Markov chains and the number of occurrences of a word in a sequence (4.5-4.9, 11.1,2,4,6)

Prof. Tesler

Math 283
Fall 2018

Locating overlapping occurrences of a word

- Consider a (long) single-stranded nucleotide sequence $\tau=\tau_{1} \ldots \tau_{N}$ and a (short) word $w=w_{1} \ldots w_{k}$, e.g., $w=$ GAGA.

```
for i = 1 to N-3 {
    if (\tau }\mp@subsup{\tau}{i}{}\mp@subsup{\tau}{i+1}{}\mp@subsup{\tau}{i+2}{}\mp@subsup{\tau}{i+3}{}==\mathrm{ GAGA) {
    ...
    }
}
```

- The above scan takes up to $\approx 4 N$ comparisons to locate all occurrences of GAGA ($k N$ comparisons for w of length k).
- A finite state automaton (FSA) is a "machine" that can locate all occurrences while only examining each letter of τ once.

Overlapping occurrences of GAGA

 For $w=w_{1} w_{2} \cdots w_{k}$, there are $k+1$ states (one for each prefix).

- Start in the state \emptyset (shown on figure as 0).
- Scan $\tau=\tau_{1} \tau_{2} \ldots \tau_{N}$ one character at a time left to right.
- Transition edges: When examining τ_{j}, move from the current state to the next state according to which edge τ_{j} is on.
- For each node $u=w_{1} \cdots w_{r}$ and each letter $x=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$, determine the longest suffix s (possibly \emptyset) of $w_{1} \cdots w_{r} x$ that's among the states.
- Draw an edge $u \xrightarrow{x} s$
- The number of times we are in the state GAGA is the desired count of number of occurrences.

Overlapping occurrences of GAGA in

 $\tau=$ CAGAGGTCGAGAGT..

Non-overlapping occurrences of GAGA

M1 =

$M 2=$

- For non-overlapping occurrences of w :
- Replace the outgoing edges from w by copies of the outgoing edges from \emptyset.
- On previous slide, the time $13 \rightarrow 14$ transition GAGA $\xrightarrow{\text { G GAG }}$ changes to GAGA \xrightarrow{G} G.

Motif \{GAGA, GTGA\}, overlaps permitted

- States: All prefixes of all words in the motif.

If a prefix occurs multiple times, only create one node for it.

- Transition edges: they may jump from one word of the motif to another.
- GTGA \xrightarrow{G} GAG.
- Count the number of times we reach the states for any words in the motif (GAGA or GTGA).

Markov chains

- A Markov chain is similar to a finite state machine, but incorporates probabilities.
- Let S be a set of "states."

We will take S to be a discrete finite set, such as $S=\{1,2, \ldots, s\}$.

- Let $t=1,2, \ldots$ denote the "time."
- Let X_{1}, X_{2}, \ldots denote a sequence of random variables, values $\in S$.

The X_{t} 's form a (first order) Markov chain if they obey these rules

(1) The probability of being in a certain state at time $t+1$ only depends on the state at time t, not on any earlier states:

$$
P\left(X_{t+1}=x_{t+1} \mid X_{1}=x_{1}, \ldots, X_{t}=x_{t}\right)=P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right)
$$

(2) The probability of transitioning from state i at time t to state j at time $t+1$ only depends on i and j, but not on the time t :

$$
P\left(X_{t+1}=j \mid X_{t}=i\right)=p_{i j} \text { at all times } t
$$

for some values $p_{i j}$, which form an $s \times s$ transition matrix.

Transition matrix

The transition matrix, $P 1$, of the Markov chain $M 1$ is
From state To state $1 \quad 2 \quad 3 \quad 4 \quad 5$

1: 0
2: G
3: GA
4: GAG
5: GAGA

p_{C}+p_{T} \& p_{G} \& p_{A} \& 0 \& 0

p_{A}+p_{C}+p_{T} \& 0 \& 0 \& p_{G} \& 0

p_{C}+p_{T} \& p_{G} \& 0 \& 0 \& p_{A}

p_{A}+p_{C}+p_{T} \& 0 \& 0 \& p_{G} \& 0\end{array}\right]=\left[$$
\begin{array}{lllll}P_{11} & P_{12} & P_{13} & P_{14} & P_{15} \\
P_{21} & P_{22} & P_{23} & P_{24} & P_{25} \\
P_{31} & P_{32} & P_{33} & P_{34} & P_{35} \\
P_{41} & P_{42} & P_{43} & P_{44} & P_{45} \\
P_{51} & P_{52} & P_{53} & P_{54} & P_{55}\end{array}
$$\right]\)

- Notice that the entries in each row sum up to $p_{A}+p_{C}+p_{G}+p_{T}=1$.
- A matrix with all entries $\geqslant 0$ and all row sums equal to 1 is called a stochastic matrix.
- The transition matrix of a Markov chain is always stochastic.
- All row sums = 1 can be written

$$
P \overrightarrow{1}=\overrightarrow{1} \quad \text { where } \overrightarrow{1}=
$$

so $\overrightarrow{1}$ is a right eigenvector of P with eigenvalue 1 .

Transition matrices for GAGA

P1

$$
\left[\begin{array}{ccccc}
3 / 4 & 1 / 4 & 0 & 0 & 0 \\
1 / 2 & 1 / 4 & 1 / 4 & 0 & 0 \\
3 / 4 & 0 & 0 & 1 / 4 & 0 \\
1 / 2 & 1 / 4 & 0 & 0 & 1 / 4 \\
3 / 4 & 0 & 0 & 1 / 4 & 0
\end{array}\right]
$$

$\left[\begin{array}{ccccc}3 / 4 & 1 / 4 & 0 & 0 & 0 \\ 1 / 2 & 1 / 4 & 1 / 4 & 0 & 0 \\ 3 / 4 & 0 & 0 & 1 / 4 & 0 \\ 1 / 2 & 1 / 4 & 0 & 0 & 1 / 4 \\ 3 / 4 & 1 / 4 & 0 & 0 & 0\end{array}\right]$

- Edge labels are replaced by probabilities, e.g., $p_{C}+p_{T}$.
- The matrices are shown for the case that all nucleotides have equal probabilities $1 / 4$.
- $P 2$ (no overlaps) is obtained from $P 1$ (overlaps allowed) by replacing the last row with a copy of the first row.

