Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Prof. Tesler

Math 283
Fall 2018

Also see the separate version of this with Matlab and R commands.

Matrices

- A matrix is a square or rectangular table of numbers.
- An $m \times n$ matrix has m rows and n columns. This is read " m by n ".
- This matrix is 2×3 :

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

- The entry in row i, column j, is denoted $A_{i, j}$ or $A_{i j}$.

$$
\begin{array}{lll}
A_{1,1}=1 & A_{1,2}=2 & A_{1,3}=3 \\
A_{2,1}=4 & A_{2,2}=5 & A_{2,3}=6
\end{array}
$$

Matrix multiplication

$$
\begin{array}{cc}
A & B \\
\underbrace{\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]}_{2 \times 3} \underbrace{\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]}_{3 \times 4}=\underbrace{\left[\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\hline
\end{array}\right]}_{2 \times 4}
\end{array}
$$

- Let A be $p \times q$ and B be $q \times r$.
- The product $A B=C$ is a certain $p \times r$ matrix of dot products:

$$
C_{i, j}=\sum_{k=1}^{q} A_{i, k} B_{k, j}=\operatorname{dot} \text { product }\left(i^{\text {th }} \text { row of } A\right) \cdot\left(j^{\text {th }} \text { column of } B\right)
$$

- The number of columns in A must equal the number of rows in B (namely q) in order to be able to compute the dot products.

Matrix multiplication

$$
\begin{gathered}
\left.\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\begin{array}{ccc}
2 & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot
\end{array}\right] \\
C_{1,1}=1(5)+2(0)+3(-1)=5+0-3=2
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]} \\
C_{1,2}=1(-2)+2(1)+3(6)=-2+2+18=18
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & 17 & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]} \\
C_{1,3}=1(3)+2(1)+3(4)=3+2+12=17
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & 17 & 9 \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]} \\
C_{1,4}=1(2)+2(-1)+3(3)=2-2+9=9
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & 17 & 9 \\
14 & \cdot & \cdot & \cdot
\end{array}\right]} \\
C_{2,1}=4(5)+5(0)+6(-1)=20+0-6=14
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & 17 & 9 \\
14 & 33 & \cdot & \cdot
\end{array}\right]} \\
C_{2,2}=4(-2)+5(1)+6(6)=-8+5+36=33
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & 17 & 9 \\
14 & 33 & 41 & \cdot
\end{array}\right]} \\
C_{2,3}=4(3)+5(1)+6(4)=12+5+24=41
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & 17 & 9 \\
14 & 33 & 41 & 21
\end{array}\right]} \\
C_{2,4}=4(2)+5(-1)+6(3)=8-5+18=21
\end{gathered}
$$

Transpose of a matrix

- Given matrix A of dimensions $p \times q$, the transpose A^{\prime} is $q \times p$, obtained by interchanging rows and columns: $\left(A^{\prime}\right)_{i j}=A_{j i}$.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]^{\prime}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

- Transpose of a product reverses the order and transposes the factors: $(A B)^{\prime}=B^{\prime} A^{\prime}$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=} & {\left[\begin{array}{ccc}
2 & 18 & 17 \\
14 & 33 & 41
\end{array} 21\right.}
\end{array}\right]
$$

Matrix multiplication is not commutative: usually, $A B \neq B A$

- For both $A B$ and $B A$ to be defined, need compatible dimensions:

$$
A: m \times n, \quad B: n \times m
$$

giving

$$
A B: m \times m, \quad B A: n \times n
$$

- The only chance for them to be equal would be if A and B are both square and of the same size, $n \times n$.
- Even then, they are usually not equal:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 6 \\
0 & 0
\end{array}\right]}
\end{aligned}
$$

Multiplying several matricies

- Multiplication is associative: $(A B) C=A(B C)$
- Suppose A is $p_{1} \times p_{2}$ B is $p_{2} \times p_{3}$
C is $p_{3} \times p_{4}$
D is $p_{4} \times p_{5}$
Then $A B C D$ is $p_{1} \times p_{5}$. By associativity, it may be computed in many ways, such as $A(B(C D)),(A B)(C D), \ldots$ or directly by:

$$
(A B C D)_{i, j}=\sum_{k_{2}=1}^{p_{2}} \sum_{k_{3}=1}^{p_{3}} \sum_{k_{4}=1}^{p_{4}} A_{i, k_{2}} B_{k_{2}, k_{3}} C_{k_{3}, k_{4}} D_{k_{4}, j}
$$

This generalizes to any number of matrices.

- Powers $A^{2}=A A, A^{3}=A A A, \ldots$ are defined for square matrices.

