(Ns).
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Expected times between states in M1: times to state 5
E(N1) = 0 + 3

4 (E(N1) + 1) + 1
4 (E(N2) + 1) = 1 + 3

4 E(N1) +
1
4 E(N2)

E(N2) = 0 + 1
2 (E(N1) + 1) + 1

4 (E(N2) + 1) + 1
4 (E(N3) + 1) = 1 + 1

2 E(N1) +
1
4 E(N2) +

1
4 E(N3)

E(N3) = 0 + 3
4 (E(N1) + 1) + 1

4 (E(N4) + 1) = 1 + 3
4 E(N1) +

1
4 E(N4)

E(N4) =
1
4 + 1

2 (E(N1) + 1) + 1
4 (E(N2) + 1) = 1 + 1

2 E(N1) +
1
4 E(N2)

E(N5) = 0 + 3
4 (E(N1) + 1) + 1

4 (E(N4) + 1) = 1 + 3
4 E(N1) +

1
4 E(N4)

This is 5 equations in 5 unknowns E(N1), . . . , E(N5). Matrix format:
−1/4 1/4 0 0 0
1/2 −3/4 1/4 0 0
3/4 0 −1 1/4 0
1/2 1/4 0 −1 0
3/4 0 0 1/4 −1


︸                                         ︷︷                                         ︸

Zero out jth column of P.
Then subtract 1 from each diagonal entry.


E(N1)
E(N2)
E(N3)
E(N4)
E(N5)

 =


−1
−1
−1
−1
−1


︸   ︷︷   ︸

All −1’s.

E(N1) = 272, E(N2) = 268, E(N3) = 256, E(N4) = 204, E(N5) = 256.
Matlab and R: Enter matrix C and vector r. Solve C~x = ~r with

Matlab: x=C\r or x=inv(C)*r R: x=solve(C,r)
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Variance and PGF of number of steps between states

We may compute E(g(Ni)) for any function g by setting up
recurrences in the same way. For each i = 1, . . . , s:
E(g(Ni)) = Pij g(1)+

∑
r,j

Pir E(g(Nr+1)) = expansion depending on g

Variance of Ni’s: Var(Ni) = E(Ni
2) − (E(Ni))

2

E(Ni
2) = Pij·12+

s∑
r=1, r,j

Pir E((Nr+1)2) = 1+2
s∑

r=1, r,j

Pir E(Nr)+

s∑
r=1, r,j

Pir E(Nr
2)

Plug in the previous solution of E(N1), . . . , E(Ns).
Then solve the s equations for the s unknowns E(N1

2), . . . , E(Ns
2).

PGF: PNi(x) = E(x Ni) =
∑∞

n=0 P(Ni = n)xn

E(x Ni) = Pij · x1 +

s∑
r=1, r,j

Pir E(x Nr+1) = Pij · x +
s∑

r=1, r,j

Pir · x · E(x Nr)

Solve the s equations for s unknowns E(x N1), . . . , E(x Ns).
See the old handout for a worked out example.
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Powers of matrices (see separate slides)

Sample matrix: Diagonalization: P = VDV−1

P =

[
8 −1
6 3

]
V =

[
1 2
3 4

]
D =

[
5 0
0 6

]
V−1 =

[
−2 1
3/2 −1/2

]
Pn = (VDV−1)(VDV−1) · · · (VDV−1) = VDnV−1 =

[
1 2
3 4

][
5n 0
0 6n

][
−2 1

3
2 − 1

2

]
When a square (s× s) matrix P has distinct eigenvalues, it can be
diagonalized

P = VDV−1

where D is a diagonal matrix of the eigenvalues of P (any order);
the columns of V are right eigenvectors of P (in same order as D);
the rows of V−1 are left eigenvectors of P (in same order as D);
If any eigenvalues are equal, it may or may not be
diagonalizeable, but there is a generalization called Jordan
Canonical Form, P = VJV−1 giving Pn = VJnV−1.
J has eigenvalues on the diagonal and 1’s and 0’s just above it,
and is also easy to raise to powers.
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Matrix powers — spectral decomposition (distinct eigenvalues)

Powers of P: Pn = (VDV−1)(VDV−1) · · · = VDnV−1

Pn = VDnV−1 = V
[

5n 0
0 6n

]
V−1 = V

[
5n 0
0 0

]
V−1 + V

[
0 0
0 6n

]
V−1

V
[

5n 0
0 0

]
V−1 =

[
1 2
3 4

][
5n 0
0 0

][
−2 1
1.5 −.5

]
=

[
(1)(5n)(−2) (1)(5n)(1)
(3)(5n)(−2) (3)(5n)(1)

]
= 5n

[
1
3

] [
−2 1

]
= λ1

n~r1~̀
′
1 = 5n

[
−2 1
−6 3

]

V
[

0 0
0 6n

]
V−1 =

[
1 2
3 4

] [
0 0
0 6n

] [
−2 1
1.5 −.5

]
=

[
2(6n)(1.5) 2(6n)(−.5)
4(6n)(1.5) 4(6n)(−.5)