Other applications of automata

- Automata / state machines are also used in other applications in Math and Computer Science. The transition weights may be defined differently, and the matrices usually aren't stochastic.
- Combinatorics: Count walks through the automaton (instead of getting their probabilities) by setting transition weights $u \xrightarrow{x} s$ to 1 .
- Computer Science (formal languages, classifiers,): Does the string τ contain GAGA? Output 1 if it does, 0 otherwise.
- Modify M1: remove the outgoing edges on GAGA.
- On reaching state GAGA, terminate with output 1.
- If the end of τ is reached, terminate with output 0 .
- This is called a deterministic finite acceptor (DFA).
- Markov chains: Instead of considering a specific string τ, we'll compute probabilities, expected values, ... over the sample space of all strings of length n.

Other Markov chain examples

- A Markov chain is k th order if the probability of $X_{t}=i$ depends on the values of X_{t-1}, \ldots, X_{t-k}. It can be converted to a first order Markov chain by making new states that record more history.
- Positional independence: Instead of a null hypothesis that a DNA sequence is generated by repeated rolls of a biased four-sided die, we could use a Markov chain. The simplest is a one-step transition matrix

$$
P=\left[\begin{array}{cccc}
p_{\mathrm{AA}} & p_{\mathrm{AC}} & p_{\mathrm{AG}} & p_{\mathrm{AT}} \\
p_{\mathrm{CA}} & p_{\mathrm{CC}} & p_{\mathrm{CG}} & p_{\mathrm{CT}} \\
p_{\mathrm{GA}} & p_{\mathrm{GC}} & p_{\mathrm{GG}} & p_{\mathrm{GT}} \\
p_{\mathrm{TA}} & p_{\mathrm{TC}} & p_{\mathrm{TG}} & p_{\mathrm{TT}}
\end{array}\right]
$$

P could be the same at all positions. In a coding region, it could be different for the first, second, and third positions of codons.

- Nucleotide evolution: There are models of random point mutations over the course of evolution concerning Markov chains with the form P (same as above) in which X_{t} is the state $\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$ of the nucleotide at a given position in a sequence at time (generation) t.

Questions about Markov chains

(1) What is the probability of being in a particular state after n steps?
(2) What is the probability of being in a particular state as $n \rightarrow \infty$?
(3) What is the "reverse" Markov chain?
(9) If you are in state i, what is the expected number of time steps until the next time you are in state j ? What is the variance of this? What is the complete probability distribution?
(3) Starting in state i, what is the expected number of visits to state j before reaching state k ?

Transition probabilities after two steps

To compute the probability for going from state i at time t to state j at time $t+2$, consider all the states it could go through at time $t+1$:

$$
\begin{aligned}
P\left(X_{t+2}=j \mid X_{t}=i\right) & =\sum_{r} P\left(X_{t+1}=r \mid X_{t}=i\right) P\left(X_{t+2}=j \mid X_{t+1}=r, X_{t}=i\right) \\
& =\sum_{r} P\left(X_{t+1}=r \mid X_{t}=i\right) P\left(X_{t+2}=j \mid X_{t+1}=r\right) \\
& =\sum_{r} P_{i r} P_{r j}=\left(P^{2}\right)_{i j}
\end{aligned}
$$

Transition probabilities after n steps

For $n \geqslant 0$, the transition matrix from time t to time $t+n$ is P^{n} :

$$
\begin{aligned}
P\left(X_{t+n}=j \mid X_{t}=i\right) & =\sum_{r_{1}, \ldots, r_{n-1}} P\left(X_{t+1}=r_{1} \mid X_{t}=i\right) P\left(X_{t+2}=r_{2} \mid X_{t+1}=r_{1}\right) \cdots \\
& =\sum_{r_{1}, \ldots, r_{n-1}} P_{i r_{1}} P_{r_{1} r_{2}} \cdots P_{r_{n-1} j}=\left(P^{n}\right)_{i j}
\end{aligned}
$$

(sum over possible states r_{1}, \ldots, r_{n-1} at times $t+1, \ldots, t+(n-1)$)

State probability vector

- $\alpha_{i}(t)=P\left(X_{t}=i\right)$ is the probability of being in state i at time t.
- Column vector $\vec{\alpha}(t)=\left(\begin{array}{c}\alpha_{1}(t) \\ \vdots \\ \alpha_{s}(t)\end{array}\right)$
or transpose it to get a row vector $\vec{\alpha}(t)^{\prime}=\left(\alpha_{1}(t), \ldots, \alpha_{s}(t)\right)$
- The probabilities at time $t+n$ are

$$
\begin{aligned}
\alpha_{j}(t+n) & =P\left(X_{t+n}=j \mid \vec{\alpha}(t)\right)=\sum_{i} P\left(X_{t+n}=j \mid X_{t}=i\right) P\left(X_{t}=i\right) \\
& =\sum_{i} \alpha_{i}(t)\left(P^{n}\right)_{i j}=\left(\vec{\alpha}(t)^{\prime} P^{n}\right)_{j}
\end{aligned}
$$

so $\vec{\alpha}(t+n)^{\prime}=\vec{\alpha}(t)^{\prime} P^{n}$ (row vector times matrix) or equivalently, $\left(P^{\prime}\right)^{n} \vec{\alpha}(t)=\vec{\alpha}(t+n)$ (matrix times column vector).

State vector after n steps for GAGA; $P=P 1$

$P=\left[\begin{array}{ccccc}\frac{3}{4} & \frac{1}{4} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\ \frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 \\ \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} \\ \frac{3}{4} & 0 & 0 & \frac{1}{4} & 0\end{array}\right] \quad P^{2}=\left[\begin{array}{ccccc}\frac{11}{16} & \frac{1}{4} & \frac{1}{16} & 0 & 0 \\ \frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\ \frac{11}{16} & \frac{1}{4} & 0 & 0 & \frac{1}{16} \\ \frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\ \frac{11}{16} & \frac{1}{4} & 0 & 0 & \frac{1}{16}\end{array}\right] \quad\left(P^{\prime}\right)^{2}=\left[\begin{array}{ccccc}\frac{11}{16} & \frac{11}{16} & \frac{11}{16} & \frac{11}{16} & \frac{11}{16} \\ \frac{1}{4} & \frac{3}{16} & \frac{1}{4} & \frac{3}{16} & \frac{1}{4} \\ \frac{1}{16} & \frac{1}{16} & 0 & \frac{1}{16} & 0 \\ 0 & \frac{1}{16} & 0 & \frac{1}{16} & 0 \\ 0 & 0 & \frac{1}{16} & 0 & \frac{1}{16}\end{array}\right]$

