2.11. The Maximum of *n* Random Variables3.4. Hypothesis Testing5.4. Long Repeats of the Same Nucleotide

Prof. Tesler

Math 283 Fall 2018

Max of *n* Variables & Long Repeats

Maximum of two rolls of a die

• Let *X*, *Y* be two rolls of a four sided die and $U = \max\{X, Y\}$:

•
$$P(U=3) = F_U(3) - F_U(2)$$

= $P(X \le 3, Y \le 3) - P(X \le 2, Y \le 2)$
= $P(X \le 3)^2 - P(X \le 2)^2$ (since X, Y are i.i.d.)
= $F_X(3)^2 - F_X(2)^2$

• If it's a fair die then
$$F_X(2) = 1/2$$
, $F_X(3) = 3/4$, so
 $P(U=3) = (3/4)^2 - (1/2)^2 = 5/16$

Maximum of *n* i.i.d. random variables: CDF

- Let Y_1, \ldots, Y_n be i.i.d. random variables, each with the same cumulative distribution function $F_Y(y) = P(Y_i \leq y)$.
- Let $Y_{\max} = \max\{Y_1, \ldots, Y_n\}$.
- The cdf of Y_{max} is

$$F_{Y_{\text{max}}}(y) = P(Y_{\text{max}} \leq y)$$

= $P(Y_1 \leq y, Y_2 \leq y, \dots, Y_n \leq y)$
= $P(Y_1 \leq y) P(Y_2 \leq y) \cdots P(Y_n \leq y)$
= $F_Y(y)^n$

Maximum of *n* i.i.d. random variables: PDF

Continuous case

Suppose each Y_i has density $f_y(y)$. Then Y_{max} has density

$$f_{Y_{\max}}(y) = \frac{d}{dy} F_{Y}(y)^{n} = n F_{Y}(y)^{n-1} \frac{d}{dy} F_{Y}(y) = n F_{Y}(y)^{n-1} f_{Y}(y)$$

Discrete case (integer-valued)

Suppose the random variables Y_i range over \mathbb{Z} (integers). For $y \in \mathbb{Z}$, $P(Y_{\max}=y) = P(Y_{\max} \leq y) - P(Y_{\max} \leq y-1) = F_Y(y)^n - F_Y(y-1)^n$ For any non-integer y, $P(Y_{\max}=y) = 0$.

Discrete case (in general)

If the random variables Y_i are discrete and real valued, then for all y, $P(Y_{\max}=y) = P(Y_{\max} \leq y) - P(Y_{\max} \leq y^-) = F_Y(y)^n - F_Y(y^-)^n$

Example: Geometric distribution

(version where Y counts the number of heads before the first tail)

• p is the probability of heads, 1 - p is the probability of tails.

• Let
$$P(Y = y) = p^{y}(1 - p)$$
 for $y = 0, 1, 2, ...$

$$\begin{split} \textit{Cumulative distribution: For } y &= 0, 1, 2, \dots, \\ F_{Y}(y) &= P(Y \leqslant y) \\ &= p^{0}(1-p) + p^{1}(1-p) + \dots + p^{y}(1-p) \\ &= (1-p) + (p-p^{2}) + \dots + (p^{y}-p^{y+1}) \\ &= 1-p^{y+1} \end{split}$$

• Alternate proof:

• $P(Y \ge y + 1) = p^{y+1}$: there are y + 1 or more heads before the first tails iff the first y + 1flips are heads.

•
$$P(Y \leq y) = 1 - p^{y+1}$$

Example: Geometric distribution

Geometric random variables Y_1, \ldots, Y_n

• Let Y_1, \ldots, Y_n be i.i.d. geometric random variables, with PDF $P(Y_i = y) = p^y(1-p)$ for $y = 0, 1, 2, \ldots$

• **CDF of**
$$Y_i$$
: $F_{Y_i}(y) = 1 - p^{y+1}$ for $y = 0, 1, 2, ...$

Distribution of $Y_{\max} = \max\{Y_1, \ldots, Y_n\}$

- CDF of Y_{max} : $P(Y_{\text{max}} \leq y) = (1 p^{y+1})^n$ for y = 0, 1, 2, ...
- PDF of Y_{max}:

$$\begin{split} P(Y_{\max} = y) &= (F_{Y_1}(y))^n - (F_{Y_1}(y-1))^n \\ &= \begin{cases} (1-p^{y+1})^n - (1-p^y)^n & \text{if } y = 0, 1, 2, \dots; \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Technicality

For y = 0, we subtracted $F_{Y_i}(-1)^n$, using the boxed formula for $y \ge 0$. It actually works at y = -1, too: $F_{Y_i}(-1) = 1 - p^{-1+1} = 1 - p^0 = 0$.

