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Maximum of two rolls of a die

Let X, Y be two rolls of a four sided die and U = max {X, Y}:
U X = 1 2 3 4

Y = 1 1 2 3 4
2 2 2 3 4
3 3 3 3 4
4 4 4 4 4

P(U = 3) = FU(3) − FU(2)

= P(X 6 3, Y 6 3) − P(X 6 2, Y 6 2)

= P(X 6 3)2 − P(X 6 2)2 (since X, Y are i.i.d.)

= FX(3)
2 − FX(2)

2

If it’s a fair die then FX(2) = 1/2, FX(3) = 3/4, so
P(U = 3) = (3/4)2 − (1/2)2 = 5/16
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Maximum of n i.i.d. random variables: CDF

Let Y1, . . . , Yn be i.i.d. random variables, each with the same
cumulative distribution function FY(y) = P(Yi 6 y).
Let Ymax = max {Y1, . . . , Yn}.
The cdf of Ymax is

FYmax
(y) = P(Ymax 6 y)

= P(Y1 6 y, Y2 6 y, . . . , Yn 6 y)

= P(Y1 6 y)P(Y2 6 y) · · ·P(Yn 6 y)

= FY(y)
n
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Maximum of n i.i.d. random variables: PDF

Continuous case
Suppose each Yi has density fY(y). Then Ymax has density

fYmax
(y) =

d
dy

FY(y)
n = n FY(y)

n−1 d
dy

FY(y) = n FY(y)
n−1 fY(y)

Discrete case (integer-valued)
Suppose the random variables Yi range over Z (integers). For y ∈ Z,

P(Ymax=y) = P(Ymax6y) − P(Ymax 6 y−1) = FY(y)
n − FY(y−1)n

For any non-integer y, P(Ymax=y) = 0.

Discrete case (in general)
If the random variables Yi are discrete and real valued, then for all y,

P(Ymax=y) = P(Ymax6y) − P(Ymax6y−) = FY(y)
n − FY(y

−)n
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Example: Geometric distribution
(version where Y counts the number of heads before the first tail)

p is the probability of heads, 1 − p is the probability of tails.

Let P(Y = y) = py(1 − p) for y = 0, 1, 2, . . ..

Cumulative distribution: For y = 0, 1, 2, . . . ,
FY(y) = P(Y 6 y)

= p0(1 − p) + p1(1 − p) + · · ·+ py(1 − p)

= (1 − p) + (p − p2) + · · ·+ (py − py+1)

= 1 − py+1

Alternate proof:
P(Y > y + 1) = py+1:
there are y + 1 or more heads before the first tails iff the first y + 1
flips are heads.
P(Y 6 y) = 1 − py+1
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Example: Geometric distribution
Geometric random variables Y1, . . . , Yn

Let Y1, . . . , Yn be i.i.d. geometric random variables, with PDF
P(Yi = y) = py(1 − p) for y = 0, 1, 2, . . .

CDF of Yi: FYi
(y) = 1 − py+1 for y = 0, 1, 2, . . .

Distribution of Ymax = max {Y1, . . . , Yn}

CDF of Ymax: P(Ymax 6 y) = (1 − py+1)n for y = 0, 1, 2, . . .
PDF of Ymax:

P(Ymax = y) = (FY1
(y))n − (FY1

(y − 1))n

=

{
(1 − py+1)n − (1 − py)n if y = 0, 1, 2, . . . ;
0 otherwise.

Technicality
For y = 0, we subtracted FYi

(−1)n, using the boxed formula for y > 0.
It actually works at y = −1, too: FYi

(−1) = 1 − p−1+1 = 1 − p0 = 0.
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Related problems
Minimum
Find the distribution of the minimum of n i.i.d. random variables.

Order statistics (Chapter 2.12)
Given random variables Y1, Y2, . . . , Yn, reorder as Y(1)6Y(2)6· · ·6Y(n):

Find the distribution of the 2nd largest (or kth largest/smallest).
Find the joint distribution of the 2nd largest and 5th smallest,
or any other combination of any number of the Y(i)’s (including all).

