The number of occurrences of a word (5.7) and motif (5.9) in a DNA sequence, allowing overlaps Covariance (2.4) and indicators (2.9)

Prof. Tesler

Math 283 Fall 2016

Covariance

• Let *X* and *Y* be random variables, possibly dependent.

•
$$\operatorname{Var}(X + Y) = E((X + Y - \mu_X - \mu_Y)^2)$$

= $E\left(\left((X - \mu_X) + (Y - \mu_Y)\right)^2\right)$
= $E\left((X - \mu_X)^2\right) + E\left((Y - \mu_Y)^2\right) + 2E\left((X - \mu_X)(Y - \mu_Y)\right)$
= $\operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y)$

where the *covariance* of *X* and *Y* is defined as

$$\operatorname{Cov}(X, Y) = E\left((X - \mu_X)(Y - \mu_Y)\right)$$

• Expanding gives an alternate formula Cov(X, Y) = E(XY) - E(X)E(Y): $Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$ $= E(XY) - \mu_X E(Y) - \mu_Y E(X) + \mu_X \mu_Y = E(XY) - E(X)E(Y)$

Covariance properties

- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$
- If X, Y are independent then Cov(X, Y) = 0 and Var(X + Y) = Var(X) + Var(Y).

Beware, this is not reversible; Cov(X, Y) could be 0 for dependent variables.

•
$$\operatorname{Cov}(aX + b, cY + d) = ac \operatorname{Cov}(X, Y)$$

• $\operatorname{Var}(X_1 + X_2 + \dots + X_n) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n) + 2\sum_{1 \leq i < j \leq n} \operatorname{Cov}(X_i, X_j)$

Sign of covariance

- When Cov(X, Y) is positive: there is a tendency to have $X > \mu_X$ when $Y > \mu_Y$ and vice-versa, and $X < \mu_X$ when $Y < \mu_Y$ and vice-versa.
- When Cov(X, Y) is negative: there is a tendency to have $X > \mu_X$ when $Y < \mu_Y$ and vice-versa, and $X < \mu_X$ when $Y > \mu_Y$ and vice-versa.

Occurrences of a word in a sequence — notation

• Consider a (long) single-stranded nucleotide sequence $\tau = \tau_1 \dots \tau_N$ and a (short) word $w = w_1 \dots w_k$:

 $\tau = \tau_1 \dots \tau_{19} = CTATAGATAGATAGACAGT$ $w = w_1 \dots w_9 = ATAGATAGA$

• Say *w* occurs in τ at position *j* when *w* is in τ ending at position *j*:

so *w* occurs in τ at 11 and 15 (underlined).

• Let
$$I_j = \begin{cases} 1 & \text{if } w \text{ occurs in } \tau \text{ at } j; \\ 0 & \text{otherwise.} \end{cases}$$
 $I_{11} = I_{15} = 1$
 $I_j \text{ is an indicator variable (1 when a condition is true, 0 when false).}$

• $Y = I_k + I_{k+1} + \cdots + I_N$ is the number of times *w* occurs in τ . Here, Y = 2.

Computing mean number of occurrences $\mu = E(Y)$

- Suppose τ is generated by N independent rolls of a 4-sided die, whose sides have probabilities p_A, p_C, p_G, p_T adding up to 1.
- The probability of a word being generated by rolling such a die is the product of the probabilities of its nucleotides:

 $\pi(w) = p_{w_1} \cdots p_{w_k} \qquad \qquad \pi(\texttt{ATAGATAGA}) = p_A^5 p_T^2 p_G^2$

- The probability of w occurring at j = k, k + 1, ..., N is $\pi(w)$.
- I_j 's are indicator variables, so $E(I_j) = 0P(I_j = 0) + 1P(I_j = 1) = P(I_j = 1) = \pi(w)$ for j = k, k + 1, ..., N.
- $Y = I_k + I_{k+1} + \dots + I_N$ so the mean number of occurrences is $\mu = E(Y) = E(I_k) + \dots + E(I_N) = (N - k + 1) \pi(w).$

Dependencies between positions

- Occurrences at different positions have dependencies, because of how shifts of w may overlap with each other.
- w = ATAGATAGA cannot occur at both 14 and 15:

• But *w* can occur at both 11 and 15.

This is equivalent to

 $w_1 \dots w_k w_{r+1} \dots w_k = w_1 \dots w_9 w_6 \dots w_9 = \text{ATAGATAGATAGA}$

occurring at 15, where k = 9 is the word length and r = 5 is the overlap length.

Chapter 5.8 considers counting occurrences without overlaps.
 Chapters 4 and 11 do the more general problem of Markov chains.

