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Covariance

Let X and Y be random variables, possibly dependent.
Var(X + Y) = E((X + Y − µX − µY)

2)

= E
(((

X − µX

)
+
(
Y − µY

))2
)

= E
((

X − µX

)2
)
+ E

((
Y − µY

)2
)
+ 2E

(
(X − µX)(Y − µY)

)
= Var(X) + Var(Y) + 2 Cov(X, Y)

where the covariance of X and Y is defined as

Cov(X, Y) = E
(
(X − µX)(Y − µY)

)
Expanding gives an alternate formula
Cov(X, Y) = E(XY) − E(X)E(Y):

Cov(X, Y) = E
(
(X − µX)(Y − µY)

)
= E(XY) − µXE(Y) − µYE(X) + µXµY = E(XY) − E(X)E(Y)
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Covariance properties
Cov(X, X) = Var(X)

Cov(X, Y) = Cov(Y, X)

If X, Y are independent then Cov(X, Y) = 0 and
Var(X + Y) = Var(X) + Var(Y).
Beware, this is not reversible; Cov(X, Y) could be 0 for
dependent variables.
Cov(aX + b, cY + d) = ac Cov(X, Y)

Var(X1 +X2 + · · ·+Xn) = Var(X1)+ · · ·+Var(Xn)+ 2
∑

16i<j6n
Cov(Xi, Xj)

Sign of covariance
When Cov(X, Y) is positive:
there is a tendency to have X > µX when Y > µY and vice-versa,
and X < µX when Y < µY and vice-versa.
When Cov(X, Y) is negative:
there is a tendency to have X > µX when Y < µY and vice-versa,
and X < µX when Y > µY and vice-versa.
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Occurrences of a word in a sequence — notation

Consider a (long) single-stranded nucleotide sequence
τ = τ1 . . . τN and a (short) word w = w1 . . . wk:

τ = τ1 . . . τ19 = CTATAGATAGATAGACAGT
w = w1 . . . w9 = ATAGATAGA

Say w occurs in τ at position j when w is in τ ending at position j:

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
τj C T A T A G A T A G A T A G A C A G T

so w occurs in τ at 11 and 15 (underlined).

Let Ij =

{
1 if w occurs in τ at j; I11 = I15 = 1
0 otherwise. other Ij = 0

Ij is an indicator variable (1 when a condition is true, 0 when false).

Y = Ik + Ik+1 + · · ·+ IN is the number of times w occurs in τ.
Here, Y = 2.
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Computing mean number of occurrences µ = E(Y)

Suppose τ is generated by N independent rolls of a 4-sided die,
whose sides have probabilities pA, pC, pG, pT adding up to 1.

The probability of a word being generated by rolling such a die is
the product of the probabilities of its nucleotides:

π(w) = pw1 · · · pwk π(ATAGATAGA) = pA
5pT

2pG
2

The probability of w occurring at j = k, k + 1, . . . , N is π(w).

Ij’s are indicator variables, so
E(Ij) = 0P(Ij = 0) + 1P(Ij = 1) = P(Ij = 1) = π(w)

for j = k, k + 1, . . . , N.

Y = Ik + Ik+1 + · · ·+ IN so the mean number of occurrences is
µ = E(Y) = E(Ik) + · · ·+ E(IN) = (N − k + 1)π(w).
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Dependencies between positions
Occurrences at different positions have dependencies, because of
how shifts of w may overlap with each other.

w = ATAGATAGA cannot occur at both 14 and 15:

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
τj A T A G A T A G A

A T A G A T A G A
But w can occur at both 11 and 15.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
τj C T A T A G A T A G A T A G A C A G T

This is equivalent to

w1 . . . wkwr+1 . . . wk = w1 . . . w9w6 . . . w9 = ATAGATAGATAGA

occurring at 15, where k = 9 is the word length and r = 5 is the
overlap length.

Chapter 5.8 considers counting occurrences without overlaps.
Chapters 4 and 11 do the more general problem of Markov chains.
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Self-overlaps of a word

Define

εr =


1 if the first r letters of w equal the last r letters

of w in the exact same order (string equality);

0 otherwise.