Identity matrix

- The $n \times n$ identity matrix I is

$$
I=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{i, j}= \begin{cases}1 & \text { if } i=j \text { (main diagonal) } \\
0 & \text { if } i \neq j \text { (elsewhere) }\end{cases}
$$

- For any $n \times n$ matrix A,

$$
I A=A I=A
$$

This plays the same role as 1 does in multiplication of numbers:

$$
1 \cdot x=x \cdot 1=x
$$

Inverse matrix

- The inverse of an $n \times n$ matrix A is an $n \times n$ matrix A^{-1} such that $A A^{-1}=I$ and $A^{-1} A=I$. It may or may not exist. This plays the role of reciprocals of ordinary numbers, $x^{-1}=1 / x$.
- For 2×2 matrices

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

unless $\operatorname{det}(A)=a d-b c=0$, in which case A^{-1} is undefined.

- For $n \times n$ matrices, use the row reduction algorithm (a.k.a. Gaussian elimination) in Linear Algebra.
- If A, B are invertible and the same size: $(A B)^{-1}=B^{-1} A^{-1}$ The order is reversed and the factors are inverted.

Span, basis, and linear (in)dependence

The span of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ is the set of all linear combinations

$$
\alpha_{1} \vec{v}_{1}+\cdots+\alpha_{k} \vec{v}_{k} \quad \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}
$$

Span, basis, and linear (in)dependence

Example 1

- In 3D,

$$
\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}=\left\{\left[\begin{array}{l}
x \\
0 \\
z
\end{array}\right]: x, z \in \mathbb{R}\right\}=x z \text { plane }
$$

- Here, the span of these two vectors is a 2-dimensional space. Every vector in it is generated by a unique linear combination.

Span, basis, and linear (in)dependence

Example 2

- In 3D,

$$
\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
-1 / 2
\end{array}\right]\right\}=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: x, y, z \in \mathbb{R}\right\}=\mathbb{R}^{3} .
$$

- Note that

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=(x-y)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+y\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-2 z\left[\begin{array}{c}
0 \\
0 \\
-1 / 2
\end{array}\right]
$$

- Here, the span of these three vectors is a 3-dimensional space. Every vector in \mathbb{R}^{3} is generated by a unique linear combination.

Span, basis, and linear (in)dependence

Example 3

- In 3D,

$$
\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}=\left\{\left[\begin{array}{l}
x \\
0 \\
z
\end{array}\right]: x, z \in \mathbb{R}\right\}=x z \text { plane }
$$

- This is a plane (2D), even though it's a span of three vectors.
- Note that $\vec{v}_{2}=\vec{v}_{1}+\vec{v}_{3}$, or $\vec{v}_{1}-\vec{v}_{2}+\vec{v}_{3}=\overrightarrow{0}$.
- There are multiple ways to generate each vector in the span: for all x, z, t,

$$
\left[\begin{array}{l}
x \\
0 \\
z
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+t \underbrace{\left(\vec{v}_{1}-\vec{v}_{2}+\vec{v}_{3}\right)}_{=\overrightarrow{0}}=(x+t)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+(z+t)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Span, basis, and linear (in)dependence

- Given vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$, if there is a linear combination

$$
\alpha_{1} \vec{v}_{1}+\cdots+\alpha_{k} \vec{v}_{k}=\overrightarrow{0}
$$

with at least one $\alpha_{i} \neq 0$, the vectors are linearly dependent (Ex. 3). Otherwise they are linearly independent (Ex. 1-2).

- Linearly independent vectors form a basis of the space S they span.
- Any vector in S is a unique linear combination of basis vectors (vs. it's not unique if $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly dependent).
- One basis of \mathbb{R}^{n} is a unit vector on each axis: $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ but there are other possibilities, e.g., Example 2: $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ -1 / 2\end{array}\right]$

Eigenvectors

Eigenvalues and eigenvectors

Let A be a square matrix $(k \times k)$ and $\vec{v} \neq \overrightarrow{0}$ be a column vector $(k \times 1)$. If $A \vec{v}=\lambda \vec{v}$ for a scalar λ, then \vec{v} is an eigenvector of A with eigenvalue λ.

Example

$$
\left[\begin{array}{cc}
8 & -1 \\
6 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
(8)(1)+(-1)(3) \\
(6)(1)+(3)(3)
\end{array}\right]=\left[\begin{array}{c}
5 \\
15
\end{array}\right]=5\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

$\left[\begin{array}{l}1 \\ 3\end{array}\right]$ is an eigenvector with eigenvalue 5 .
But this is just a verification. How do we find eigenvalues and eigenvectors?