Self-overlaps of a word

Define

- $\varepsilon_r = \begin{cases} 1 & \text{if the first } r \text{ letters of } w \text{ equal the last } r \text{ letters} \\ \text{of } w \text{ in the exact same order (string equality);} \\ 0 & \text{otherwise.} \end{cases}$
- This lets us account for dependencies between I_j and I_{j+k-r} . Shifting by k - r positions corresponds to an overlap of size r.

	<i>w</i> :	А	Т	А	G	А	Т	А	G	А				-				
<i>r</i> = 9	$\varepsilon_9 = 1$	A	Т	Α	G	Α	Т	Α	G	Α								
r = 8	$\varepsilon_8 = 0$		А	Т	А	G	А	Т	А	G	А							
r = 7	$\varepsilon_7 = 0$			А	Т	А	G	А	Т	А	G	А						
r = 6	$\varepsilon_6 = 0$				Α	Т	А	G	А	Т	Α	G	А					
r = 5	$\varepsilon_5 = 1$					A	Т	A	G	Α	Т	А	G	А				
r = 4	$\varepsilon_4 = 0$						А	Т	А	G	А	Т	А	G	А			
r = 3	$\varepsilon_3 = 0$							А	Т	А	G	А	Т	А	G	А		
r = 2	$\varepsilon_2 = 0$								А	Т	А	G	А	Т	А	G	А	
r = 1	$\varepsilon_1 = 1$									A	Т	А	G	А	Τ	А	G	А

Computing $\sigma^2 = \operatorname{Var}(Y)$

• Since the I_j 's have dependencies, the variance of their sum $Y = I_k + \cdots + I_N$ is NOT necessarily the sum of their variances. We must consider covariance terms as well:

$$\operatorname{Var}(Y) = \sum_{j=k}^{N} \operatorname{Var}(I_j) + \sum_{j,\ell: k \leq j < \ell \leq N} \operatorname{Cov}(I_j, I_\ell)$$

• **First sum:** Note that $I_j^2 = I_j$ since $I_j = 0$ or 1, so $Var(I_j) = E(I_j^2) - (E(I_j))^2 = \pi(w) - \pi(w)^2$

and the first sum in Var(Y) is

$$\sum_{j=k}^{N} \operatorname{Var}(I_{j}) = (N - k + 1)(\pi(w) - \pi(w)^{2})$$

• Second sum: next few slides.

Covariances $2\sum_{j,\ell: k \leq j < \ell \leq N} \operatorname{Cov}(I_j, I_\ell)$

The covariances sum is complicated:

- If $\ell j \ge k$ then I_j , I_ℓ are independent and $Cov(I_j, I_\ell) = 0$.
- If $0 < \ell j < k$, the words ending at ℓ and j overlap by $r = k - (\ell - j)$ letters. Rewrite ℓ as $\ell = j + k - r$: $\operatorname{Cov}(I_j, I_\ell) = \operatorname{Cov}(I_j, I_{j+k-r}) = E(I_j I_{j+k-r}) - E(I_j)E(I_{j+k-r})$
- $I_j I_{j+k-r} = 1$ iff $w_1 \dots w_k w_{r+1} \dots w_k$ occurs at position j + k r in τ . E.g., $w_1 \dots w_k w_{r+1} \dots w_k = w_1 \dots w_9 w_6 \dots w_9 = ATAGATAGA$.
- $E(I_j I_{j+k-r}) = \varepsilon_r \cdot \pi(w_1 \dots w_k w_{r+1} \dots w_k).$

•
$$\operatorname{Cov}(I_j, I_{j+k-r}) = E(I_j I_{j+k-r}) - E(I_j)E(I_{j+k-r})$$
$$= \varepsilon_r \cdot \pi(w_1 \dots w_k w_{r+1} \dots w_k) - (\pi(w))^2.$$

Note that this depends on r but not j.

Covariances $2\sum_{j,\ell: k \leq j < \ell \leq N} \operatorname{Cov}(I_j, I_\ell)$

The covariance sum becomes

$$\sum_{j,\ell:} \operatorname{Cov}(I_j, I_\ell) = \sum_{r=1}^{k-1} \sum_{j=k}^{N-k+r} \left(\varepsilon_r \cdot \pi(w_1 \dots w_k w_{r+1} \dots w_k) - (\pi(w))^2 \right)$$

=
$$\sum_{r=1}^{k-1} (N - 2k + r + 1) \left(\varepsilon_r \cdot \pi(w_1 \dots w_k w_{r+1} \dots w_k) - (\pi(w))^2 \right)$$