Applications
Distribution of the median of repeated indep. measurements.
Cut up genome by a Poisson process (crossovers; restriction
fragments; genome rearrangements), put the fragment lengths
into order smallest to largest, and analyze the joint distribution.
Beta distribution (Ch. 1.10.6): using Gamma distribution notation:
distribution of D3/D8 (position of 3rd cut as fraction of 8th)?
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Long repeats of the same letter

We consider DNA sequences of length N, and want to distinguish
between two hypotheses:

“Null Hypothesis” H0:
The DNA sequence is generated by independent rolls of a 4-sided die
(A,C,G,T) with probabilities pA, pC, pG, pT that add to 1.

“Alternative Hypothesis” H1:
Adjacent positions are correlated: there is a tendency for long repeats
of the letter A.

We will develop a quantitative way to determine whether H0 or H1
better applies to a sequence.
We will cover a number of other hypothesis tests in this class.
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Longest run of A’s in a sequence

Split a sequence after every non-A:
T/AAG/AC/AAAG/G/T/C/AG/

Let Y1, . . . , Yn be the number of A’s in each segment, and let
Ymax = max {Y1, . . . , Yn}:

T︸︷︷︸
y1=0

/AAG︸︷︷︸
y2=2

/ AC︸︷︷︸
y3=1

/AAAG︸  ︷︷  ︸
y4=3

/ G︸︷︷︸
y5=0

/ T︸︷︷︸
y6=0

/ C︸︷︷︸
y7=0

/ AG︸︷︷︸
y8=1

/

n = 8 and ymax = 3.

We will use ymax as a test statistic to decide if we are more
convinced of H0 or H1:

All values of ymax = 0, 1, 2, . . . are possible under both H0 and H1.
Smaller values of ymax support H0.
Larger values of ymax support H1.
There are clear-cut cases, and a gray zone in-between.
The null hypothesis, H0, is given the benefit of the doubt in
ambiguous cases.
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Hypothesis testing

1 State a null hypothesis H0 and an alternative hypothesis H1:
H0: The DNA sequence is generated by independent rolls of a
4-sided die (A,C,G,T) with probabilities pA, pC, pG, pT , that add to 1.
H1: Adjacent positions are correlated: there is a tendency for long
repeats of the letter A.

2 Compute a test statistic: ymax.
3 Calculate the P-value: P = P(Ymax > ymax).

Assuming H0 is true, what is the probability to observe the test
statistic “as extreme or more extreme” as the observed value?
“Extreme” means away from H0 / towards H1.

4 Decision: Does H0 or H1 apply?
If the P-value is too small (typically 6 5% or 6 1%), we
reject the null hypothesis (Reject H0) /
accept the alternative hypothesis (Accept H1).
Otherwise, we accept the null hypothesis (Accept H0) /
reject the alternative hypothesis (Reject H1).
Picky people prefer “Reject H0” vs. “Insufficient evidence to reject H0.”
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Computing the P-value
P-value: Assuming H0 is true, what is the probability to observe a
test statistic at least as “extreme” (away from H0 / towards H1) as
the observed test statistic value?

The P-value in this problem is P = P(Ymax > ymax).

Notation: p = pA is the probability of A’s under H0,
N = length of the sequence,
n = number of runs of A’s,

ymax = number of A’s in the longest run.

Notation peculiarities:
The N & n notation does not follow the usual conventions on
uppercase/lowercase for random variables vs. their values.

The non-A’s have a Binomial(N, 1 − p) distribution:
N positions, each with probability 1 − p not to be an A.
Additionally, n counts the number of the non-A’s, since these
terminate the runs of A’s (including runs of 0 A’s).
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Computing the P-value

By the Binomial(N, 1 − p) distribution, approximately (1 − p)N
letters are not A, giving an estimate of n ≈ (1 − p)N runs.

Each run has a geometric distribution (# “heads” before first tails)
with parameter p of “heads” (A):

PYi(y) = (1 − p)py FYi(y) = 1 − py+1

For an observation y = ymax = 0, 1, 2, . . . :
P = P(Ymax > y) = 1 − P(Ymax 6 y − 1)

= 1 − P(Y1 6 y − 1)n = 1 − (FY1(y − 1))n

= 1 − (1 − py)n = 1 − (1 − py)(1−p)N

The table shows P-values for p = pA = .25 and
sequence length N = 100,000.

ymax P
6 5 1.