Related problems

Minimum

Find the distribution of the minimum of *n* i.i.d. random variables.

Order statistics (Chapter 2.12)

Given random variables Y_1, Y_2, \ldots, Y_n , reorder as $Y_{(1)} \leqslant Y_{(2)} \leqslant \cdots \leqslant Y_{(n)}$:

- Find the distribution of the 2nd largest (or *k*th largest/smallest).
- Find the joint distribution of the 2nd largest and 5th smallest, or any other combination of any number of the $Y_{(i)}$'s (including all).

Applications

- Distribution of the median of repeated indep. measurements.
- Cut up genome by a Poisson process (crossovers; restriction fragments; genome rearrangements), put the fragment lengths into order smallest to largest, and analyze the joint distribution.
- Beta distribution (Ch. 1.10.6): using Gamma distribution notation: distribution of D_3/D_8 (position of 3rd cut as fraction of 8th)?

Long repeats of the same letter

We consider DNA sequences of length *N*, and want to distinguish between two *hypotheses:*

"Null Hypothesis" H_0 :

The DNA sequence is generated by independent rolls of a 4-sided die (A,C,G,T) with probabilities p_A, p_C, p_G, p_T that add to 1.

"Alternative Hypothesis" H_1 :

Adjacent positions are correlated: there is a tendency for long repeats of the letter A.

- We will develop a quantitative way to determine whether H_0 or H_1 better applies to a sequence.
- We will cover a number of other hypothesis tests in this class.

Longest run of A's in a sequence

- Split a sequence after every non-A: T/AAG/AC/AAAG/G/T/C/AG/
- Let Y_1, \ldots, Y_n be the number of A's in each segment, and let $Y_{\text{max}} = \max\{Y_1, \ldots, Y_n\}$: $\underbrace{T}_{y_1=0} / \underbrace{AAG}_{y_2=2} / \underbrace{AC}_{y_3=1} / \underbrace{AAAG}_{y_4=3} / \underbrace{G}_{y_5=0} / \underbrace{T}_{y_6=0} / \underbrace{C}_{y_7=0} / \underbrace{AG}_{y_8=1} / \underbrace{AG}_{y_8=1} / \underbrace{C}_{y_8=1} / \underbrace{AG}_{y_8=1} / \underbrace{C}_{y_8=1} / \underbrace$

• n = 8 and $y_{max} = 3$.

- We will use y_{max} as a *test statistic* to decide if we are more convinced of H_0 or H_1 :
 - All values of $y_{max} = 0, 1, 2, ...$ are possible under both H_0 and H_1 .
 - Smaller values of y_{max} support H_0 .
 - Larger values of y_{max} support H_1 .
 - There are clear-cut cases, and a gray zone in-between.
 The null hypothesis, H₀, is given the benefit of the doubt in ambiguous cases.

Hypothesis testing

State a null hypothesis H_0 and an alternative hypothesis H_1 :

- *H*₀: The DNA sequence is generated by independent rolls of a 4-sided die (A,C,G,T) with probabilities *p*_A, *p*_C, *p*_G, *p*_T, that add to 1.
- *H*₁: Adjacent positions are correlated: there is a tendency for long repeats of the letter A.
- Compute a *test statistic*: y_{max}.
- 3 Calculate the *P*-value: $P = P(Y_{max} \ge y_{max})$.
 - Assuming H_0 is true, what is the probability to observe the test statistic "as extreme or more extreme" as the observed value?
 - "Extreme" means away from H_0 / towards H_1 .

Decision: Does H_0 or H_1 apply?

