# The number of occurrences of a word (5.7) and motif (5.9) in a DNA sequence, allowing overlaps 

## Covariance (2.4) and indicators (2.9)

Prof. Tesler

Math 283
Fall 2016

## Covariance

- Let $X$ and $Y$ be random variables, possibly dependent.
- $\operatorname{Var}(X+Y)=E\left(\left(X+Y-\mu_{X}-\mu_{Y}\right)^{2}\right)$

$$
\begin{aligned}
& =E\left(\left(\left(X-\mu_{X}\right)+\left(Y-\mu_{Y}\right)\right)^{2}\right) \\
& =E\left(\left(X-\mu_{X}\right)^{2}\right)+E\left(\left(Y-\mu_{Y}\right)^{2}\right)+2 E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right) \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

where the covariance of $X$ and $Y$ is defined as

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)
$$

- Expanding gives an alternate formula
$\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y):$
$\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)$

$$
=E(X Y)-\mu_{X} E(Y)-\mu_{Y} E(X)+\mu_{X} \mu_{Y}=E(X Y)-E(X) E(Y)
$$

## Covariance properties

- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- If $X, Y$ are independent then $\operatorname{Cov}(X, Y)=0$ and
$\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.
Beware, this is not reversible; $\operatorname{Cov}(X, Y)$ could be 0 for dependent variables.
- $\operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)$
- $\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)+2 \sum_{1 \leqslant j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$


## Sign of covariance

- When $\operatorname{Cov}(X, Y)$ is positive: there is a tendency to have $X>\mu_{X}$ when $Y>\mu_{Y}$ and vice-versa, and $X<\mu_{X}$ when $Y<\mu_{Y}$ and vice-versa.
- When $\operatorname{Cov}(X, Y)$ is negative:
there is a tendency to have $X>\mu_{X}$ when $Y<\mu_{Y}$ and vice-versa, and $X<\mu_{X}$ when $Y>\mu_{Y}$ and vice-versa.


## Occurrences of a word in a sequence - notation

- Consider a (long) single-stranded nucleotide sequence $\tau=\tau_{1} \ldots \tau_{N}$ and a (short) word $w=w_{1} \ldots w_{k}$ :

$$
\begin{gathered}
\tau=\tau_{1} \ldots \tau_{19}=\text { CTATAGATAGATAGACAGT } \\
w=w_{1} \ldots w_{9}=\text { ATAGATAGA }
\end{gathered}
$$

- Say $w$ occurs in $\tau$ at position $j$ when $w$ is in $\tau$ ending at position $j$ :

$$
\begin{aligned}
& \tau_{j} \quad \text { C } \quad \text { T } A
\end{aligned}
$$

so $w$ occurs in $\tau$ at 11 and 15 (underlined).

- Let $I_{j}=\left\{\begin{array}{lll}1 & \text { if } w \text { occurs in } \tau \text { at } j ; & I_{11}=I_{15}=1 \\ 0 & \text { otherwise } . & \text { other } I_{j}=0\end{array}\right.$
$I_{j}$ is an indicator variable ( 1 when a condition is true, 0 when false).
- $Y=I_{k}+I_{k+1}+\cdots+I_{N}$ is the number of times $w$ occurs in $\tau$. Here, $Y=2$.


## Computing mean number of occurrences $\mu=E(Y)$

- Suppose $\tau$ is generated by $N$ independent rolls of a 4-sided die, whose sides have probabilities $p_{A}, p_{C}, p_{G}, p_{T}$ adding up to 1 .
- The probability of a word being generated by rolling such a die is the product of the probabilities of its nucleotides:

$$
\pi(w)=p_{w_{1}} \cdots p_{w_{k}} \quad \pi(\text { ATAGATAGA })=p_{A}{ }^{5} p_{T}^{2} p_{G}^{2}
$$

- The probability of $w$ occurring at $j=k, k+1, \ldots, N$ is $\pi(w)$.
- $I_{j}$ 's are indicator variables, so

$$
E\left(I_{j}\right)=0 P\left(I_{j}=0\right)+1 P\left(I_{j}=1\right)=P\left(I_{j}=1\right)=\pi(w)
$$

for $j=k, k+1, \ldots, N$.

- $Y=I_{k}+I_{k+1}+\cdots+I_{N} \quad$ so the mean number of occurrences is

$$
\mu=E(Y)=E\left(I_{k}\right)+\cdots+E\left(I_{N}\right)=(N-k+1) \pi(w)
$$

## Dependencies between positions

- Occurrences at different positions have dependencies, because of how shifts of $w$ may overlap with each other.
- $w=$ ATAGATAGA cannot occur at both 14 and 15:
- But $w$ can occur at both 11 and 15 .