]
= 6n

[
2
4

] [
1.5 −.5

]
= λ2

n~r2~̀
′
2 = 6n

[
3 −1
6 −2

]
Spectral decomposition of Pn:

Pn = VDnV−1 = λ1
n~r1~̀

′
1 + λ2

n~r2~̀
′
2 = 5n

[
−2 1
−6 3

]
+ 6n

[
3 −1
6 −2

]
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Jordan Canonical Form
Matrices with two or more equal eigenvalues cannot necessarily
be diagonalized. Matlab and R do not give an error or warning.
The Jordan Canonical Form is a generalization that turns into
diagonalization when possible, and still works otherwise:

P = VJV−1 J =


B1 0 0 · · ·
0 B2 0 · · ·
0 0 B3 · · ·
...

...
...

. . .

 Bi =


λi 1 0 0 · · · 0 0
0 λi 1 0 · · · 0 0
0 0 λi 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · λi 1
0 0 0 0 · · · 0 λi


Pn = VJnV−1 where

Jn =


B1

n 0 0 · · ·
0 B2

n 0 · · ·
0 0 B3

n · · ·
...

...
...

. . .

 Bi
n =


λi

n (n
1

)
λi

n−1 (n
2

)
λi

n−2 · · · · · · · · ·
0 λi

n (n
1

)
λi

n−1 · · · · · · · · ·
. . . . . . . . . . . . . . . . . .
0 0 0 · · · λi

n (n
1

)
λi

n−1

0 0 0 · · · 0 λi
n


In applications when repeated eigenvalues are a possibility, it’s
best to use the Jordan Canonical Form.
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Jordan Canonical Form for P1 in Matlab
(R doesn’t currently have JCF available either built-in or as an add-on)

» P1 = [
[ 3/4, 1/4, 0, 0, 0 ]; %
[ 2/4, 1/4, 1/4, 0, 0 ]; % G
[ 3/4, 0, 0, 1/4, 0 ]; % GA
[ 2/4, 1/4, 0, 0, 1/4 ]; % GAG
[ 3/4, 0, 0, 1/4, 0 ]; % GAGA
]

P1 =
0.7500 0.2500 0 0 0
0.5000 0.2500 0.2500 0 0
0.7500 0 0 0.2500 0
0.5000 0.2500 0 0 0.2500
0.7500 0 0 0.2500 0

» [V1,J1] = jordan(P1)
V1 =
-0.0039 -0.0195 -0.0707 -0.2298 -0.0430
0.0117 0.0430 0.1339 0.4066 -0.0430

-0.0039 0.0430 0.1793 0.5884 -0.0430
0.0117 0.0430 0.3839 1.4066 -0.0430

-0.0039 0.0430 0.1793 1.5884 -0.0430

J1 =
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1

» V1i = inv(V1)
V1i =

0 52.3636 -64.0000 11.6364 0
-16.0000 16.0000 13.0909 -16.0000 2.9091

0 -4.0000 4.0000 4.0000 -4.0000
0 0 -1.0000 0 1.0000

-16.0000 -5.4545 -1.3636 -0.3636 -0.0909

» V1 * J1 * V1i
ans =

0.7500 0.2500 -0.0000 -0.0000 0.0000
0.5000 0.2500 0.2500 -0.0000 0.0000
0.7500 -0.0000 -0.0000 0.2500 -0.0000
0.5000 0.2500 0.0000 -0.0000 0.2500
0.7500 -0.0000 -0.0000 0.2500 -0.0000
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Powers of P1 using JCF

P = VJV−1 gives Pn = VJnV−1, and Jn is easy to compute:
» J1
J1 =
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1

» J1ˆ2
ans =
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

» J1ˆ3
ans =
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

» J1ˆ4
ans =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

» J1ˆ5
ans =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

For this matrix, Jn = J4 when n > 4, so
Pn = VJnV−1 = VJ4V−1 = P4 for n > 4.
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Non-overlapping occurrences of GAGA
M2 P2

0

pA+pC+pT

GpG
pC+pT

pG

GApA

pA+pC+pT

GAGpG

pC+pT

pG

GAGApA

pA+pC+pT

pG


3/4 1/4 0 0 0
1/2 1/4 1/4 0 0
3/4 0 0 1/4 0
1/2 1/4 0 0 1/4
3/4 1/4 0 0 0


» [V2,J2] = jordan(P2)
V2 =
-0.0625 -0.5170 -0.1728 0.1176 + 0.0294i 0.1176 - 0.0294i
0.1875 1.3011 -0.1728 -0.3824 + 0.0294i -0.3824 - 0.0294i

-0.0625 0.4830 -0.1728 0.1176 - 0.4706i 0.1176 + 0.4706i
0.1875 1.3011 -0.1728 0.1176 + 0.0294i 0.1176 - 0.0294i