Finding eigenvalues and eigenvectors

- We will work with the example

$$
P=\left[\begin{array}{cc}
8 & -1 \\
6 & 3
\end{array}\right]
$$

- Form the identity matrix of the same dimensions:

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- The formula for the determinant depends on the dimensions of the matrix. For a 2×2 matrix,

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

Finding eigenvalues and eigenvectors

- Compute the determinant of $P-\lambda I$:

$$
\begin{aligned}
\operatorname{det}(P-\lambda I) & =\operatorname{det}\left[\begin{array}{cc}
8-\lambda & -1 \\
6 & 3-\lambda
\end{array}\right] \\
& =(8-\lambda)(3-\lambda)-(-1)(6) \\
& =24-11 \lambda+\lambda^{2}+6 \\
& =\lambda^{2}-11 \lambda+30
\end{aligned}
$$

This is the characteristic polynomial of P. It has degree k in λ.

- The characteristic equation is $\operatorname{det}(P-\lambda I)=0$. Solve it for λ. For $k=2$, use the quadratic formula:

$$
\lambda=\frac{11 \pm \sqrt{(-11)^{2}-4(1)(30)}}{2}=5,6
$$

- The eigenvalues are $\lambda=5$ and $\lambda=6$.

Finding the (right) eigenvector for $\lambda=5$

- Let $\vec{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$. We will solve for a, b.
- The equation $P \vec{v}=\lambda \vec{v}$ is equivalent to $(P-\lambda I) \vec{v}=\overrightarrow{0}$.

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=(P-5 I) \vec{v}=\left[\begin{array}{ll}
3 & -1 \\
6 & -2
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
3 a-b \\
6 a-2 b
\end{array}\right]
$$

so $3 a-b=0$ and $6 a-2 b=0$ (which are equivalent).

- Solving gives $b=3 a$. Thus,

$$
\vec{v}=\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
3 a
\end{array}\right]=a\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

- Any nonzero scalar multiple of $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ is an eigenvector of P with eigenvalue 5.

Finding the (right) eigenvector for $\lambda=6$

- Let $\vec{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$. We will solve for a, b.
- The equation $P \vec{v}=\lambda \vec{v}$ is equivalent to $(P-\lambda I) \vec{v}=\overrightarrow{0}$.

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=(P-6 I) \vec{v}=\left[\begin{array}{ll}
2 & -1 \\
6 & -3
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
2 a-b \\
6 a-3 b
\end{array}\right]
$$

so $2 a-b=0$ and $6 a-3 b=0$ (which are equivalent).

- Solving gives $b=2 a$. Thus,

$$
\vec{v}=\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
2 a
\end{array}\right]=a\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

- Any nonzero scalar multiple of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector of P with eigenvalue 6.

Verify the eigenvectors

$$
\begin{aligned}
& {\left[\begin{array}{cc}
8 & -1 \\
6 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
8(1)-1(3) \\
6(1)+3(3)
\end{array}\right]=\left[\begin{array}{c}
5 \\
15
\end{array}\right]=5\left[\begin{array}{l}
1 \\
3
\end{array}\right]} \\
& {\left[\begin{array}{cc}
8 & -1 \\
6 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\left[\begin{array}{l}
8(2)-1(4) \\
6(2)+3(4)
\end{array}\right]=\left[\begin{array}{l}
12 \\
24
\end{array}\right]=6\left[\begin{array}{l}
2 \\
4
\end{array}\right]}
\end{aligned}
$$

Normalization: Which scalar multiple should we use?

In some applications, any nonzero multiple is fine.
In others, a particular scaling is required.

Markov chains / Stochastic matrices

Entries are probabilities of different cases. Scale the vector so that the entries sum up to 1.
For $\vec{v}=a\left[\begin{array}{l}1 \\ 3\end{array}\right]$, the sum is $a \cdot(1+3)=4 a=1$, so $a=\frac{1}{4}: \quad \vec{v}=\left[\begin{array}{l}1 / 4 \\ 3 / 4\end{array}\right]$
Principal component analysis
Scale it to be a unit vector, so that the sum of the squares of its entries equals 1 :

$$
\begin{gathered}
1=a^{2}\left(1^{2}+3^{2}\right)=10 a^{2} \text { so } a=\frac{ \pm 1}{\sqrt{1^{2}+3^{2}}}=\frac{ \pm 1}{\sqrt{10}} . \\
\vec{v}= \pm\left[\begin{array}{l}
1 / \sqrt{10} \\
3 / \sqrt{10}
\end{array}\right] \quad \text { (two possibilities) }
\end{gathered}
$$