=
$$\left(\sum_{r=1}^{k-1} \varepsilon_r \cdot (N - 2k + r + 1) \pi(w_1 \dots w_k w_{r+1} \dots w_k) \right)$$

$$- \left(\frac{((N - 2k + 2) + (N - k))(k - 1)}{2} (\pi(w))^2 \right)$$

Mean and variance of number of occurrences

Combining all the parts together and simplifying gives

Mean number of occurrences

$$E(Y) = (N-k+1)E(I_k) = (N-k+1)\pi(w)$$

Variance of number of occurrences

$$\operatorname{Var}(Y) = (N - k + 1)\pi(w) - ((2k - 1)N - 3k^{2} + 4k - 1)(\pi(w))^{2} + 2\sum_{r=1}^{k-1} \varepsilon_{r} \cdot (N - 2k + r + 1)\pi(w_{1} \dots w_{k}w_{r+1} \dots w_{k})$$

Computation for $w = w_1 \dots w_9 = \text{ATAGATAGA} (k = 9)$ over all τ of length N

$$\pi(w) = p_A^5 p_T^2 p_G^2 \quad \text{and } w \text{ self-overlaps at } r = 1,5$$

$$E(Y) = (N - k + 1)\pi(w) = (N - 8)\pi(w) = (N - 8)p_A^5 p_T^2 p_G^2$$

$$Var(Y) = (N - k + 1)\pi(w) - ((2k - 1)N - 3k^2 + 4k - 1) (\pi(w))^2$$

$$+ 2\sum_{r=1}^{k-1} \varepsilon_r \cdot (N - 2k + r + 1)\pi(w_1 \dots w_k w_{r+1} \dots w_k)$$

$$= (N - 8)\pi(w) - (17N - 208)(\pi(w))^2$$

$$+ 2(N - 16)\pi(\text{ATAGATAGATAGA})$$

$$+ 2(N - 12)\pi(\text{ATAGATAGATAGA})$$

$$= (N - 8)p_A^5 p_T^2 p_G^2 - (17N - 208)p_A^{10} p_T^4 p_G^4$$

$$+ 2(N - 2k + 2)p_A^9 p_G^4 p_T^4 + 2(N - 2k + 6)p_A^7 p_G^3 p_T^3$$

Frequencies of words and motifs in SARS

• The genome of SARS described previously has N = 29751 bases:

	Nucleotide	Frequency	Proportion
-	А	8481	$p_A \approx 0.2851$
	С	5940	$p_C \approx 0.1997$
	G	6187	$p_G \approx 0.2080$
	Т	9143	$p_T \approx 0.3073$
-	Total	N = 29751	1

• These were used below to compute "Estimated" μ and σ .

• "Observed frequency" y was determined from the DNA sequence.

Word	Estim	ated	Ob			
	μ	σ	y = Freq.	$z = (y - \mu)/\sigma$	$\Phi(z)$	
GAGA	104.5456	10.6943	106	0.1360	0.5541	
GCGA	73.2226	8.4830	37	-4.2700	10^{-5}	
TGCG	78.9381		59	-2.2652	0.0118	
motif M	256.7064	17.6583	202	-3.0980	10^{-3}	

(*M* consists of all three words; details on computing μ , σ are later.)

Hypothesis tests on frequencies in SARS

- We have not determined the complete distribution of Y.
 We will assume it is approximately normal with mean and standard deviation as computed above.
- That lets us compute Z and use it as a test statistic to see if the observed frequencies are consistent with a "random" sequence.

Three possible hypothesis tests

Null Hypothesis H_0 : The genome sequence is generated by independent rolls of a 4-sided die with probabilities for each letter p_A, \ldots, p_T as given previously.

vs. one of three alternative hypotheses:

 H_1 : The word w (or motif M) is over-represented.

- H_2 : The word w (or motif M) is under-represented.
- H_3 : The word w (or motif M) is over- or under-represented.

Hypothesis tests (at significance level $\alpha = 5\%$)

Word	Estim	ated	Ob		
	μ	σ	y = Freq.	$z = (y - \mu)/\sigma$	$\Phi(z)$
GAGA	104.5456	10.6943	106	0.1360	0.5541
GCGA	73.2226	8.4830	37	-4.2700	10^{-5}
TGCG	78.9381	8.8018	59	-2.2652	0.0118
motif M	256.7064	17.6583	202	-3.0980	10^{-3}

- H_0 vs. H_1 (over-represented). Reject H_0 if Z is too big: $\Phi(Z) \ge 0.95$, so $Z \ge 1.6449$. In all the cases shown, we accept H_0 (a.k.a. "insufficient evidence to reject H_0 ").
- H_0 vs. H_2 (under-represented). Reject H_0 if Z is too small: $\Phi(Z) \leq 0.05$, so $Z \leq -1.6449$. By this test, GAGA is not under-represented, but each of GCGA, TGCG, and motif M, are considered to be under-represented.
- H_0 vs. H_3 (under or over). Reject H_0 if Z is too far away from 0: $\Phi(Z) \leq 0.025$ (so $Z \leq -1.96$) or $\Phi(Z) \geq 0.975$ (so $Z \geq 1.96$). We accept H_3 for GCGA, for TGCG, and for M, and accept H_0 for GAGA.