-0.0625 0.4830 -0.1728 0.1176 + 0.0294i 0.1176 - 0.0294i

J2 = 0 1.0000 0 0 0
0 0 0 0 0
0 0 1.0000 0 0
0 0 0 0 + 0.2500i 0
0 0 0 0 0 - 0.2500i

» V2i = inv(V2)
V2i =

3.2727 0 -0.0000 4.0000 -7.2727
-1.0000 0 0.0000 0 1.0000
-3.9787 -1.3617 -0.3404 -0.0851 -0.0213

0 -1.0000 0 + 1.0000i 1.0000 0 - 1.0000i
0 -1.0000 0 - 1.0000i 1.0000 0 + 1.0000i
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Non-overlapping occurrences of GAGA — JCF

(J2)n =


[

0 1
0 0

]n

1n

(i/4)n

(−i/4)n


[

0 1
0 0

]0

=

[
1 0
0 1

] [
0 1
0 0

]1

=

[
0 1
0 0

]
[

0 1
0 0

]n

=

[
0 0
0 0

]
for n > 2

One eigenvalue = 1. It’s the third one listed, so the stationary
distribution is the third row of (V2)−1 normalized:
» V2i(3,:) / sum(V2i(3,:))
ans =

0.6875 0.2353 0.0588 0.0147 0.0037

Two eigenvalues = 0. The interpretation of one of them is that the
first and last rows of P2 are equal, so (1, 0, 0, 0,−1) ′ is a right
eigenvector of P2 with eigenvalue 0.
Two complex eigenvalues, 0 ± i/4. Since P2 is real, all complex
eigenvalues must come in conjugate pairs.
The eigenvectors also come in conjugate pairs (last 2 columns of
V2; last 2 rows of (V2)−1.
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Spectral decomposition with JCF and complex eigenvalues

(J2)n =


[

0 1
0 0

]n

1n

(i/4)n

(−i/4)n


[

0 1
0 0

]0

=

[
1 0
0 1

] [
0 1
0 0

]1

=

[
0 1
0 0

]
[

0 1
0 0

]n

=

[
0 0
0 0

]
for n > 2

(P2)n = (V2)(J2)n(V2)−1

=
[
~r1 ~r2

] [0 1
0 0

]n [~̀ ′
1

~̀ ′
2

]
+~r3(1)n~̀ ′

3 +~r4(i/4)n~̀ ′
4 +~r5(−i/4)n~̀ ′

5

The first term vanishes when n > 2, so when n > 2 the format is
= 1nS3+ (i/4)nS4+ (−i/4)nS5 = S3+ (i/4)nS4+ (−i/4)nS5
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Spectral decomposition with JCF and complex eigenvalues

For n > 2, (P2)n = S3+ (i/4)nS4+ (−i/4)nS5 where
» S3 = V2(:,3) * V2i(3,:)
S3 =

0.6875 0.2353 0.0588 0.0147 0.0037
0.6875 0.2353 0.0588 0.0147 0.0037
0.6875 0.2353 0.0588 0.0147 0.0037
0.6875 0.2353 0.0588 0.0147 0.0037
0.6875 0.2353 0.0588 0.0147 0.0037

» S4 = V2(:,4) * V2i(4,:)
S4 = 0 -0.1176 - 0.0294i -0.0294 + 0.1176i 0.1176 + 0.0294i 0.0294 - 0.1176i

0 0.3824 - 0.0294i -0.0294 - 0.3824i -0.3824 + 0.0294i 0.0294 + 0.3824i
0 -0.1176 + 0.4706i 0.4706 + 0.1176i 0.1176 - 0.4706i -0.4706 - 0.1176i
0 -0.1176 - 0.0294i -0.0294 + 0.1176i 0.1176 + 0.0294i 0.0294 - 0.1176i
0 -0.1176 - 0.0294i -0.0294 + 0.1176i 0.1176 + 0.0294i 0.0294 - 0.1176i

» S5 = V2(:,5) * V2i(5,:)
S5 = 0 -0.1176 + 0.0294i -0.0294 - 0.1176i 0.1176 - 0.0294i 0.0294 + 0.1176i

0 0.3824 + 0.0294i -0.0294 + 0.3824i -0.3824 - 0.0294i 0.0294 - 0.3824i
0 -0.1176 - 0.4706i 0.4706 - 0.1176i 0.1176 + 0.4706i -0.4706 + 0.1176i
0 -0.1176 + 0.0294i -0.0294 - 0.1176i 0.1176 - 0.0294i 0.0294 + 0.1176i
0 -0.1176 + 0.0294i -0.0294 - 0.1176i 0.1176 - 0.0294i 0.0294 + 0.1176i

S3 corresponds to the stationary distribution.
S4 and S5 are complex conjugates, so (i/4)nS4+ (−i/4)nS5 is a
sum of two complex conjugates; thus, it is real-valued, even
though complex numbers are involved in the computation.
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