- At $t=10$, suppose $\frac{1}{3}$ chance of being in the $1^{\text {st }}$ state; $\frac{2}{3}$ chance of being in the $2^{\text {nd }}$ state; and no chance of other states:

$$
\vec{\alpha}(10)^{\prime}=\left(\frac{1}{3}, \frac{2}{3}, 0,0,0\right) .
$$

- Time $t=12$ is $n=12-10=2$ steps later:

$$
\vec{\alpha}(12)^{\prime}=\left(\frac{1}{3}, \frac{2}{3}, 0,0,0\right) P^{2}=\left(\frac{11}{16}, \frac{5}{24}, \frac{1}{16}, \frac{1}{24}, 0\right)
$$

- Alternately:

$$
\vec{\alpha}(10)=\left(\begin{array}{c}
1 / 3 \\
2 / 3 \\
0 \\
0 \\
0
\end{array}\right) \quad \vec{\alpha}(2)=\left(P^{\prime}\right)^{2} \vec{\alpha}(10)=\left(\begin{array}{c}
11 / 16 \\
5 / 24 \\
1 / 16 \\
1 / 24 \\
0
\end{array}\right)
$$

Transition probabilities after n steps for GAGA; $P=P 1$

$$
\begin{aligned}
& P^{0}=I=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad P^{1}=\left[\begin{array}{ccccc}
\frac{3}{4} & \frac{1}{4} & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\
\frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 \\
\frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} \\
\frac{3}{4} & 0 & 0 & \frac{1}{4} & 0
\end{array}\right] \quad P^{2}=\left[\begin{array}{ccccc}
\frac{11}{16} & \frac{1}{4} & \frac{1}{16} & 0 & 0 \\
\frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\
\frac{11}{16} & \frac{1}{4} & 0 & 0 & \frac{1}{16} \\
\frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\
\frac{11}{16} & \frac{1}{4} & 0 & 0 & \frac{1}{16}
\end{array}\right] \\
& P^{3}=\left[\begin{array}{ccccc}
\frac{11}{16} & \frac{15}{64} & \frac{1}{16} & \frac{1}{64} & 0 \\
\frac{11}{16} & \frac{15}{64} & \frac{3}{64} & \frac{1}{64} & \frac{1}{64} \\
\frac{11}{16} & \frac{15}{64} & \frac{1}{16} & \frac{1}{64} & 0 \\
\frac{11}{16} & \frac{15}{64} & \frac{3}{64} & \frac{1}{64} & \frac{1}{64} \\
\frac{11}{16} & \frac{15}{64} & \frac{1}{16} & \frac{1}{64} & 0
\end{array}\right] \\
& P^{4}=\left[\begin{array}{ccccc}
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256}
\end{array}\right] \\
& P^{n}=P^{4} \text { for } n \geqslant 5
\end{aligned}
$$

- Regardless of the starting state, the probabilities of being in states $1, \cdots, 5$ at time t (when t is large enough) are $\frac{11}{16}, \frac{15}{64}, \frac{15}{256}, \frac{1}{64}, \frac{1}{256}$.
- Usually P^{n} just approaches a limit asymptotically as n increases, rather than reaching it. We'll see other examples later (like P2).

Matrix powers in Matlab and R

Matlab				
>> P1 = [
[3/4, 1/4	1/4, 0,	0 ,	0]; \%	
[2/4, 1/	1/4, 1/4,	0,	0]; \%	G
[3/4,	0,0 ,	1/4,	0]; \%	GA
[2/4, 1	1/4, 0,	0, 1	4]; \%	GAG
[3/4,	0,0 ,	1/4,	0];	GAGA
]				
P1 $=$				
0.7500	0.2500	0	0	0
0.5000	0.2500	0.2500	0	0
0.7500	0	0	0.2500	0
0.5000	0.2500	0	0	0.2500
0.7500	0	0	0.2500	0
>> P1 * P1	1	r P1^2		
ans $=$				
0.6875	0.2500	0.0625	0	0
0.6875	0.1875	0.0625	0.0625	0
0.6875	0.2500	0	0	0.0625
0.6875	0.1875	0.0625	0.0625	0
0.6875	0.2500	0	0	0.0625

R

```
> P1 = rbind(
+ c(3/4,1/4, 0, 0, 0), #
+ c(2/4,1/4,1/4, 0, 0), # G
+ c(3/4, 0, 0,1/4, 0), # GA
+ c(2/4,1/4, 0, 0,1/4), # GAG
+ c(3/4, 0, 0,1/4, 0) # GAGA
+ )
> P1
    [,1] [,2] [,3] [,4] [,5]
[1,] 0.75 0.25 0.00 0.00 0.00
[2,] 0.50 0.25 0.25 0.00 0.00
[3,] 0.75 0.00 0.00 0.25 0.00
[4,] 0.50 0.25 0.00 0.00 0.25
[5,] 0.75 0.00 0.00 0.25 0.00
> P1 %** P1
    [,1] [,2] [,3] [,4] [,5]
[1,] 0.6875 0.2500 0.0625 0.0000 0.0000
[2,] 0.6875 0.1875 0.0625 0.0625 0.0000
[3,] 0.6875 0.2500 0.0000 0.0000 0.0625
[4,] 0.6875 0.1875 0.0625 0.0625 0.0000
[5,] 0.6875 0.2500 0.0000 0.0000 0.0625
```

Note: R doesn't have a built-in matrix power function. The $>$ and + symbols above are prompts, not something you enter.

Stationary distribution, a.k.a. steady state distribution

- If P is irreducible and aperiodic (these will be defined soon) then P^{n} approaches a limit with this format as $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty} P^{n}=\left[\begin{array}{cccc}
\varphi_{1} & \varphi_{2} & \cdots & \varphi_{s} \\
\varphi_{1} & \varphi_{2} & \cdots & \varphi_{s} \\
\cdots & \cdots & \cdots & \cdots \\
\varphi_{1} & \varphi_{2} & \cdots & \varphi_{s}
\end{array}\right]
$$

- In other words, no matter what the starting state, the probability of being in state j after n steps approaches φ_{j}.
- The row vector $\vec{\varphi}^{\prime}=\left(\varphi_{1}, \ldots, \varphi_{s}\right)$ is called the stationary distribution of the Markov chain.
- It is "stationary" because these probabilities stay the same from one time to the next; in matrix notation, $\vec{\varphi}^{\prime} P=\vec{\varphi}^{\prime}$, or $P^{\prime} \vec{\varphi}=\vec{\varphi}$.
- So $\vec{\varphi}^{\prime}$ is a left eigenvector of P with eigenvalue 1 .
- Since it represents probabilities of being in each state, the components of $\vec{\varphi}$ add up to 1 .