Prof. Tesler

occurrences of a word

Math 283 / Fall 2016 16 / 24

Same tests using *P*-values (at sig. level $\alpha = 5\%$)

• TGCG has $P(Z \leq -2.2652) = \Phi(-2.2652) = 0.0118$.

```
• H_0 vs. H_1 (over-represented?):

P = P(Z \ge -2.2652) = 1 - 0.0118 = 0.9881

Since P > \alpha, we accept H_0 (TGCG is not over-represented).

• H_0 vs. H_2 (under-represented?):

P = P(Z \le -2.2652) = 0.0118.

Since P \le \alpha, we accept H_2 (TGCG is under-represented).
```

• H_0 vs. H_3 (either of over or under?): $P = P(|Z| \ge 2.2652) = 2(0.0118) = 0.0236.$ Since $P \le \alpha$, we accept H_3 (TGCG is over- or under-represented).

P-values let us check any α easily.
 At α = 1%, all three tests accept H₀.
 At α = 2%, H₂ says it's under-represented but H₃ does not.

occurrences of a word

Motifs

- A *motif* is a set *M* of words that don't contain each other. Usually the words are very similar and have similar lengths.
- Suppose *M* has *m* words, all with length *k*:

$$M = \left\{ w^{(1)}, \ldots, w^{(m)} \right\}.$$

• We'll work with an example of m = 3 words, each with k = 4 letters:

$$M = ig\{ \mathtt{GAGA}, \mathtt{TGCG}, \mathtt{GCGA} ig\}$$
 .

 When words of length k are generated at random by a 4-sided die, the total probability of the words in M is

$$\pi(M) = \pi(w^{(1)}) + \dots + \pi(w^{(m)})$$

which is $p_A^2 p_G^2 + p_C p_G^2 p_t + p_A p_C p_G^2$ in this example.

Number of occurrences of a motif

 M occurs at position j in a nucleotide sequence τ if any of its words occurs (i.e., ends) there.

• Let
$$I_j = \begin{cases} 1 & \text{if } M \text{ occurs in } \tau \text{ at } j; \\ 0 & \text{otherwise.} \end{cases}$$

• The number of occurrences of *M* in τ is $Y = I_k + \cdots + I_N$.

• Note that
$$E(I_j) = \pi(M)$$
 and

$$E(Y) = (N - k + 1) \pi(M)$$

by the same argument as for one word before. For motifs of length k = 4, this becomes $E(Y) = (N - 3)\pi(M)$.

In the variance formula, π(w) is replaced by π(M) as well, and we must recompute Cov(I_j, I_{j+k-r}) to take into account overlaps between any two words of M.

Overlaps between words in a motif

- If the first *r* letters of $w^{(u)}$ equal the last *r* letters of $w^{(v)}$ (r = 1, ..., k 1):
 - Set $\varepsilon_r(u, v) = 1$;
 - let $w_r(u, v)$ be $w^{(v)}$ followed by $w^{(u)}$ but overlapped on the *r* letters;
 - let $\pi_r(u, v) = \pi(w_r(u, v))$.

Otherwise, set $\varepsilon_r(u, v) = \pi_r(u, v) = 0$.

• For words $w^{(3)} = GCGA$ and $w^{(2)} = TGCG$, the overlaps are

(r = 4 is shown, although we only need to go up to r = k - 1 = 3.)