Finding the left eigenvector for $\lambda=5$

- Let $\vec{v}=\left[\begin{array}{ll}a & b\end{array}\right]$. We will solve for a, b.
- The equation $\vec{v} P=\lambda \vec{v}$ is equivalent to $\vec{v}(P-\lambda I)=\overrightarrow{0}$.

$$
\left[\begin{array}{ll}
0 & 0
\end{array}\right]=\vec{v}(P-5 I)=\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{ll}
3 & -1 \\
6 & -2
\end{array}\right]=\left[\begin{array}{ll}
3 a+6 b & -a-2 b
\end{array}\right]
$$

so $3 a+6 b=0$ and $-a-2 b=0$ (which are equivalent).

- Solving gives $b=-a / 2$. Thus,

$$
\vec{v}=\left[\begin{array}{ll}
a & b
\end{array}\right]=\left[\begin{array}{ll}
a & -a / 2
\end{array}\right]=a\left[\begin{array}{ll}
1 & -1 / 2
\end{array}\right]
$$

- Any nonzero scalar multiple of $\left[\begin{array}{ll}1 & -1 / 2\end{array}\right]$ is a left eigenvector of P with eigenvalue 5 .

Finding the left eigenvector for $\lambda=6$

- Let $\vec{v}=\left[\begin{array}{ll}a & b\end{array}\right]$. We will solve for a, b.
- The equation $\vec{v} P=\lambda \vec{v}$ is equivalent to $\vec{v}(P-\lambda I)=\overrightarrow{0}$.

$$
\left[\begin{array}{ll}
0 & 0
\end{array}\right]=\vec{v}(P-6 I)=\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{ll}
2 & -1 \\
6 & -3
\end{array}\right]=\left[\begin{array}{ll}
2 a+6 b & -a-3 b
\end{array}\right]
$$

so $2 a+6 b=0$ and $-a-3 b=0$ (which are equivalent).

- Solving gives $b=-a / 3$. Thus,

$$
\vec{v}=\left[\begin{array}{ll}
a & b
\end{array}\right]=\left[\begin{array}{ll}
a & -a / 3
\end{array}\right]=a\left[\begin{array}{ll}
1 & -1 / 3
\end{array}\right]
$$

- Any nonzero scalar multiple of $\left[\begin{array}{ll}1 & -1 / 3\end{array}\right]$ is a left eigenvector of P with eigenvalue 6.

Verify the left eigenvectors

$$
\begin{aligned}
{\left[\begin{array}{ll}
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
8 & -1 \\
6 & 3
\end{array}\right] } & =\left[\begin{array}{ll}
-2(8)+1(6) & -2(-1)+1(3)
\end{array}\right] \\
& =\left[\begin{array}{ll}
-10 & 5
\end{array}\right]=5\left[\begin{array}{ll}
-2 & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
1.5 & -.5
\end{array}\right]\left[\begin{array}{cc}
8 & -1 \\
6 & 3
\end{array}\right] } & =\left[\begin{array}{ll}
1.5(8)-.5(6) & 1.5(-1)-.5(3)] \\
& =\left[\begin{array}{ll}
9 & -3
\end{array}\right]=6\left[\begin{array}{ll}
1.5 & -.5
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

Diagonalizing a matrix

- This procedure assumes there are k linearly independent eigenvectors, where P is $k \times k$.
- If the characteristic polynomial has k distinct roots, then there are k such eigenvectors.
- But if roots are repeated, there may or may not be a full set of eigenvectors. We'll explore this complication later.

Diagonalizing a matrix

- Put the right eigenvectors $\vec{r}_{1}, \vec{r}_{2}, \ldots$ into the columns of a matrix V. Form diagonal matrix D with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$ in the same order:

$$
V=\left[\vec{r}_{1} \mid \vec{r}_{2}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad D=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
5 & 0 \\
0 & 6
\end{array}\right]
$$

- Compute $V^{-1}=\left[\begin{array}{c}\vec{\ell}_{1} \\ \hline \vec{\ell}_{2}\end{array}\right]=\left[\begin{array}{cc}-2 & 1 \\ 3 / 2 & -1 / 2\end{array}\right]$

Its rows are the left eigenvectors $\vec{\ell}_{1}, \vec{\ell}_{2}, \ldots$ of P, in the same order as the eigenvalues in D, scaled so that $\vec{\ell}_{i} \cdot \vec{r}_{i}=1$.

