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Also see the separate version of this with Matlab and R commands.
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Matrices

A matrix is a square or rectangular table of numbers.

An m× n matrix has m rows and n columns. This is read “m by n”.

This matrix is 2× 3:

A =

[
1 2 3
4 5 6

]
The entry in row i, column j, is denoted Ai, j or Aij.

A1,1 = 1 A1,2 = 2 A1,3 = 3

A2,1 = 4 A2,2 = 5 A2,3 = 6
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Matrix multiplication

A B = C

[
1 2 3
4 5 6

]
︸         ︷︷         ︸

2×3

 5 −2 3 2
0 1 1 −1
−1 6 4 3


︸                     ︷︷                     ︸

3×4

=

[
· · · ·
· · · ·

]
︸          ︷︷          ︸

2×4

Let A be p× q and B be q× r.

The product AB = C is a certain p× r matrix of dot products:

Ci, j =

q∑
k=1

Ai,k Bk, j = dot product (ith row of A) · (jth column of B)

The number of columns in A must equal the number of rows in B
(namely q) in order to be able to compute the dot products.
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Matrix multiplication

[
1 2 3
4 5 6

] 5 −2 3 2
0 1 1 −1
−1 6 4 3

 =

[
2 · · ·
· · · ·

]

C1,1 = 1(5) + 2(0) + 3(−1) = 5 + 0 − 3 = 2
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Matrix multiplication

[
1 2 3
4 5 6

] 5 −2 3 2
0 1 1 −1
−1 6 4 3

 =

[
2 18 · ·
· · · ·

]

C1,2 = 1(−2) + 2(1) + 3(6) = −2 + 2 + 18 = 18
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Matrix multiplication

[
1 2 3
4 5 6

] 5 −2 3 2
0 1 1 −1
−1 6 4 3

 =

[
2 18 17 ·
· · · ·

]

C1,3 = 1(3) + 2(1) + 3(4) = 3 + 2 + 12 = 17

Prof. Tesler Diagonalizing a matrix Math 283 / Fall 2018 6 / 35



Matrix multiplication

[
1 2 3
4 5 6

] 5 −2 3 2
0 1 1 −1
−1 6 4 3

 =

[
2 18 17 9
· · · ·

]

C1,4 = 1(2) + 2(−1) + 3(3) = 2 − 2 + 9 = 9
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Matrix multiplication

[
1 2 3
4 5 6

] 5 −2 3 2
0 1 1 −1
−1 6 4 3

 =

[
2 18 17 9
14 · · ·

]

C2,1 = 4(5) + 5(0) + 6(−1) = 20 + 0 − 6 = 14
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Matrix multiplication

[
1 2 3
4 5 6

] 5 −2 3 2
0 1 1 −1
−1 6 4 3

 =

[
2 18 17 9
14 33 · ·

]

C2,2 = 4(−2) + 5(1) + 6(6) = −8 + 5 + 36 = 33
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Matrix multiplication

[
1 2 3
4 5 6

] 5 −2 3 2
0 1 1 −1
−1 6 4 3

 =

[
2 18 17 9
14 33 41 ·

]

C2,3 = 4(3) + 5(1) + 6(4) = 12 + 5 + 24 = 41
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Matrix multiplication

[
1 2 3
4 5 6

] 5 −2 3 2
0 1 1 −1
−1 6 4 3

 =

[
2 18 17 9
14 33 41 21

]

C2,4 = 4(2) + 5(−1) + 6(3) = 8 − 5 + 18 = 21
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Transpose of a matrix

Given matrix A of dimensions p× q, the transpose A ′ is q× p,
obtained by interchanging rows and columns: (A ′)ij = Aji.

[
1 2 3
4 5 6

] ′
=

1 4
2 5
3 6


Transpose of a product reverses the order and transposes the
factors: (AB) ′ = B ′ A ′

[
1 2 3
4 5 6

] 5 −2 3 2
0 1 1 −1
−1 6 4 3

 =

[
2 18 17 9
14 33 41 21

]


5 0 1
−2 1 6
3 1 4
2 −1 3


1 4

2 5
3 6

 =


2 14

18 33
17 41
9 21
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Matrix multiplication is not commutative: usually, AB , BA

For both AB and BA to be defined, need compatible dimensions:
A: m× n, B: n× m

giving
AB: m× m, BA: n× n

The only chance for them to be equal would be if A and B are both
square and of the same size, n× n.
Even then, they are usually not equal:[