Overlap between words in a motif

$\varepsilon_r(u,v)$	v = 1	v = 2	<i>v</i> = 3
$w_r(u,v)$	$w^{(1)} = \text{GAGA}$	$w^{(2)} = \mathtt{TGCG}$	$w^{(3)} = \text{GCGA}$
u = 1	$\varepsilon_1(1,1) = 0$	$\epsilon_1(1,2) = 1$	$\varepsilon_1(1,3)=0$
$w^{(1)} = \text{GAGA}$		TGC <mark>G</mark> AGA	
	$\varepsilon_2(1,1) = 1$	$\varepsilon_2(1,2)=0$	$\varepsilon_2(1,3) = 1$
	GA <i>GA</i> GA		GC GA GA
	$\varepsilon_3(1,1)=0$	$\varepsilon_3(1,2)=0$	$\varepsilon_3(1,3)=0$
u=2	$\varepsilon_1(2,1) = 0$	$\varepsilon_1(2,2)=0$	$\varepsilon_1(2,3) = 0$
$w^{(2)} = \text{TGCG}$	$\varepsilon_2(2,1)=0$	$\varepsilon_2(2,2)=0$	$\varepsilon_2(2,3)=0$
	$\varepsilon_3(2,1)=0$	$\varepsilon_3(2,2)=0$	$\varepsilon_3(2,3)=0$
u = 3	$\varepsilon_1(3,1)=0$	$\epsilon_1(3,2) = 1$	$\varepsilon_1(3,3)=0$
$w^{(3)} = GCGA$		TGC <mark>G</mark> CGA	
	$\varepsilon_2(3,1)=0$	$\varepsilon_2(3,2)=0$	$\varepsilon_2(3,3)=0$
	$\varepsilon_3(3,1)=0$	$\epsilon_{3}(3,2) = 1$	$\varepsilon_3(3,3)=0$
		T GCG A	

Dependence between positions

- $I_j I_{j+k-r} = 1$ if there are overlapping words ($\varepsilon_r(u, v) = 1$ for some u, v) whose combination word $w_r(u, v)$ occurs in τ at j + k r.
- *I_jI_{j+k-r}* = 0 if nothing of that form occurs at *j* + *k* − *r*.
 So

$$E(I_{j}I_{j+k-r}) = \sum_{u=1}^{m} \sum_{v=1}^{m} \varepsilon_{r}(u,v)\pi_{r}(u,v)$$

replaces the analogous term for the one word case, leading to

Variance of number of occurrences of a motif

$$Var(Y) = (N - k + 1)\pi(M) -((2k - 1)N - 3k^{2} + 4k - 1)(\pi(M))^{2} + 2\sum_{r=1}^{k-1} (N - 2k + r + 1) \sum_{u=1}^{m} \sum_{v=1}^{m} \varepsilon_{r}(u, v) \cdot \pi_{r}(u, v)$$

Example $M = \{GAGA, TGCG, GCGA\}$ has m = 3 words of length k = 4, and 5 overlaps

$$\pi(M) = \pi(GAGA) + \pi(TGCG) + \pi(GCGA)$$

$$E(Y) = (N-3)\pi(M)$$

$$Var(Y) = (N-3)\pi(M) - (7N-33)(\pi(M))^{2}$$

$$+ 2(N-5)\pi(GAGAGA) + 2(N-6)\pi(TGCGAGA)$$

$$+ 2(N-5)\pi(GCGAGA) + 2(N-6)\pi(TGCGCGA)$$

$$+ 2(N-4)\pi(TGCGA)$$

If all nucleotides have equal probability 1/4, this becomes

$$\pi(M) = 3/4^4 = 3/256$$

$$E(Y) = (N-3)(3/256) = 3(N-3)/256$$

$$Var(Y) = (N-3)(3/256) - (7N-33)(9/65536) + 2(N-5)4^{-6} + 2(N-6)4^{-7} + 2(N-5)4^{-6} + 2(N-6)4^{-7} + 2(N-4)4^{-5}$$

$$= (913N - 2935)/65536$$

Repeats in *C. elegans* that facilitate homologous pairing in meoisis Sanford and Perry, *Nucleic Acids Research*, 2001, 29(14):2920-2926.

- **1998:** *C. elegans* is the first multicellular organism completely sequenced. 6 chromosomes, 13–21 Mb each, 100 Mb total.
- **NAR 2001:** Christopher Sanford and Marc Perry (U. Toronto) count all *k*-mers in *C. elegans* for $2 \le k \le 20$, looking for those over-represented on just one chromosome, plus other constraints.
- They found one unique candidate per chromosome, and speculate these facilitate homologous pairing during meiosis:

Chr.	DNA Seq. #	on that chr. (# per Mb)	# on other (# per Mb)
	TTGGTTGAGGCT	611 (44.1)	201 (2.5)
	TTTGTAGTCTAGCA	152 (10.3)	54 (0.7)
	TGCTAAATATTTAGCA	197 (15.4)	1 (0.0)
IV	GTATAATCATG	347 (21.5)	251 (3.2)
V	TGGGCGCTGCT	713 (34.2)	13 (0.2)
Х	TGGTCAGTGCA	335 (19.4)	74 (0.9)

• **RECOMB 2007:** Abby Dernburg (UC Berkeley) announces her lab proved it experimentally (but some *k*-mers were slightly adjusted).