Stationary distribution - computing it for example M1

P1

$$
\left[\begin{array}{ccccc}
3 / 4 & 1 / 4 & 0 & 0 & 0 \\
1 / 2 & 1 / 4 & 1 / 4 & 0 & 0 \\
3 / 4 & 0 & 0 & 1 / 4 & 0 \\
1 / 2 & 1 / 4 & 0 & 0 & 1 / 4 \\
3 / 4 & 0 & 0 & 1 / 4 & 0
\end{array}\right]
$$

- Solve $\vec{\varphi}^{\prime} P=\vec{\varphi}^{\prime}$, or $\left(\varphi_{1}, \ldots, \varphi_{5}\right) P=\left(\varphi_{1}, \ldots, \varphi_{5}\right)$:

$$
\begin{aligned}
\varphi_{1} & =\frac{3}{4} \varphi_{1}+\frac{1}{2} \varphi_{2}+\frac{3}{4} \varphi_{3}+\frac{1}{2} \varphi_{4}+\frac{3}{4} \varphi_{5} \\
\varphi_{2} & =\frac{1}{4} \varphi_{1}+\frac{1}{4} \varphi_{2}+0 \varphi_{3}+\frac{1}{4} \varphi_{4}+0 \varphi_{5} \\
\varphi_{3} & =0 \varphi_{1}+\frac{1}{4} \varphi_{2}+0 \varphi_{3}+0 \varphi_{4}+0 \varphi_{5} \\
\varphi_{4} & =0 \varphi_{1}+0 \varphi_{2}+\frac{1}{4} \varphi_{3}+0 \varphi_{4}+\frac{1}{4} \varphi_{5} \\
\varphi_{5} & =0 \varphi_{1}+0 \varphi_{2}+0 \varphi_{3}+\frac{1}{4} \varphi_{4}+0 \varphi_{5}
\end{aligned}
$$

and the total probability equation $\quad \varphi_{1}+\varphi_{2}+\varphi_{3}+\varphi_{4}+\varphi_{5}=1$.

- This is 6 equations in 5 unknowns, so it is overdetermined.
- Actually, the first 5 equations are underdetermined; they add up to

$$
\varphi_{1}+\cdots+\varphi_{5}=\varphi_{1}+\cdots+\varphi_{5} .
$$

- Knock out the $\varphi_{5}=\cdots$ equation and solve the rest of them to get

$$
\vec{\varphi}^{\prime}=\left(\frac{11}{16}, \frac{15}{64}, \frac{15}{256}, \frac{1}{64}, \frac{1}{256}\right) \approx(0.6875,0.2344,0.0586,0.0156,0.0039)
$$

Solving equations in Matlab or R

(this method doesn't use the functions for eigenvectors)

Matlab

R

```
> diag(1,5) % identity
\begin{tabular}{rrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} \\
{\([1]\),} & 1 & 0 & 0 & 0 & 0 \\
{\([2]\),} & 0 & 1 & 0 & 0 & 0 \\
{\([3]\),} & 0 & 0 & 1 & 0 & 0 \\
{\([4]\),} & 0 & 0 & 0 & 1 & 0 \\
{\([5]\),} & 0 & 0 & 0 & 0 & 1
\end{tabular}
> t(P1) - diag(1,5) % transpose minus identity
    [,1] [,2] [,3] [,4] [,5]
[1,] -0.25 0.50 0.75 0.50}00.7
[2,] 0.25 -0.75 0.00
[3,] 0.00 0.25 -1.00 0.00 0.00
[4,] 0.00 0.00 0.25 -1.00 0.25
[5,] 0.00 0.00 0.00 0.25 -1.00
> rbind(t(P1) - diag(1,5), c(1,1,1,1,1))
            [,1] [,2] [,3] [,4] [,5]
[1,] -0.25 0.50 0.75 0.50}00.7
[2,] 0.25 -0.75 0.00 0.25 0.00
[3,] 0.00 0.25 -1.00 0.00 0.00
[4,] 0.00 0.00
[5,] 0.00 0.00}0.0000.25-1.0
[6,] 1.00 1.00 1.00 1.00 1.00
> sstate = qr.solve(rbind(t(P1) - diag(1,5),
+ c(1,1,1,1,1)),c(0,0,0,0,0,1))
> sstate
[1] 0.68750000 0.23437500 0.05859375 0.01562500
[5] 0.00390625
```


Eigenvalues of P

- A transition matrix is stochastic: all entries are $\geqslant 0$ and its row sums are all 1. So

$$
P \overrightarrow{1}=\overrightarrow{1} \quad \text { where } \overrightarrow{1}=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]
$$

- Thus, $\lambda=1$ is an eigenvalue of P and $\overrightarrow{1}$ is a right eigenvector. There is also a left eigenvector of P with eigenvalue 1:

$$
\vec{w} P=1 \vec{w}
$$

where \vec{w} is a row vector. Normalize it so its entries add up to 1 , to get the stationary distribution $\vec{\varphi}^{\prime}$.

- All eigenvalues λ of a stochastic matrix have $|\lambda| \leqslant 1$.
- An irreducible aperiodic Markov chain has just one eigenvalue $=1$. The $2^{\text {nd }}$ largest $|\lambda|$ determines how fast P^{n} converges. For example, if it's diagonalizable, the spectral decomposition is:

$$
P^{n}=1^{n} M_{1}+\lambda_{2}{ }^{n} M_{2}+\lambda_{3}{ }^{n} M_{3}+\cdots
$$

but there may be complications (periodic Markov chains, complex eigenvalues, ...).

Technicalities - reducibility

- A Markov chain is irreducible if every state can be reached from every other state after enough steps.
- The above example is reducible since there are states that cannot be reached from each other: after sufficient time, you are either stuck in state 3 , the component $\{4,5,6,7\}$, or the component $\{8,9,10\}$.

Technicalities - period

- State i has period d if the Markov chain can only go from state i to itself in multiples of d steps, where d is the maximum number that satisfies that.
- If $d>1$ then state i is periodic.
- A Markov chain is periodic if at least one state is periodic and is aperiodic if no states are periodic.
- All states in a component have the same period.
- Component $\{4,5,6,7\}$ has period 2 and component $\{8,9,10\}$ has period 3, so the Markov chain is periodic.

Technicalities - absorbing states

- An absorbing state has all its outgoing edges going to itself; e.g., state 3 above.
- An irreducible Markov chain with two or more states cannot have any absorbing states.

Technicalities - summary

- There are generalizations to infinite numbers of discrete or continuous states and to continuous time.
- We will work with Markov chains that are finite, discrete, irreducible, and aperiodic, unless otherwise stated.
- For a finite discrete Markov chain on two or more states: irreducible and aperiodic with no absorbing states is equivalent to
P or a power of P has all entries greater than 0 and in this case, $\lim _{n \rightarrow \infty} P^{n}$ exists and all its rows are the stationary distribution.