1 2
0 0

] [
3 0
0 0

]
=

[
3 0
0 0

]
[

3 0
0 0

] [
1 2
0 0

]
=

[
3 6
0 0

]
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Multiplying several matricies

Multiplication is associative: (AB)C = A(BC)

Suppose A is p1 × p2
B is p2 × p3
C is p3 × p4
D is p4 × p5

Then ABCD is p1 × p5. By associativity, it may be computed in
many ways, such as A(B(CD)), (AB)(CD), . . . or directly by:

(ABCD)i, j =

p2∑
k2=1

p3∑
k3=1

p4∑
k4=1

Ai, k2 Bk2, k3 Ck3, k4 Dk4, j

This generalizes to any number of matrices.
Powers A2 = AA, A3 = AAA, . . . are defined for square matrices.
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Identity matrix

The n× n identity matrix I is

I =

1 0 0
0 1 0
0 0 1

 Ii, j =

{
1 if i = j (main diagonal);
0 if i , j (elsewhere).

For any n× n matrix A,

IA = AI = A.

This plays the same role as 1 does in multiplication of numbers:

1 · x = x · 1 = x.
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Inverse matrix

The inverse of an n× n matrix A is an n× n matrix A−1 such that
A A−1 = I and A−1 A = I. It may or may not exist. This plays the
role of reciprocals of ordinary numbers, x−1 = 1/x.

For 2× 2 matrices

A =

[
a b
c d

]
A−1 =

1
ad − bc

[
d −b
−c a

]
unless det(A) = ad − bc = 0, in which case A−1 is undefined.

For n× n matrices, use the row reduction algorithm (a.k.a.
Gaussian elimination) in Linear Algebra.

If A, B are invertible and the same size: (AB)−1 = B−1A−1

The order is reversed and the factors are inverted.
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Span, basis, and linear (in)dependence

The span of vectors ~v1, . . . ,~vk is the set of all linear combinations

α1~v1 + · · ·+ αk~vk α1, . . . ,αk ∈ R
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Span, basis, and linear (in)dependence

Example 1
In 3D,

span


1

0
0

 ,

0
0
1

 =


x

0
z

 : x, z ∈ R

 = xz plane

Here, the span of these two vectors is a 2-dimensional space.
Every vector in it is generated by a unique linear combination.
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Span, basis, and linear (in)dependence

Example 2
In 3D,

span


1

0
0

 ,

1
1
0

 ,

 0
0

−1/2

 =


x

y
z

 : x, y, z ∈ R

 = R3.

Note that x
y
z

 = (x − y)

1
0
0

+ y

1
1
0

− 2z

 0
0

−1/2


Here, the span of these three vectors is a 3-dimensional space.
Every vector in R3 is generated by a unique linear combination.
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Span, basis, and linear (in)dependence

Example 3
In 3D,

span


1

0
0

 ,

1
0
1

 ,

0
0
1

 =


x

0
z

 : x, z ∈ R

 = xz plane

This is a plane (2D), even though it’s a span of three vectors.
Note that ~v2 = ~v1 +~v3, or ~v1 −~v2 +~v3 = ~0.
There are multiple ways to generate each vector in the span:
for all x, z, t,x

0
z

 = x

1
0
0

+ z

0
0
1

+ t (~v1−~v2+~v3)︸           ︷︷           ︸
=~0

= (x + t)

1
0
0

− t

1
0
1

+ (z + t)

0
0
1
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Span, basis, and linear (in)dependence

Given vectors ~v1, . . . ,~vk, if there is a linear combination

α1~v1 + · · ·+ αk~vk = ~0

with at least one αi , 0, the vectors are linearly dependent (Ex. 3).
Otherwise they are linearly independent (Ex. 1–2).

Linearly independent vectors form a basis of the space S they span.
Any vector in S is a unique linear combination of basis vectors
(vs. it’s not unique if ~v1, . . . ,~vk are linearly dependent).

One basis of Rn is a unit vector on each axis:

[
1
0
0

]
,

[
0
1
0

]
,

[
0
0
1

]

but there are other possibilities, e.g., Example 2:

[
1
0
0

]
,

[
1
1
0

]
,

[
0
0

−1/2

]
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Eigenvectors

Eigenvalues and eigenvectors

Let A be a square matrix (k × k) and ~v , ~0 be a column vector (k × 1).
If A~v = λ~v for a scalar λ, then ~v is an eigenvector of A with eigenvalue λ.