6 0.99999
7 0.98972
8 0.68159
9 0.24881
10 0.06902
11 0.01772
12 0.00446
13 0.00111
14 0.00027
15 0.00006
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Decision

We will choose a critical value or cutoff y∗, and make the decision
“Accept H0” (“Accept the null hypothesis”) when ymax 6 y∗;
a.k.a. “Reject H1” (“Reject the alternative hypothesis”)
or “Fail to reject H0.”
“Accept H1” / “Reject H0” when ymax > y∗

(“Accept the alternative hypothesis” / “Reject the null hypothesis”)

How do we choose this critical value?
There are clear-cut cases, and a gray zone in-between.
H0 is given the benefit of the doubt in ambiguous cases.

Choose a significance level α (usually 5% or 1%).

Determine the critical value so that when H0 is true, at most a
fraction α of the cases will be misclassified as H1 (a Type I error ).

We’ll also consider Type II errors (accepting H0 when H1 is true).
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Decision procedure (using a cutoff on the test statistic)

ymax P
6 5 1.

6 0.99999
7 0.98972
8 0.68159
9 0.24881

10 0.06902
11 0.01772
12 0.00446
13 0.00111
14 0.00027
15 0.00006

Choose a cutoff so that when H0 is really true, we
incorrectly reject H0 at most a fraction α of the time.
α = .05 = 5%:

Accept H0 when ymax 6 10;
Reject H0 when ymax > 11.

When H0 is true, this incorrectly rejects H0 (a Type I
error ) a fraction 0.01772 = 1.772% of the time.
A continuous test statistic would have a cutoff
giving exactly 5%. This one is discrete, so it jumps.
α = .01 = 1%:

Accept H0 when ymax 6 11;
Reject H0 when ymax > 12.

Type I error rate 0.446%.
The Type II error rate is the fraction of the time that
H0 is accepted when H1 is really true. We did not
formulate H1 precisely enough to compute it.
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Decision procedure (using P-value instead of ymax)

ymax P
6 5 1.

6 0.99999
7 0.98972
8 0.68159
9 0.24881

10 0.06902
11 0.01772
12 0.00446
13 0.00111
14 0.00027
15 0.00006

Determine the P-value of the test statistic.

Accept H0 when P > α;
Reject H0 when P 6 α.

This is equivalent to the first decision procedure:
For α = 0.05, we have

P > 0.05 when ymax 6 10: Accept H0
P 6 0.05 when ymax > 11: Reject H0
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Advantages of using P-values instead of critical values
in hypothesis tests

P-values can be defined for any hypothesis test. You can read a
paper in another field and understand the results formulated with
P-values even without a detailed understanding of the test statistic.

It’s easy to tell if you’re near the cutoff when using P. Using the
test statistic, you’d have to determine that for each test statistic
based on its distribution.
E.g., is being within ±100 close? ±10? ±1? ±0.0001?
It all depends on the distribution of the statistic.

P-values allow testing several thresholds simultaneously.
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Example: SARS — Genome sequence

The complete genome is at
http://www.ncbi.nlm.nih.gov/nuccore/30271926?report=genbank

It consists of N = 29751 bases, fully sequenced, no gaps.
Nucleotide Frequency Proportion

A 8481 pA ≈ 0.2851
C 5940 pC ≈ 0.1997
G 6187 pG ≈ 0.2080
T 9143 pT ≈ 0.3073

Total N = 29751 1
Technicalities:

The proportions seem to add up to 1.0001 due to rounding errors,
but add up to 1 if computed exactly.

SARS is an RNA virus, so it uses U’s instead of T’s in RNA form.
When it integrates into the host genome, it becomes DNA with T’s.
This is the form in which it was sequenced.
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Example: SARS — Applying the test
P-value formula

P = 1 − (1 − py)(1−p)N N = 29751

p = pA, . . . , pT (see previous slide) y = ymax (from data)

P-value for runs of each nucleotide A, C, G, T

A C G T
p 0.2851 0.1997 0.2080 0.3073

ymax 24 6 6 7
P-value 6.1870 · 10−9 0.9995 0.9999 1.0000

For A at significance level α = 0.05: P = 6.1870 · 10−9 6 0.05.
So P 6 α and the result is significant.
We reject the null hypothesis and accept the alternative.

For long runs of C, G, or T:
P > 0.05, so the result is not significant.
We accept the null hypothesis in each of those cases.
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Homopolymers (repeats of one letter)

It turns out the long run of A’s is the final 24 letters of the genome
sequence (a “poly(A) tail”):

If we omit those, pA goes down to
pA = (8481 − 24)/(29751 − 24) = 8457/29727 = 0.2845,
and the next longest run of A’s has length 8.
This gives a P-value P = 0.5985.
Since P > α (0.5985 > .05) the result is not significant.