- If the *P*-value is too small (typically ≤ 5% or ≤ 1%), we reject the null hypothesis (Reject H₀) / accept the alternative hypothesis (Accept H₁).
- Otherwise, we accept the null hypothesis (Accept H_0) / reject the alternative hypothesis (Reject H_1).
- Picky people prefer "Reject H_0 " vs. "Insufficient evidence to reject H_0 ."

Computing the *P*-value

- *P-value*: Assuming H₀ is true, what is the probability to observe a test statistic at least as "extreme" (away from H₀ / towards H₁) as the observed test statistic value?
- The *P*-value in this problem is $P = P(Y_{max} \ge y_{max})$.
- Notation: $p = p_A$ is the probability of A's under H_0 ,
 - N = length of the sequence,
 - n = number of runs of A's,

 $y_{max} =$ number of A's in the longest run.

• Notation peculiarities:

- The *N* & *n* notation does not follow the usual conventions on uppercase/lowercase for random variables vs. their values.
- The non-A's have a Binomial(N, 1 p) distribution:
 N positions, each with probability 1 p not to be an A.
 Additionally, n counts the number of the non-A's, since these terminate the runs of A's (including runs of 0 A's).

Computing the *P*-value

- By the Binomial(N, 1 p) distribution, approximately (1 p)Nletters are not A, giving an estimate of $n \approx (1 - p)N$ runs.
- Each run has a geometric distribution (# "heads" before first tails) with parameter p of "heads" (A):

$$P_{Y_i}(y) = (1-p)p^y$$
 $F_{Y_i}(y) = 1-p^{y+1}$

• For an observation
$$y = y_{max} = 0, 1, 2, ...$$
:
 $P = P(Y_{max} \ge y) = 1 - P(Y_{max} \le y - 1)$
 $= 1 - P(Y_1 \le y - 1)^n = 1 - (F_{Y_1}(y - 1))^n$
 $= 1 - (1 - p^y)^n = 1 - (1 - p^y)^{(1 - p)N}$

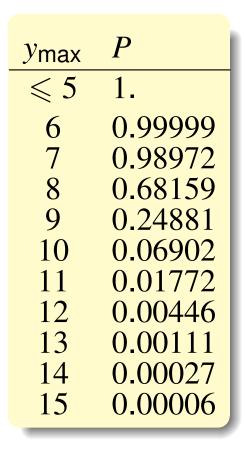
• The table shows *P*-values for $p = p_A = .25$ and sequence length N = 100,000.

Ymax	Р
≤ 5	1.
6	0.99999
7	0.98972
8	0.68159
9	0.24881
10	0.06902
11	0.01772
12	0.00446
13	0.00111
14	0.00027
15	0.00006

Decision

- We will choose a *critical value* or *cutoff* y^* , and make the decision
 - "Accept H₀" ("Accept the null hypothesis") when y_{max} ≤ y^{*}; a.k.a. "Reject H₁" ("Reject the alternative hypothesis") or "Fail to reject H₀."
 - "Accept H_1 " / "Reject H_0 " when $y_{max} > y^*$ ("Accept the alternative hypothesis" / "Reject the null hypothesis")
- How do we choose this critical value? There are clear-cut cases, and a gray zone in-between.
 H₀ is given the benefit of the doubt in ambiguous cases.
- Choose a *significance level* α (usually 5% or 1%).
- Determine the critical value so that when H₀ is true, at most a fraction α of the cases will be misclassified as H₁ (a Type I error).
- We'll also consider *Type II errors* (accepting H_0 when H_1 is true).

Decision procedure (using a cutoff on the test statistic)



- Choose a cutoff so that when H_0 is really true, we incorrectly reject H_0 at most a fraction α of the time.
- $\alpha = .05 = 5\%$:

Accept H_0 when $y_{max} \leq 10$; Reject H_0 when $y_{max} \geq 11$.

- When H_0 is true, this incorrectly rejects H_0 (a *Type I error*) a fraction 0.01772 = 1.772% of the time.
- A continuous test statistic would have a cutoff giving exactly 5%. This one is discrete, so it jumps.

$$\alpha = .01 = 1\%$$
:

Accept H_0 when $y_{max} \leq 11$; Reject H_0 when $y_{max} \geq 12$.