This lets us account for dependencies between Ij and Ij+k−r.
Shifting by k − r positions corresponds to an overlap of size r.

w : A T A G A T A G A
r = 9 ε9 = 1 A T A G A T A G A
r = 8 ε8 = 0 A T A G A T A G A
r = 7 ε7 = 0 A T A G A T A G A
r = 6 ε6 = 0 A T A G A T A G A
r = 5 ε5 = 1 A T A G A T A G A
r = 4 ε4 = 0 A T A G A T A G A
r = 3 ε3 = 0 A T A G A T A G A
r = 2 ε2 = 0 A T A G A T A G A
r = 1 ε1 = 1 A T A G A T A G A
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Computing σ2 = Var(Y)

Since the Ij’s have dependencies, the variance of their sum
Y = Ik + · · ·+ IN is NOT necessarily the sum of their variances.
We must consider covariance terms as well:

Var(Y) =
N∑

j=k

Var(Ij) + 2
∑

j,`: k6j<`6N

Cov(Ij, I`)

First sum: Note that Ij
2 = Ij since Ij = 0 or 1, so

Var(Ij) = E(Ij
2) − (E(Ij))

2 = π(w) − π(w)2

and the first sum in Var(Y) is

N∑
j=k

Var(Ij) = (N − k + 1)(π(w) − π(w)2)

Second sum: next few slides.
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Covariances 2
∑

j,`: k6j<`6N
Cov(Ij, I`)

The covariances sum is complicated:
If `− j > k then Ij, I` are independent and Cov(Ij, I`) = 0.

If 0 < `− j < k, the words ending at ` and j overlap by
r = k − (`− j) letters. Rewrite ` as ` = j + k − r:

Cov(Ij, I`) = Cov(Ij, Ij+k−r) = E(Ij Ij+k−r) − E(Ij)E(Ij+k−r)

Ij Ij+k−r = 1 iff w1 . . . wkwr+1 . . . wk occurs at position j + k − r in τ.
E.g., w1 . . . wkwr+1 . . . wk = w1 . . . w9w6 . . . w9 = ATAGATAGATAGA.

E(Ij Ij+k−r) = εr · π(w1 . . . wkwr+1 . . . wk).

Cov(Ij, Ij+k−r) = E(Ij Ij+k−r) − E(Ij)E(Ij+k−r)

= εr · π(w1 . . . wkwr+1 . . . wk) − (π(w))2.

Note that this depends on r but not j.
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Covariances 2
∑

j,`: k6j<`6N
Cov(Ij, I`)

The covariance sum becomes

∑
j,`: k6j<`6N

Cov(Ij, I`) =
k−1∑
r=1

N−k+r∑
j=k

(
εr · π(w1 . . . wkwr+1 . . . wk) − (π(w))2)

=

k−1∑
r=1

(N − 2k + r + 1)
(
εr · π(w1 . . . wkwr+1 . . . wk) − (π(w))2)

=

(
k−1∑
r=1

εr · (N − 2k + r + 1)π(w1 . . . wkwr+1 . . . wk)

)

−

(
((N − 2k + 2) + (N − k))(k − 1)

2
(π(w))2

)
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Mean and variance of number of occurrences

Combining all the parts together and simplifiying gives

Mean number of occurrences

E(Y) = (N − k + 1)E(Ik) = (N − k + 1)π(w)

Variance of number of occurrences

Var(Y) = (N − k + 1)π(w) −
(
(2k − 1)N − 3k2 + 4k − 1

)
(π(w))2

+2
k−1∑
r=1

εr · (N − 2k + r + 1)π(w1 . . . wkwr+1 . . . wk)
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Computation for w = w1 . . . w9 = ATAGATAGA (k = 9)
over all τ of length N

π(w) = pA
5pT

2pG
2 and w self-overlaps at r = 1, 5

E(Y) = (N − k + 1)π(w) = (N − 8)π(w) = (N − 8)pA
5pT

2pG
2

Var(Y) = (N − k + 1)π(w) −
(
(2k − 1)N − 3k2 + 4k − 1

)
(π(w))2

+2
k−1∑
r=1

εr · (N − 2k + r + 1)π(w1 . . . wkwr+1 . . . wk)

= (N − 8)π(w) − (17N − 208)(π(w))2

+2(N − 16)π(ATAGATAGATAGATAGA)

+2(N − 12)π(ATAGATAGATAGA)

= (N − 8)pA
5pT

2pG
2 − (17N − 208)pA

10pT
4pG

4

+2(N − 2k + 2)pA
9pG

4pT
4 + 2(N − 2k + 6)pA

7pG
3pT

3
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Frequencies of words and motifs in SARS
The genome of SARS described previously has N = 29751 bases:

Nucleotide Frequency Proportion
A 8481 pA ≈ 0.2851
C 5940 pC ≈ 0.1997
G 6187 pG ≈ 0.2080
T 9143 pT ≈ 0.3073

Total N = 29751 1

These were used below to compute "Estimated" µ and σ.
“Observed frequency” y was determined from the DNA sequence.

Word Estimated Observed
µ σ y = Freq. z = (y − µ)/σ Φ(z)

GAGA 104.5456 10.6943 106 0.1360 0.5541
GCGA 73.2226 8.4830 37 −4.2700 10−5

TGCG 78.9381 8.8018 59 −2.2652 0.0118
motif M 256.7064 17.6583 202 −3.0980 10−3

(M consists of all three words; details on computing µ,σ are later.)
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Hypothesis tests on frequencies in SARS

We have not determined the complete distribution of Y.
We will assume it is approximately normal with mean and
standard deviation as computed above.