Reverse Markov Chain

M1

Reverse

- A Markov chain modeling forwards progression of time can be "reversed" to make "predictions" about the past. For example, this is done in models of nucleotide evolution.
- The graph of the reverse Markov chain has
- the same nodes as the forwards chain;
- the same edges but reversed directions and new probabilities.

Reverse Markov Chain

- The transition matrix P of the forwards Markov chain was defined so that $P\left(X_{t+1}=j \mid X_{t}=i\right)=p_{i j}$ at all times t.
- Assume the forwards machine has run long enough to reach the stationary distribution, $P\left(X_{t}=i\right)=\varphi_{i}$.
- The reverse Markov chain has transition matrix Q, where

$$
q_{i j}=P\left(X_{t}=j \mid X_{t+1}=i\right)=\frac{P\left(X_{t+1}=i \mid X_{t}=j\right) P\left(X_{t}=j\right)}{P\left(X_{t+1}=i\right)}=\frac{p_{j i} \varphi_{j}}{\varphi_{i}}
$$

(Recall Bayes' Theorem: $P(B \mid A)=P(A \mid B) P(B) / P(A)$.)

Reverse Markov Chain of $M 1$

Reverse of M1

$$
P 1
$$

- Stationary distribution of $P 1$ is $\vec{\varphi}^{\prime}=\left(\frac{11}{16}, \frac{15}{64}, \frac{15}{256}, \frac{1}{64}, \frac{1}{256}\right)$
- Example of one entry: The edge $0 \rightarrow$ GA in the reverse chain has $q_{13}=p_{31} \varphi_{3} / \varphi_{1}=\left(\frac{3}{4}\right)\left(\frac{15}{256}\right) /\left(\frac{11}{16}\right)=\frac{45}{704}$.
- This means that in the steady state of the forwards chain, when 0 is entered, there is a probability $\frac{45}{704}$ that the previous state was GA.

Matlab and R

Matlab

```
>> d_sstate = diag(sstate)
```

d_sstate =

0.6875	0	0	0	0
0	0.2344	0	0	0
0	0	0.0586	0	0
0	0	0	0.0156	0
0	0	0	0	0.0039

>> Q1 = inv(d_sstate) * P1' * d_sstate Q1 =
0.7500
0.1705
0.0639
0.0114
0.0043
0.7333
0.2500
0
0.0167
0
0
$\begin{array}{rr}1.0000 & 0 \\ 0 & 0.9375 \\ 0 & 0\end{array}$
0.0625
0
0
0
0
0

R

> d_sstate = diag(sstate)
> Q1 = solve(d_sstate) \%*\% t(P1) \%*\% d_sstate

Expected time from state i till next time in state j

If $M 1$ is in state \emptyset, what is the expected number of steps until the next time it is in state GAGA?

More generally, what's the expected \# steps from state i to state j ?

- Fix the end state j once and for all.

Simultaneously solve for expected \# steps from all start states i.

- For $i=1, \ldots, s$, let N_{i} be a random variable for the number of steps from state i to the next time in state j.
- Next time means that if $i=j$, we count until the next time at state j, with $N_{j} \geqslant 1$; we don't count it as already there in 0 steps.
- We'll develop systems of equations for $E\left(N_{i}\right), \operatorname{Var}\left(N_{i}\right)$, and $\mathbb{P}_{N_{i}}(x)$.

Expected time from state i till next time in state j

$t+1+N_{i} \quad \#$ Steps Probability

$N_{1}+1$	P_{11}
$N_{2}+1$	P_{12}
$N_{3}+1$	P_{13}
$N_{4}+1$	P_{14}
1	P_{15}

- Fix $j=5$.
- Random variable $N_{r}=$ \# steps from state r to next time in state j.
- Dotted paths have no occurrences of state j in the middle.
- Expected \# steps from state $i=1$ to $j=5$ (repeat this for all i):

$$
\begin{aligned}
E\left(N_{1}^{(\text {time } t)}\right)= & P_{11} E\left(N_{1}^{(\text {time } t+1)}+1\right)+P_{12} E\left(N_{2}+1\right) \\
& +P_{13} E\left(N_{3}+1\right)+P_{14} E\left(N_{4}+1\right)+P_{15} E(1)
\end{aligned}
$$

Both N_{1} 's have same distribution, and we can expand $E($)'s:

$$
E\left(N_{1}\right)=\sum_{r: r \neq j} P_{1 r} E\left(N_{r}\right)+\sum_{r} P_{1 r}=\left(\sum_{r: r \neq j} P_{1 r} E\left(N_{r}\right)\right)+1
$$

Expected time from state i till next time in state j

- Recall we fixed j, and defined N_{i} relative to it.
- Start in state i.
- There is a probability $P_{i r}$ of going one step to state r.
- If $r=j$, we are done in one step: $E\left(N_{i} \mid 1\right.$ st step is $\left.i \rightarrow j\right)=1$ If $r \neq j$, the expected number of steps after the first step is $E\left(N_{r}\right)$: $E\left(N_{i} \mid 1\right.$ st step is $\left.i \rightarrow r\right)=E\left(N_{r}+1\right)=E\left(N_{r}\right)+1$
- Combine with the probability of each value of r :

$$
\begin{aligned}
& E\left(N_{i}\right)=P_{i j} \cdot 1+\sum_{r=1,}^{s} P_{i r} E\left(N_{r}+1\right)=P_{i j}+\sum_{r=1}^{s} P_{i r} \cdot\left(E\left(N_{r}\right)+1\right) \\
&=\sum_{r=1}^{s} P_{i r}+\sum_{r=1}^{s} P_{i r} \cdot E\left(N_{r}\right)=1+\sum_{r=1}^{s} P_{i r} \cdot E\left(N_{r}\right) \\
& r \neq j
\end{aligned}
$$

- Doing this for all s states, $i=1, \ldots, s$, gives s equations in the s unknowns $E\left(N_{1}\right), \ldots, E\left(N_{s}\right)$.