Type I error rate 0.446%.

• The *Type II error rate* is the fraction of the time that H_0 is accepted when H_1 is really true. We did not formulate H_1 precisely enough to compute it.

Ymax	Р
≤ 5	1.
6	0.99999
7	0.98972
8	0.68159
9	0.24881
10	0.06902
11	0.01772
12	0.00446
13	0.00111
14	0.00027
15	0.00006

- Determine the *P*-value of the test statistic.
- Accept H_0 when $P > \alpha$; Reject H_0 when $P \leq \alpha$.
- This is equivalent to the first decision procedure: For $\alpha = 0.05$, we have
 - P > 0.05 when $y_{max} \leq 10$: Accept H_0
 - $P \leq 0.05$ when $y_{\text{max}} \geq 11$: Reject H_0

Advantages of using *P*-values instead of critical values in hypothesis tests

- P-values can be defined for any hypothesis test. You can read a paper in another field and understand the results formulated with P-values even without a detailed understanding of the test statistic.
- It's easy to tell if you're near the cutoff when using P. Using the test statistic, you'd have to determine that for each test statistic based on its distribution.

E.g., is being within ± 100 close? $\pm 10? \pm 1? \pm 0.0001?$ It all depends on the distribution of the statistic.

• *P*-values allow testing several thresholds simultaneously.

Example: SARS — Genome sequence

• The complete genome is at

http://www.ncbi.nlm.nih.gov/nuccore/30271926?report=genbank

• It consists of N = 29751 bases, fully sequenced, no gaps.

Nucleotide	ricquericy	Γιοροιτιστι
A	8481	$p_A \approx 0.2851$
С	5940	$p_C \approx 0.1997$
G	6187	$p_G \approx 0.2080$
Т	9143	$p_T \approx 0.3073$
Total	N = 29751	1

Technicalities:

- The proportions seem to add up to 1.0001 due to rounding errors, but add up to 1 if computed exactly.
- SARS is an RNA virus, so it uses ∪'s instead of T's in RNA form. When it integrates into the host genome, it becomes DNA with T's. This is the form in which it was sequenced.

Example: SARS — Applying the test

P-value formula

$$P = 1 - (1 - p^{y})^{(1-p)N} \qquad N = 29751$$

$$p = p_A, \dots, p_T \text{ (see previous slide)} \qquad y = y_{\text{max}} \text{ (from data)}$$

P-value for runs of each nucleotide A, C, G, T

	A	С	G	Т
p	0.2851	0.1997	0.2080	0.3073
Ymax	24	6	6	7
P-value	$6.1870 \cdot 10^{-9}$	0.9995	0.9999	1.0000

- For A at significance level α = 0.05: P = 6.1870 · 10⁻⁹ ≤ 0.05. So P ≤ α and the result is significant. We reject the null hypothesis and accept the alternative.
- For long runs of C, G, or T:
 P > 0.05, so the result is not significant.
 We accept the null hypothesis in each of those cases.

Homopolymers (repeats of one letter)

- It turns out the long run of A's is the final 24 letters of the genome sequence (a "poly(A) tail"):
 - If we omit those, p_A goes down to $p_A = (8481 - 24)/(29751 - 24) = 8457/29727 = 0.2845$, and the next longest run of A's has length 8.
 - This gives a *P*-value P = 0.5985.
 - Since $P > \alpha$ (0.5985 > .05) the result is not significant.
- Poly(A) tails of up to several hundred A's occur at the 3' end of mRNA in eukaryotic mRNA.
- Once there are a few of the same nucleotide in a row, it is thought that DNA polymerase suffers from "slippage" and the number of repetitions lengthens over evolutionary time.
- 454 sequencing is error-prone in homopolymeric regions. It adds as many of the same nucleotide as possible in one cycle, stained with a dye, but the light output isn't proportional to the number of nucleotides incorporated.

- On this sequence, we would accept H_0 / reject H_1 , but that doesn't mean the sequence is truly random.
- The hypothesis test was designed to detect long repeats of one letter; to detect other non-random scenarios, we would need to formulate other alternative hypotheses.