That lets us compute Z and use it as a test statistic to see if the
observed frequencies are consistent with a “random” sequence.

Three possible hypothesis tests
Null Hypothesis H0: The genome sequence is generated by
independent rolls of a 4-sided die with probabilities for each letter
pA, . . . , pT as given previously.

vs. one of three alternative hypotheses:
H1: The word w (or motif M) is over-represented.
H2: The word w (or motif M) is under-represented.
H3: The word w (or motif M) is over- or under-represented.
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Hypothesis tests (at significance level α = 5%)

Word Estimated Observed
µ σ y = Freq. z = (y − µ)/σ Φ(z)

GAGA 104.5456 10.6943 106 0.1360 0.5541
GCGA 73.2226 8.4830 37 −4.2700 10−5

TGCG 78.9381 8.8018 59 −2.2652 0.0118
motif M 256.7064 17.6583 202 −3.0980 10−3

H0 vs. H1 (over-represented). Reject H0 if Z is too big:
Φ(Z) > 0.95, so Z > 1.6449. In all the cases shown, we accept H0
(a.k.a. “insufficient evidence to reject H0”).

H0 vs. H2 (under-represented). Reject H0 if Z is too small:
Φ(Z) 6 0.05, so Z 6 −1.6449. By this test, GAGA is not
under-represented, but each of GCGA, TGCG, and motif M, are
considered to be under-represented.

H0 vs. H3 (under or over). Reject H0 if Z is too far away from 0:
Φ(Z) 6 0.025 (so Z 6 −1.96) or Φ(Z) > 0.975 (so Z > 1.96). We
accept H3 for GCGA, for TGCG, and for M, and accept H0 for GAGA.

Prof. Tesler # occurrences of a word Math 283 / Fall 2016 15 / 24



Critical regions (at significance level α = 5%)
For TGCG & N = 29751, the null hypothesis gives µ = 78.9381 and σ = 8.8018.
The critical region (where we reject H0) is blue. The acceptance region is white.
The one-sided critical regions have area α = 0.05.
The two-sided critical regions have area α/2 = 0.025 in each part.
Our test statistic y = 59 or z = −2.2652 is shown as a red line.

H1: Over-represented? H2: Under-represented? H3: Either over or under?
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Same tests using P-values (at sig. level α = 5%)

TGCG has P(Z 6 −2.2652) = Φ(−2.2652) = 0.0118.

H0 vs. H1 (over-represented?):
P = P(Z > −2.2652) = 1 − 0.0118 = 0.9881

Since P > α, we accept H0 (TGCG is not over-represented).

H0 vs. H2 (under-represented?):
P = P(Z 6 −2.2652) = 0.0118.

Since P 6 α, we accept H2 (TGCG is under-represented).

H0 vs. H3 (either of over or under?):
P = P(|Z| > 2.2652) = 2(0.0118) = 0.0236.

Since P 6 α, we accept H3 (TGCG is over- or under-represented).

P-values let us check any α easily.
At α = 1%, all three tests accept H0.
At α = 2%, H2 says it’s under-represented but H3 does not.
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Motifs

A motif is a set M of words that don’t contain each other. Usually
the words are very similar and have similar lengths.
Suppose M has m words, all with length k:

M =
{

w(1), . . . , w(m)
}

.

We’ll work with an example of m = 3 words, each with k = 4 letters:

M =
{
GAGA, TGCG, GCGA

}
.

When words of length k are generated at random by a 4-sided die,
the total probability of the words in M is

π(M) = π(w(1)) + · · ·+ π(w(m))

which is pA
2pG

2 + pCpG
2pt + pApCpG

2 in this example.
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Number of occurrences of a motif

M occurs at position j in a nucleotide sequence τ if any of its
words occurs (i.e., ends) there.

Let Ij =

{
1 if M occurs in τ at j;
0 otherwise.

The number of occurrences of M in τ is Y = Ik + · · ·+ IN .

Note that E(Ij) = π(M) and
E(Y) = (N − k + 1)π(M)

by the same argument as for one word before.
For motifs of length k = 4, this becomes E(Y) = (N − 3)π(M).

In the variance formula, π(w) is replaced by π(M) as well, and we
must recompute Cov(Ij, Ij+k−r) to take into account overlaps
between any two words of M.
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Overlaps between words in a motif

If the first r letters of w(u) equal the last r letters of w(v)

(r = 1, . . . , k − 1):
Set εr(u, v) = 1;
let wr(u, v) be w(v) followed by w(u) but overlapped on the r letters;
let πr(u, v) = π(wr(u, v)).

Otherwise, set εr(u, v) = πr(u, v) = 0.