Example [
8 −1
6 3

] [
1
3

]
=

[
(8)(1) + (−1)(3)
(6)(1) + (3)(3)

]
=

[
5
15

]
= 5

[
1
3

]
[

1
3

]
is an eigenvector with eigenvalue 5.

But this is just a verification. How do we find eigenvalues and eigenvectors?
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Finding eigenvalues and eigenvectors

We will work with the example

P =

[
8 −1
6 3

]
Form the identity matrix of the same dimensions:

I =
[

1 0
0 1

]
The formula for the determinant depends on the dimensions of the
matrix. For a 2× 2 matrix,

det
[

a b
c d

]
= ad − bc
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Finding eigenvalues and eigenvectors

Compute the determinant of P − λI:

det(P − λI) = det
[

8 − λ −1
6 3 − λ

]
= (8 − λ)(3 − λ) − (−1)(6)

= 24 − 11λ+ λ2 + 6

= λ2 − 11λ+ 30

This is the characteristic polynomial of P. It has degree k in λ.

The characteristic equation is det(P − λI) = 0. Solve it for λ.
For k = 2, use the quadratic formula:

λ =
11±

√
(−11)2 − 4(1)(30)

2
= 5, 6

The eigenvalues are λ = 5 and λ = 6.
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Finding the (right) eigenvector for λ = 5

Let ~v =

[
a
b

]
. We will solve for a, b.

The equation P~v = λ~v is equivalent to (P − λI)~v = ~0.[
0
0

]
= (P − 5I)~v =

[
3 −1
6 −2

] [
a
b

]
=

[
3a − b
6a − 2b

]
so 3a − b = 0 and 6a − 2b = 0 (which are equivalent).
Solving gives b = 3a. Thus,

~v =

[
a
b

]
=

[
a

3a

]
= a

[
1
3

]

Any nonzero scalar multiple of
[

1
3

]
is an eigenvector of P with

eigenvalue 5.
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Finding the (right) eigenvector for λ = 6

Let ~v =

[
a
b

]
. We will solve for a, b.

The equation P~v = λ~v is equivalent to (P − λI)~v = ~0.[
0
0

]
= (P − 6I)~v =

[
2 −1
6 −3

] [
a
b

]
=

[
2a − b
6a − 3b

]
so 2a − b = 0 and 6a − 3b = 0 (which are equivalent).
Solving gives b = 2a. Thus,

~v =

[
a
b

]
=

[
a

2a

]
= a

[
1
2

]

Any nonzero scalar multiple of
[

1
2

]
is an eigenvector of P with

eigenvalue 6.
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Verify the eigenvectors

[
8 −1
6 3

] [
1
3

]
=

[
8(1) − 1(3)
6(1) + 3(3)

]
=

[
5
15

]
= 5

[
1
3

]
[

8 −1
6 3

] [
2
4

]
=

[
8(2) − 1(4)
6(2) + 3(4)

]
=

[
12
24

]
= 6

[
2
4

]
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Normalization: Which scalar multiple should we use?
In some applications, any nonzero multiple is fine.
In others, a particular scaling is required.

Markov chains / Stochastic matrices
Entries are probabilities of different cases. Scale the vector so that the
entries sum up to 1.

For ~v = a
[

1
3

]
, the sum is a · (1 + 3) = 4a = 1, so a = 1

4 : ~v =

[
1/4
3/4

]
Principal component analysis
Scale it to be a unit vector, so that the sum of the squares of its entries
equals 1:

1 = a2(12 + 32) = 10a2 so a =
±1√

12 + 32
=
±1√

10
.

~v = ±
[

1/
√

10
3/
√

10

]
(two possibilities)
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Finding the left eigenvector for λ = 5

Let ~v =
[
a b

]
. We will solve for a, b.

The equation ~vP = λ~v is equivalent to ~v(P − λI) = ~0.

[
0 0

]
= ~v(P − 5I) =

[
a b

] [3 −1
6 −2

]
=
[
3a + 6b −a − 2b

]
so 3a + 6b = 0 and −a − 2b = 0 (which are equivalent).
Solving gives b = −a/2. Thus,

~v =
[
a b

]
=
[
a −a/2

]
= a

[
1 −1/2

]
Any nonzero scalar multiple of

[
1 −1/2

]
is a left eigenvector of P

with eigenvalue 5.
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Finding the left eigenvector for λ = 6

Let ~v =
[
a b

]
. We will solve for a, b.