Computing the *P*-value, other methods

- The book has three estimates of the *P*-value.
- $P_1 = 1 (1 p^y)^n = 1 (1 p^y)^{(1-p)N}$ (the one we did).
- When *N* is large and $(1-p)Np^y \leq 1$, this is approximately $P_2 = 1 e^{-(1-p)Np^y}$.
- P_3 treats n as a random variable, with $n \sim \text{Binomial}(N, 1-p)$: $P(n = k) = \binom{N}{k}(1-p)^k p^{N-k}$ for k = 0, 1, ..., N $P_3 = P(Y_{\text{max}} \ge y)$ $= \sum_{k=0}^N P(n = k)P(Y_{\text{max}} \ge y|n = k)$ $= \sum_{k=0}^N \binom{N}{k}(1-p)^k p^{N-k} \cdot (1-(1-p^y)^k)$ $= \sum_{k=0}^N \binom{N}{k}(1-p)^k p^{N-k} - \sum_{k=0}^N \binom{N}{k}((1-p)(1-p^y))^k p^{N-k}$ $= ((1-p)+p)^N - ((1-p)(1-p^y)+p)^N$ $= 1^N - (1-(1-p)p^y)^N = 1 - (1-(1-p)p^y)^N$

Table of *P*-values

The table below is the *P*-values computed all three ways for the longest repeat of A's with $p = p_A = .25$ and sequence length N = 100000.

<u>y</u>	$P_1 = 1 - (1 - p^y)^{(1 - p)N}$	$P_2 = 1 - e^{-(1-p)Np^y}$	$P_3 = 1 - (1 - (1 - p)p^y)^N$
≤ 5	1.	1.	1.
6	0.9999999889	0.9999999888	0.9999999889
7	0.9897223095	0.9897208398	0.9897219505
8	0.6815910548	0.6815880136	0.6815903598
9	0.2488147944	0.2488142305	0.2488128140
10	0.0690293562	0.0690275311	0.0690316757
11	0.0177211033	0.0177224700	0.0177211028
12	0.0044600246	0.0044603712	0.0044600245
13	0.0011168758	0.0011169628	0.0011193730
14	0.0002774615	0.0002793577	0.0002799608
15	0.0000674977	0.0000698468	0.0000699976

Taylor series can be used to show why these are very close. $P_1 = 1 - (1 - u)^{Nv}$, $P_2 = 1 - e^{Nuv}$, $P_3 = 1 - (1 - uv)^N$ with $u = p^y$ and v = 1 - p and $Nu \ll 1$.

Errors in hypothesis testing

Terminology: Type I or II error

	True state of nature		
Decision	H_0 true	H_1 true	
Accept H_0 / Reject H_1	Correct decision	Type II error	
Reject H_0 / Accept H_1	Type I error	Correct decision	

Alternate terminology: Null hypothesis H_0 ="negative" Alternative hypothesis H_1 ="positive"

	True state of nature		
Decision	H_0 true	H_1 true	
Acc. H_0 / Rej. H_1	True Negative (TN)	False Negative (FN)	
/ "negative"			
Rej. H_0 / Acc. H_1	False Positive (FP)	True Positive (TP)	
/ "positive"			

Measuring α and β from empirical data

Suppose you know the # times the tests fall in each category

	True state of nature		
Decision	H_0 true	H_1 true	Total
Accept H_0 / Reject H_1	1	2	3
Reject H_0 / Accept H_1	4	10	14
Total	5	12	17

Error rates

Type I error rate: $\alpha = P(\text{reject } H_0 | H_0 \text{ true}) = 4/5 = .8$ **Type II error rate:** $\beta = P(\text{accept } H_0 | H_0 \text{ false}) = 2/12 = 1/6$

Correct decision rates

Specificity: $1 - \alpha = P(\text{accept } H_0 | H_0 \text{ true}) = 1/5 = .2$ **Sensitivity:** $1 - \beta = P(\text{reject } H_0 | H_0 \text{ false}) = 10/12 = 5/6$ Power = sensitivity = 5/6