For words w(3) = GCGA and w(2) = TGCG, the overlaps are

w(2) : T G C G
r = 4 G C G A ε4(3, 2) = 0
r = 3 G C G A ε3(3, 2) = 1 w3(3, 2) = TGCGA π3(3, 2) = π(TGCGA)
r = 2 G C G A ε2(3, 2) = 0
r = 1 G C G A ε1(3, 2) = 1 w1(3, 2) = TGCGCGA π1(3, 2) = π(TGCGCGA)

(r = 4 is shown, although we only need to go up to r = k − 1 = 3.)
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Overlap between words in a motif

εr(u, v)
wr(u, v)

v = 1
w(1) = GAGA

v = 2
w(2) = TGCG

v = 3
w(3) = GCGA

u = 1
w(1) = GAGA

ε1(1, 1) = 0

ε2(1, 1) = 1
GAGAGA
ε3(1, 1) = 0

ε1(1, 2) = 1
TGCGAGA
ε2(1, 2) = 0

ε3(1, 2) = 0

ε1(1, 3) = 0

ε2(1, 3) = 1
GCGAGA
ε3(1, 3) = 0

u = 2
w(2) = TGCG

ε1(2, 1) = 0
ε2(2, 1) = 0
ε3(2, 1) = 0

ε1(2, 2) = 0
ε2(2, 2) = 0
ε3(2, 2) = 0

ε1(2, 3) = 0
ε2(2, 3) = 0
ε3(2, 3) = 0

u = 3
w(3) = GCGA

ε1(3, 1) = 0

ε2(3, 1) = 0
ε3(3, 1) = 0

ε1(3, 2) = 1
TGCGCGA
ε2(3, 2) = 0
ε3(3, 2) = 1
TGCGA

ε1(3, 3) = 0

ε2(3, 3) = 0
ε3(3, 3) = 0
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Dependence between positions

IjIj+k−r = 1 if there are overlapping words (εr(u, v) = 1 for some
u, v) whose combination word wr(u, v) occurs in τ at j + k − r.
IjIj+k−r = 0 if nothing of that form occurs at j + k − r.
So

E(IjIj+k−r) =

m∑
u=1

m∑
v=1

εr(u, v)πr(u, v)

replaces the analogous term for the one word case, leading to

Variance of number of occurrences of a motif
Var(Y) = (N − k + 1)π(M)

−((2k − 1)N − 3k2 + 4k − 1)(π(M))2

+2
k−1∑
r=1

(N − 2k + r + 1)
m∑

u=1

m∑
v=1

εr(u, v) · πr(u, v)
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Example
M =

{
GAGA, TGCG, GCGA

}
has m = 3 words of length k = 4, and 5 overlaps

π(M) = π(GAGA) + π(TGCG) + π(GCGA)

E(Y) = (N − 3)π(M)

Var(Y) = (N − 3)π(M) − (7N − 33)(π(M))2

+ 2(N − 5)π(GAGAGA) + 2(N − 6)π(TGCGAGA)
+ 2(N − 5)π(GCGAGA) + 2(N − 6)π(TGCGCGA)
+ 2(N − 4)π(TGCGA)

If all nucleotides have equal probability 1/4, this becomes

π(M) = 3/44 = 3/256
E(Y) = (N − 3) (3/256) = 3(N − 3)/256

Var(Y) = (N − 3)(3/256) − (7N − 33)(9/65536)
+ 2(N − 5)4−6 + 2(N − 6)4−7

+ 2(N − 5)4−6 + 2(N − 6)4−7 + 2(N − 4)4−5

= (913N − 2935)/65536
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Repeats in C. elegans that facilitate homologous pairing in meoisis
Sanford and Perry, Nucleic Acids Research, 2001, 29(14):2920-2926.

1998: C. elegans is the first multicellular organism completely
sequenced. 6 chromosomes, 13–21 Mb each, 100 Mb total.

NAR 2001: Christopher Sanford and Marc Perry (U. Toronto)
count all k-mers in C. elegans for 2 6 k 6 20, looking for those
over-represented on just one chromosome, plus other constraints.

They found one unique candidate per chromosome, and speculate
these facilitate homologous pairing during meiosis:

Chr. DNA Seq. # on that chr. # on other
(# per Mb) (# per Mb)

I TTGGTTGAGGCT 611 (44.1) 201 (2.5)
II TTTGTAGTCTAGCA 152 (10.3) 54 (0.7)
III TGCTAAATATTTAGCA 197 (15.4) 1 (0.0)
IV GTATAATCATG 347 (21.5) 251 (3.2)
V TGGGCGCTGCT 713 (34.2) 13 (0.2)
X TGGTCAGTGCA 335 (19.4) 74 (0.9)

RECOMB 2007: Abby Dernburg (UC Berkeley) announces her lab
proved it experimentally (but some k-mers were slightly adjusted).
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