The equation ~vP = λ~v is equivalent to ~v(P − λI) = ~0.

[
0 0

]
= ~v(P − 6I) =

[
a b

] [2 −1
6 −3

]
=
[
2a + 6b −a − 3b

]
so 2a + 6b = 0 and −a − 3b = 0 (which are equivalent).
Solving gives b = −a/3. Thus,

~v =
[
a b

]
=
[
a −a/3

]
= a

[
1 −1/3

]
Any nonzero scalar multiple of

[
1 −1/3

]
is a left eigenvector of P

with eigenvalue 6.
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Verify the left eigenvectors

[
−2 1

] [8 −1
6 3

]
=
[
−2(8) + 1(6) −2(−1) + 1(3)

]
=
[
−10 5

]
= 5

[
−2 1

]
[
1.5 −.5

] [8 −1
6 3

]
=
[
1.5(8) − .5(6) 1.5(−1) − .5(3)

]
=
[
9 −3

]
= 6

[
1.5 −.5

]
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Diagonalizing a matrix

This procedure assumes there are k linearly independent
eigenvectors, where P is k × k.

If the characteristic polynomial has k distinct roots, then there are
k such eigenvectors.

But if roots are repeated, there may or may not be a full set of
eigenvectors. We’ll explore this complication later.
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Diagonalizing a matrix

Put the right eigenvectors ~r1,~r2, . . . into the columns of a matrix V.
Form diagonal matrix D with eigenvalues λ1, λ2, . . . in the same
order:

V =
[
~r1 | ~r2

]
=

[
1 2
3 4

]
D =

[
λ1 0
0 λ2

]
=

[
5 0
0 6

]

Compute V−1 =

[
~̀1

~̀2

]
=

[
−2 1
3/2 −1/2

]
Its rows are the left eigenvectors ~̀1,~̀2, . . . of P, in the same order
as the eigenvalues in D, scaled so that ~̀i ·~ri = 1.

This gives the diagonalization P = VDV−1:

P = V D V−1[
8 −1
6 3

]
=

[
1 2
3 4

] [
5 0
0 6

] [
−2 1
3/2 −1/2

]
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Matrix powers using the spectral decomposition

An expansion of Pn is Pn = (VDV−1)(VDV−1) · · · (VDV−1) = VDnV−1:

Pn = VDnV−1 = V
[

5n 0
0 6n

]
V−1 = V

[
5n 0
0 0

]
V−1 + V

[
0 0
0 6n

]
V−1

V
[

5n 0
0 0

]
V−1 =

[
1 2
3 4

][
5n 0
0 0

][
−2 1
1.5 −.5

]
=

[
(1)(5n)(−2) (1)(5n)(1)
(3)(5n)(−2) (3)(5n)(1)

]
= 5n

[
1
3

] [
−2 1

]
= λ1

n~r1 ~̀1 = 5n
[
−2 1
−6 3

]

V
[

0 0
0 6n

]
V−1 =

[
1 2
3 4

] [
0 0
0 6n

] [
−2 1
1.5 −.5

]
=

[
2(6n)(1.5) 2(6n)(−.5)
4(6n)(1.5) 4(6n)(−.5)

]
= 6n

[
2
4

] [
1.5 −.5

]
= λ2

n~r2 ~̀2 = 6n
[

3 −1
6 −2

]
Prof. Tesler Diagonalizing a matrix Math 283 / Fall 2018 34 / 35



Matrix powers using the spectral decomposition

Continue computing Pn:

Pn = VDnV−1 = V
[

5n 0
0 6n

]
V−1 = V

[
5n 0
0 0

]
V−1 + V

[
0 0
0 6n

]
V−1

= 5n
[
−2 1
−6 3

]
+ 6n

[
3 −1
6 −2

]
General formula (with k = 2 and two distinct eigenvalues):

Pn = VDnV−1 = λ1
n~r1 ~̀1 + λ2

n~r2 ~̀2

General formula: If P is k× k and is diagonalizable, this becomes:

Pn = VDnV−1 = λ1
n~r1 ~̀1 + λ2

n~r2 ~̀2 + · · ·+ λk
n~rk ~̀k

What if the matrix is not diagonalizable?
We will see a generalization called the Jordan Canonical Form.
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