- This gives the diagonalization $P=V D V^{-1}$:

$$
\begin{aligned}
P & =\begin{array}{cc}
V & D
\end{array} \begin{array}{c}
V^{-1} \\
{\left[\begin{array}{cc}
8 & -1 \\
6 & 3
\end{array}\right]}
\end{array}
\end{aligned}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
5 & 0 \\
0 & 6
\end{array}\right]\left[\begin{array}{cc}
-2 & 1 \\
3 / 2 & -1 / 2
\end{array}\right]
$$

Matrix powers using the spectral decomposition

An expansion of P^{n} is $P^{n}=\left(V D V^{-1}\right)\left(V D V^{-1}\right) \cdots\left(V D V^{-1}\right)=V D^{n} V^{-1}$:

$$
\begin{aligned}
P^{n}=V D^{n} V^{-1} & =V\left[\begin{array}{cc}
5^{n} & 0 \\
0 & 6^{n}
\end{array}\right] V^{-1}=V\left[\begin{array}{cc}
5^{n} & 0 \\
0 & 0
\end{array}\right] V^{-1}+V\left[\begin{array}{ll}
0 & 0 \\
0 & 6^{n}
\end{array}\right] V^{-1} \\
V\left[\begin{array}{cc}
5^{n} & 0 \\
0 & 0
\end{array}\right] V^{-1} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
5^{n} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
-2 & 1 \\
1.5 & -.5
\end{array}\right]=\left[\begin{array}{ll}
(1)\left(55^{n}\right)(-2) & (1)\left(5^{n}\right)(1) \\
(3)\left(5^{n}\right)(-2) & (3)\left(5^{n}\right)(1)
\end{array}\right] \\
& =5^{n}\left[\begin{array}{l}
1 \\
3
\end{array}\right]\left[\begin{array}{ll}
-2 & 1
\end{array}\right]=\lambda_{1}{ }^{n} \vec{r}_{1} \vec{\ell}_{1}=5^{n}\left[\begin{array}{ll}
-2 & 1 \\
-6 & 3
\end{array}\right] \\
V\left[\begin{array}{ll}
0 & 0 \\
0 & 6^{n}
\end{array}\right] V^{-1} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & 6^{n}
\end{array}\right]\left[\begin{array}{cc}
-2 & 1 \\
1.5 & -.5
\end{array}\right]=\left[\begin{array}{ll}
2\left(6^{n}\right)(1.5) & 2\left(6^{n}\right)(-.5) \\
4\left(6^{n}\right)(1.5) & 4\left(6^{n}\right)(-.5)
\end{array}\right] \\
& =6^{n}\left[\begin{array}{l}
2 \\
4
\end{array}\right]\left[\begin{array}{ll}
1.5 & -.5
\end{array}\right]=\lambda_{2}{ }^{{ }^{2}} \vec{r}_{2} \vec{\ell}_{2}=6^{n}\left[\begin{array}{ll}
3 & -1 \\
6 & -2
\end{array}\right]
\end{aligned}
$$

Matrix powers using the spectral decomposition

- Continue computing P^{n} :

$$
\begin{aligned}
P^{n} & =V D^{n} V^{-1}=V\left[\begin{array}{cc}
5^{n} & 0 \\
0 & 6^{n}
\end{array}\right] V^{-1}=V\left[\begin{array}{cc}
5^{n} & 0 \\
0 & 0
\end{array}\right] V^{-1}+V\left[\begin{array}{ll}
0 & 0 \\
0 & 6^{n}
\end{array}\right] V^{-1} \\
& =5^{n}\left[\begin{array}{ll}
-2 & 1 \\
-6 & 3
\end{array}\right]+6^{n}\left[\begin{array}{ll}
3 & -1 \\
6 & -2
\end{array}\right]
\end{aligned}
$$

- General formula (with $k=2$ and two distinct eigenvalues):

$$
P^{n}=V D^{n} V^{-1}=\lambda_{1}^{n} \vec{r}_{1} \vec{\ell}_{1}+\lambda_{2}^{n} \vec{r}_{2} \vec{\ell}_{2}
$$

- General formula: If P is $k \times k$ and is diagonalizable, this becomes:

$$
P^{n}=V D^{n} V^{-1}=\lambda_{1}^{n} \vec{r}_{1} \vec{\ell}_{1}+\lambda_{2}^{n} \vec{r}_{2} \vec{\ell}_{2}+\cdots+\lambda_{k}^{n} \vec{r}_{k} \vec{\ell}_{k}
$$

- What if the matrix is not diagonalizable?

We will see a generalization called the Jordan Canonical Form.