Poly(A) tails of up to several hundred A’s occur at the 3’ end of
mRNA in eukaryotic mRNA.
Once there are a few of the same nucleotide in a row, it is thought
that DNA polymerase suffers from “slippage” and the number of
repetitions lengthens over evolutionary time.
454 sequencing is error-prone in homopolymeric regions. It adds
as many of the same nucleotide as possible in one cycle, stained
with a dye, but the light output isn’t proportional to the number of
nucleotides incorporated.
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Proper formulation of hypotheses

This sequence is not random:
ACACACACACACACACACAC. . .

On this sequence, we would accept H0 / reject H1, but that doesn’t
mean the sequence is truly random.

The hypothesis test was designed to detect long repeats of one
letter; to detect other non-random scenarios, we would need to
formulate other alternative hypotheses.
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Computing the P-value, other methods

The book has three estimates of the P-value.
P1 = 1 − (1 − py)n = 1 − (1 − py)(1−p)N (the one we did).
When N is large and (1 − p)Npy 6 1, this is approximately
P2 = 1 − e−(1−p)Npy

.
P3 treats n as a random variable, with n ∼ Binomial(N, 1 − p):
P(n = k) =

(N
k

)
(1 − p)kpN−k for k = 0, 1, . . . , N

P3 = P(Ymax > y)

=
∑N

k=0 P(n = k)P(Ymax > y|n = k)

=
∑N

k=0
(N

k

)
(1 − p)kpN−k ·

(
1 − (1 − py)k

)
=
∑N

k=0
(N

k

)
(1 − p)kpN−k −

∑N
k=0

(N
k

)
((1 − p)(1 − py))k pN−k

= ((1 − p) + p)N − ((1 − p)(1 − py) + p)N

= 1N − (1 − (1 − p)py)N = 1 − (1 − (1 − p)py)N
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Table of P-values

The table below is the P-values computed all three ways for the longest
repeat of A’s with p = pA = .25 and sequence length N = 100000.

y P1=1−(1−py)(1−p)N P2=1−e−(1−p)Npy
P3=1−(1−(1−p)py)N

6 5 1. 1. 1.
6 0.9999999889 0.9999999888 0.9999999889
7 0.9897223095 0.9897208398 0.9897219505
8 0.6815910548 0.6815880136 0.6815903598
9 0.2488147944 0.2488142305 0.2488128140

10 0.0690293562 0.0690275311 0.0690316757
11 0.0177211033 0.0177224700 0.0177211028
12 0.0044600246 0.0044603712 0.0044600245
13 0.0011168758 0.0011169628 0.0011193730
14 0.0002774615 0.0002793577 0.0002799608
15 0.0000674977 0.0000698468 0.0000699976

Taylor series can be used to show why these are very close.
P1 = 1 − (1 − u)Nv, P2 = 1 − eNuv, P3 = 1 − (1 − uv)N

with u = py and v = 1 − p and Nu� 1.
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Errors in hypothesis testing

Terminology: Type I or II error

True state of nature
Decision H0 true H1 true

Accept H0 / Reject H1 Correct decision Type II error
Reject H0 / Accept H1 Type I error Correct decision

Alternate terminology:
Null hypothesis H0=“negative”

Alternative hypothesis H1=“positive”
True state of nature

Decision H0 true H1 true
Acc. H0 / Rej. H1 True Negative (TN) False Negative (FN)

/ “negative”
Rej. H0 / Acc. H1 False Positive (FP) True Positive (TP)

/ “positive”
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Measuring α and β from empirical data

Suppose you know the # times the tests fall in each category

True state of nature
Decision H0 true H1 true Total

Accept H0 / Reject H1 1 2 3
Reject H0 / Accept H1 4 10 14

Total 5 12 17

Error rates
Type I error rate: α = P(reject H0|H0 true) = 4/5 = .8
Type II error rate: β = P(accept H0|H0 false) = 2/12 = 1/6

Correct decision rates
Specificity: 1 − α = P(accept H0|H0 true) = 1/5 = .2
Sensitivity: 1 − β = P(reject H0|H0 false) = 10/12 = 5/6

Power = sensitivity = 5/6
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