Expected times between states in $M 1$: times to state 5

$$
\begin{array}{lrl}
E\left(N_{1}\right)=0+\frac{3}{4}\left(E\left(N_{1}\right)+1\right)+\frac{1}{4}\left(E\left(N_{2}\right)+1\right) & & =1+\frac{3}{4} E\left(N_{1}\right)+\frac{1}{4} E\left(N_{2}\right) \\
E\left(N_{2}\right)=0+\frac{1}{2}\left(E\left(N_{1}\right)+1\right)+\frac{1}{4}\left(E\left(N_{2}\right)+1\right)+\frac{1}{4}\left(E\left(N_{3}\right)+1\right) & =1+\frac{1}{2} E\left(N_{1}\right)+\frac{1}{4} E\left(N_{2}\right)+\frac{1}{4} E\left(N_{3}\right) \\
E\left(N_{3}\right)=0+\frac{3}{4}\left(E\left(N_{1}\right)+1\right)+\frac{1}{4}\left(E\left(N_{4}\right)+1\right) & & =1+\frac{3}{4} E\left(N_{1}\right)+\frac{1}{4} E\left(N_{4}\right) \\
E\left(N_{4}\right)=\frac{1}{4}+\frac{1}{2}\left(E\left(N_{1}\right)+1\right)+\frac{1}{4}\left(E\left(N_{2}\right)+1\right) & & =1+\frac{1}{2} E\left(N_{1}\right)+\frac{1}{4} E\left(N_{2}\right) \\
E\left(N_{5}\right)=0+\frac{3}{4}\left(E\left(N_{1}\right)+1\right)+\frac{1}{4}\left(E\left(N_{4}\right)+1\right) & & =1+\frac{3}{4} E\left(N_{1}\right)+\frac{1}{4} E\left(N_{4}\right)
\end{array}
$$

- This is 5 equations in 5 unknowns $E\left(N_{1}\right), \ldots, E\left(N_{5}\right)$. Matrix format:
$\underbrace{\left[\begin{array}{ccccc}-1 / 4 & 1 / 4 & 0 & 0 & 0 \\ 1 / 2 & -3 / 4 & 1 / 4 & 0 & 0 \\ 3 / 4 & 0 & -1 & 1 / 4 & 0 \\ 1 / 2 & 1 / 4 & 0 & -1 & 0 \\ 3 / 4 & 0 & 0 & 1 / 4 & -1\end{array}\right]}_{\text {Zero out } j^{\text {th }} \text { column of } P .}\left[\begin{array}{l}E\left(N_{1}\right) \\ E\left(N_{2}\right) \\ E\left(N_{3}\right) \\ E\left(N_{4}\right) \\ E\left(N_{5}\right)\end{array}\right]=\underbrace{\left[\begin{array}{l}-1 \\ -1 \\ -1 \\ -1 \\ -1\end{array}\right]}_{\text {All }-1 \text { 's. }}$

Then subtract 1 from each diagonal entry.

- $E\left(N_{1}\right)=272, E\left(N_{2}\right)=268, E\left(N_{3}\right)=256, E\left(N_{4}\right)=204, E\left(N_{5}\right)=256$.
- Matlab and R: Enter matrix C and vector r. Solve $C \vec{x}=\vec{r}$ with Matlab: $x=C \backslash r$ or $x=\operatorname{inv}(C) * r \quad \mathbf{R}: x=\operatorname{solve}(C, r)$

Variance and PGF of number of steps between states

- We may compute $E\left(g\left(N_{i}\right)\right)$ for any function g by setting up recurrences in the same way. For each $i=1, \ldots, s$: $E\left(g\left(N_{i}\right)\right)=P_{i j} g(1)+\sum_{r \neq j} P_{i r} E\left(g\left(N_{r}+1\right)\right)=$ expansion depending on g
- Variance of N_{i} 's: $\operatorname{Var}\left(N_{i}\right)=E\left(N_{i}{ }^{2}\right)-\left(E\left(N_{i}\right)\right)^{2}$

$$
E\left(N_{i}^{2}\right)=P_{i j} \cdot 1^{2}+\sum_{r=1}^{s} P_{i r} E\left(\left(N_{r}+1\right)^{2}\right)=1+2 \sum_{r=1}^{s} P_{i r} E\left(N_{r}\right)+\sum_{r=1}^{s} P_{i r} E\left(N_{r}^{2}\right)
$$

Plug in the previous solution of $E\left(N_{1}\right), \ldots, E\left(N_{s}\right)$.
Then solve the s equations for the s unknowns $E\left(N_{1}^{2}\right), \ldots, E\left(N_{s}^{2}\right)$.

- PGF: $\mathbb{P}_{N_{i}}(x)=E\left(x^{N_{i}}\right)=\sum_{n=0}^{\infty} P\left(N_{i}=n\right) x^{n}$

$$
E\left(x^{N_{i}}\right)=P_{i j} \cdot x^{1}+\sum_{r=1}^{s} P_{i r} E\left(x^{N_{r}+1}\right)=P_{i j} \cdot x+\sum_{r=1}^{s} P_{i r} \cdot x \cdot E\left(x^{N_{r}}\right)
$$

Solve the s equations for s unknowns $E\left(x^{N_{1}}\right), \ldots, E\left(x^{N_{s}}\right)$.
See the old handout for a worked out example.

Powers of matrices (see separate slides)

- Sample matrix: Diagonalization: $P=V D V^{-1}$

$$
P=\left[\begin{array}{cc}
8 & -1 \\
6 & 3
\end{array}\right] \quad V=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad D=\left[\begin{array}{ll}
5 & 0 \\
0 & 6
\end{array}\right] \quad V^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
3 / 2 & -1 / 2
\end{array}\right]
$$

- $P^{n}=\left(V D V^{-1}\right)\left(V D V^{-1}\right) \cdots\left(V D V^{-1}\right)=V D^{n} V^{-1}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}5^{n} & 0 \\ 0 & 6^{n}\end{array}\right]\left[\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]$
- When a square $(s \times s)$ matrix P has distinct eigenvalues, it can be diagonalized

$$
P=V D V^{-1}
$$

where D is a diagonal matrix of the eigenvalues of P (any order); the columns of V are right eigenvectors of P (in same order as D); the rows of V^{-1} are left eigenvectors of P (in same order as D);

- If any eigenvalues are equal, it may or may not be diagonalizeable, but there is a generalization called Jordan Canonical Form, $P=V J V^{-1}$ giving $P^{n}=V J^{n} V^{-1}$. J has eigenvalues on the diagonal and 1's and 0's just above it, and is also easy to raise to powers.

Matrix powers - spectral decomposition (distinct eigenvalues)

- Powers of P: $P^{n}=\left(V D V^{-1}\right)\left(V D V^{-1}\right) \cdots=V D^{n} V^{-1}$

$$
\begin{aligned}
P^{n}=V D^{n} V^{-1} & =V\left[\begin{array}{cc}
5^{n} & 0 \\
0 & 6^{n}
\end{array}\right] V^{-1}=V\left[\begin{array}{cc}
5^{n} & 0 \\
0 & 0
\end{array}\right] V^{-1}+V\left[\begin{array}{ll}
0 & 0 \\
0 & 6^{n}
\end{array}\right] V^{-1} \\
V\left[\begin{array}{cc}
5^{n} & 0 \\
0 & 0
\end{array}\right] V^{-1} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
5^{n} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
-2 & 1 \\
1.5 & -.5
\end{array}\right]=\left[\begin{array}{l}
(1)\left(5^{n}\right)(-2) \\
(3)\left(5^{n}\right)(-2)\left(5^{n}\right)(1) \\
(3)\left(5^{n}\right)(1)
\end{array}\right] \\
& =5^{n}\left[\begin{array}{l}
1 \\
3
\end{array}\right]\left[\begin{array}{ll}
-2 & 1
\end{array}\right]=\lambda_{1}{ }^{n} \vec{r}_{1} \vec{\ell}_{1}^{\prime}=5^{n}\left[\begin{array}{ll}
-2 & 1 \\
-6 & 3
\end{array}\right] \\
V\left[\begin{array}{ll}
0 & 0 \\
0 & 6^{n}
\end{array}\right] V^{-1} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 6^{n}
\end{array}\right]\left[\begin{array}{cc}
-2 & 1 \\
1.5 & -.5
\end{array}\right]=\left[\begin{array}{ll}
2\left(6^{n}\right)(1.5) & 2\left(6^{n}\right)(-.5) \\
4\left(6^{n}\right)(1.5) & 4\left(6^{n}\right)(-.5)
\end{array}\right] \\
& =6^{n}\left[\begin{array}{l}
2 \\
4
\end{array}\right]\left[\begin{array}{ll}
1.5 & -.5
\end{array}\right]=\lambda_{2}{ }^{n} \vec{r}_{2} \vec{\ell}_{2}^{\prime}=6^{n}\left[\begin{array}{cc}
3 & -1 \\
6 & -2
\end{array}\right]
\end{aligned}
$$

- Spectral decomposition of P^{n} :

$$
P^{n}=V D^{n} V^{-1}=\lambda_{1}{ }^{n} \vec{r}_{1} \vec{\ell}_{1}^{\prime}+\lambda_{2}{ }^{n} \vec{r}_{2} \vec{\ell}_{2}^{\prime}=5^{n}\left[\begin{array}{ll}
-2 & 1 \\
-6 & 3
\end{array}\right]+6^{n}\left[\begin{array}{ll}
3 & -1 \\
6 & -2
\end{array}\right]
$$

Jordan Canonical Form

- Matrices with two or more equal eigenvalues cannot necessarily be diagonalized. Matlab and R do not give an error or warning.
- The Jordan Canonical Form is a generalization that turns into diagonalization when possible, and still works otherwise:

$$
P=V J V^{-1} \quad J=\left[\begin{array}{cccc}
B_{1} & 0 & 0 & \cdots \\
0 & B_{2} & 0 & \cdots \\
0 & 0 & B_{3} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \quad B_{i}=\left[\begin{array}{ccccccc}
\lambda_{i} & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & \lambda_{i} & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & \lambda_{i} & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \lambda_{i} & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & \lambda_{i}
\end{array}\right]
$$

- $P^{n}=V J^{n} V^{-1}$ where

$$
J^{n}=\left[\begin{array}{cccc}
B_{1}{ }^{n} & 0 & 0 & \cdots \\
0 & B_{2}{ }^{n} & 0 & \cdots \\
0 & 0 & B_{3} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- In applications when repeated eigenvalues are a possibility, it's best to use the Jordan Canonical Form.

Jordan Canonical Form for P1 in Matlab

(R doesn't currently have JCF available either built-in or as an add-on)

» P 1 = [
$[3 / 4,1 / 4, \quad 0, \quad 0,0$]; \%
$[2 / 4,1 / 4,1 / 4,0,0$]; $\%$
[3/4, 0, 0, 1/4, 0]; $\%$ GA
[2/4, 1/4, 0, 0, 1/4]; \% GAG
[3/4, 0, 0, 1/4, 0]; \% GAGA
P1 =
» $[\mathrm{V} 1, \mathrm{~J} 1]=$ jordan(P1)
V1 =

J1 =

0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	0
0	0	0	0	1

```
> V1i = inv(V1)
V1i =
\begin{tabular}{rrrrr}
0 & 52.3636 & -64.0000 & 11.6364 & 0 \\
-16.0000 & 16.0000 & 13.0909 & -16.0000 & 2.9091 \\
0 & -4.0000 & 4.0000 & 4.0000 & -4.0000 \\
0 & 0 & -1.0000 & 0 & 1.0000 \\
-16.0000 & -5.4545 & -1.3636 & -0.3636 & -0.0909
\end{tabular}
> V1 * J1 * V1i
ans =
\begin{tabular}{rrrrr}
0.7500 & 0.2500 & -0.0000 & -0.0000 & 0.0000 \\
0.5000 & 0.2500 & 0.2500 & -0.0000 & 0.0000 \\
0.7500 & -0.0000 & -0.0000 & 0.2500 & -0.0000 \\
0.5000 & 0.2500 & 0.0000 & -0.0000 & 0.2500 \\
0.7500 & -0.0000 & -0.0000 & 0.2500 & -0.0000
\end{tabular}
```


Powers of P1 using JCF

- $P=V J V^{-1}$ gives $P^{n}=V J^{n} V^{-1}$, and J^{n} is easy to compute:

- For this matrix, $J^{n}=J^{4}$ when $n \geqslant 4$, so

$$
P^{n}=V J^{n} V^{-1}=V J^{4} V^{-1}=P^{4} \text { for } n \geqslant 4
$$

Non-overlapping occurrences of GAGA

P2

$\left[\begin{array}{ccccc}3 / 4 & 1 / 4 & 0 & 0 & 0 \\ 1 / 2 & 1 / 4 & 1 / 4 & 0 & 0 \\ 3 / 4 & 0 & 0 & 1 / 4 & 0 \\ 1 / 2 & 1 / 4 & 0 & 0 & 1 / 4 \\ 3 / 4 & 1 / 4 & 0 & 0 & 0\end{array}\right]$
» [V2,J2] = jordan(P2)

```
V2 =
```

$$
-0.0625
$$

$$
-0.5170
$$

$$
-0.1728
$$

$$
0.1176-0.0294 i
$$

$$
1.3011
$$

$$
-0.1728
$$

$$
\begin{array}{r}
0.1176+0.0294 i \\
-0.3824+0.0294 i \\
0.1176-0.4706 i \\
0.1176+0.0294 i \\
0.1176+0.0294 i
\end{array}
$$

$$
-0.3824-0.0294 i
$$

$$
0.4830 \quad-0.1728
$$

$$
0.1176+0.4706 i
$$

$$
1.3011 \quad-0.1728
$$

$$
0.4830 \quad-0.1728
$$

$$
0.1176+0.0294 i \quad 0.1176-0.0294 i
$$

$$
0.1176-0.0294 i
$$

0	
0	
0	
0	$+0.2500 i$

0
0
1.0000
0
0
$\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0+0.2500 i \\ 0 & 0\end{array}$


```
> V2i = inv(V2)
V2i =
```

3.2727	0
-1.0000	0
-3.9787	-1.3617
0	-1.0000
0	-1.0000

-0.0000	4.0000
0.0000	0
-0.3404	
$0+1.0000 i$	1.0000
$0-1.0000 i$	1.0000

$$
\begin{aligned}
&-7.2727 \\
& 1.0000 \\
&-0.0213 \\
& 0-1.0000 i \\
& 0+1.0000 i
\end{aligned}
$$

Non-overlapping occurrences of GAGA — JCF

$$
(J 2)^{n}=\left[\begin{array}{llll}
{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{n}} & & & \\
& & 1^{n} & \\
& & (i / 4)^{n} & \\
& & & (-i / 4)^{n}
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

- One eigenvalue $=1$. It's the third one listed, so the stationary distribution is the third row of $(V 2)^{-1}$ normalized:
» V2i(3,:) / sum(V2i(3,:))
ans $=$
$\begin{array}{lllll}0.6875 & 0.2353 & 0.0588 & 0.0147 & 0.0037\end{array}$
- Two eigenvalues $\boldsymbol{=} \mathbf{0}$. The interpretation of one of them is that the first and last rows of $P 2$ are equal, so $(1,0,0,0,-1)^{\prime}$ is a right eigenvector of $P 2$ with eigenvalue 0 .
- Two complex eigenvalues, $0 \pm \boldsymbol{i} / 4$. Since $P 2$ is real, all complex eigenvalues must come in conjugate pairs.
The eigenvectors also come in conjugate pairs (last 2 columns of $V 2$; last 2 rows of $(V 2)^{-1}$.

Spectral decomposition with JCF and complex eigenvalues

$$
(J 2)^{n}=\left[\begin{array}{lll}
{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{n}} & & \\
& & \\
& 1^{n} & \\
& & (i / 4)^{n} \\
& & \\
& & \\
& & (-i / 4)^{n}
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
(\mathrm{P} 2)^{n} & =(\mathrm{V} 2)(\mathrm{J} 2)^{n}(\mathrm{~V} 2)^{-1} \\
& =\left[\begin{array}{ll}
\vec{r}_{1} & \vec{r}_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
\vec{\ell}_{1}^{\prime} \\
\vec{\ell}_{2}^{\prime}
\end{array}\right]+\vec{r}_{3}(1)^{n} \vec{\ell}_{3}^{\prime}+\vec{r}_{4}(i / 4)^{n} \vec{\ell}_{4}^{\prime}+\vec{r}_{5}(-i / 4)^{n} \vec{\ell}_{5}^{\prime}
\end{aligned}
$$

The first term vanishes when $n \geqslant 2$, so when $n \geqslant 2$ the format is

$$
=1^{n} \mathrm{~S} 3+(i / 4)^{n} \mathrm{~S} 4+(-i / 4)^{n} \mathrm{~S} 5=\mathrm{S} 3+(i / 4)^{n} \mathrm{~S} 4+(-i / 4)^{n} \mathrm{~S} 5
$$

Spectral decomposition with JCF and complex eigenvalues

```
For n\geqslant2,\quad(P2\mp@subsup{)}{}{n}=\textrm{S}3+(i/4\mp@subsup{)}{}{n}\textrm{S}4+(-i/4\mp@subsup{)}{}{n}\textrm{S}5\quad\mathrm{ where}
\begin{tabular}{|c|c|c|c|c|}
\hline 0.6875 & 0.2353 & 0.0588 & 0.0147 & 0.0037 \\
\hline 0.6875 & 0.2353 & 0.0588 & 0.0147 & 0.0037 \\
\hline 0.6875 & 0.2353 & 0.0588 & 0.0147 & 0.0037 \\
\hline 0.6875 & 0.2353 & 0.0588 & 0.0147 & 0.0037 \\
\hline 0.6875 & 0.2353 & 0.0588 & 0.0147 & 0.0037 \\
\hline
\end{tabular}
```

| 0 | $-0.1176-0.0294 i$ | $-0.0294+0.1176 i$ | $0.1176+0.0294 i$ | $0.0294-0.1176 i$ |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | $0.3824-0.0294 i$ | $-0.0294-0.3824 i$ | $-0.3824+0.0294 i$ | $0.0294+0.3824 i$ |
| 0 | $-0.1176+0.4706 i$ | $0.4706+0.1176 i$ | $0.1176-0.4706 i$ | $-0.4706-0.1176 i$ |
| 0 | $-0.1176-0.0294 i$ | $-0.0294+0.1176 i$ | $0.1176+0.0294 i$ | $0.0294-0.1176 i$ |
| | $-0.1176-0.0294 i$ | $-0.0294+0.1176 i$ | $0.1176+0.0294 i$ | $0.0294-0.1176 i$ |

| 0 | $-0.1176+0.0294 i$ | $-0.0294-0.1176 i$ | $0.1176-0.0294 i$ | $0.0294+0.1176 i$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | $0.3824+0.0294 i$ | $-0.0294+0.3824 i$ | $-0.3824-0.0294 i$ | $0.0294-0.3824 i$ |
| 0 | $-0.1176-0.4706 i$ | $0.4706-0.1176 i$ | $0.1176+0.4706 i$ | $-0.4706+0.1176 i$ |
| 0 | $-0.1176+0.0294 i$ | $-0.0294-0.1176 i$ | $0.1176-0.0294 i$ | $0.0294+0.1176 i$ |
| 0 | $-0.1176+0.0294 i$ | $-0.0294-0.1176 i$ | $0.1176-0.0294 i$ | $0.0294+0.1176 i$ |

```
```

> S4 = V2(:,4) * V2i(4,:)

```
> S4 = V2(:,4) * V2i(4,:)
> S5 = V2(:,5) * V2i(5,:)
```

> S5 = V2(:,5) * V2i(5,:)

```
- 33 corresponds to the stationary distribution.
- S4 and S5 are complex conjugates, so \((i / 4)^{n} S 4+(-i / 4)^{n} S 5\) is a sum of two complex conjugates; thus, it is real-valued, even though complex numbers are involved in the computation.```