This is equivalent to

$$
w_{1} \ldots w_{k} w_{r+1} \ldots w_{k}=w_{1} \ldots w_{9} w_{6} \ldots w_{9}=\text { ATAGATAGATAGA }
$$

occurring at 15 , where $k=9$ is the word length and $r=5$ is the overlap length.

- Chapter 5.8 considers counting occurrences without overlaps. Chapters 4 and 11 do the more general problem of Markov chains.


## Self-overlaps of a word

- Define

$$
\varepsilon_{r}= \begin{cases}1 & \text { if the first } r \text { letters of } w \text { equal the last } r \text { letters } \\ & \text { of } w \text { in the exact same order (string equality) } \\ 0 & \text { otherwise. }\end{cases}
$$

- This lets us account for dependencies between $I_{j}$ and $I_{j+k-r}$. Shifting by $k-r$ positions corresponds to an overlap of size $r$.



## Computing $\sigma^{2}=\operatorname{Var}(Y)$

- Since the $I_{j}$ 's have dependencies, the variance of their sum $Y=I_{k}+\cdots+I_{N}$ is NOT necessarily the sum of their variances. We must consider covariance terms as well:

$$
\operatorname{Var}(Y)=\sum_{j=k}^{N} \operatorname{Var}\left(I_{j}\right)+\sum_{j, \ell: k \leqslant j<\ell \leqslant N} \operatorname{Cov}\left(I_{j}, I_{\ell}\right)
$$

- First sum: Note that $I_{j}^{2}=I_{j}$ since $I_{j}=0$ or 1 , so

$$
\operatorname{Var}\left(I_{j}\right)=E\left(I_{j}^{2}\right)-\left(E\left(I_{j}\right)\right)^{2}=\pi(w)-\pi(w)^{2}
$$

and the first sum in $\operatorname{Var}(Y)$ is

$$
\sum_{j=k}^{N} \operatorname{Var}\left(I_{j}\right)=(N-k+1)\left(\pi(w)-\pi(w)^{2}\right)
$$

- Second sum: next few slides.


## Covariances $2 \sum \operatorname{Cov}\left(I_{j}, I_{\ell}\right)$

The covariances sum is complicated:

- If $\ell-j \geqslant k$ then $I_{j}, I_{\ell}$ are independent and $\operatorname{Cov}\left(I_{j}, I_{\ell}\right)=0$.
- If $0<\ell-j<k$, the words ending at $\ell$ and $j$ overlap by $r=k-(\ell-j)$ letters. Rewrite $\ell$ as $\ell=j+k-r$ :

$$
\operatorname{Cov}\left(I_{j}, I_{\ell}\right)=\operatorname{Cov}\left(I_{j}, I_{j+k-r}\right)=E\left(I_{j} I_{j+k-r}\right)-E\left(I_{j}\right) E\left(I_{j+k-r}\right)
$$

- $I_{j} I_{j+k-r}=1$ iff $w_{1} \ldots w_{k} w_{r+1} \ldots w_{k}$ occurs at position $j+k-r$ in $\tau$. E.g., $w_{1} \ldots w_{k} w_{r+1} \ldots w_{k}=w_{1} \ldots w_{9} w_{6} \ldots w_{9}=$ ATAGATAGATAGA.
- $E\left(I_{j} I_{j+k-r}\right)=\varepsilon_{r} \cdot \pi\left(w_{1} \ldots w_{k} w_{r+1} \ldots w_{k}\right)$.
- 

$$
\begin{aligned}
\operatorname{Cov}\left(I_{j}, I_{j+k-r}\right) & =E\left(I_{j} I_{j+k-r}\right)-E\left(I_{j}\right) E\left(I_{j+k-r}\right) \\
& =\varepsilon_{r} \cdot \pi\left(w_{1} \ldots w_{k} w_{r+1} \ldots w_{k}\right)-(\pi(w))^{2}
\end{aligned}
$$

Note that this depends on $r$ but not $j$.

## Covariances $2 \sum \operatorname{Cov}\left(I_{j}, I_{\ell}\right)$ $j, \ell: k \leqslant j<\ell \leqslant N$

The covariance sum becomes

$$
\begin{aligned}
\sum_{j, \ell:} \operatorname{Cov}\left(I_{j}, I_{\ell}\right)= & \sum_{r=1}^{k-1} \sum_{j=k}^{N-k+r}\left(\varepsilon_{r} \cdot \pi\left(w_{1} \ldots w_{k} w_{r+1} \ldots w_{k}\right)-(\pi(w))^{2}\right) \\
= & \sum_{r=1}^{k-1}(N-2 k+r+1)\left(\varepsilon_{r} \cdot \pi\left(w_{1} \ldots w_{k} w_{r+1} \ldots w_{k}\right)-(\pi(w))^{2}\right) \\
= & \left(\sum_{r=1}^{k-1} \varepsilon_{r} \cdot(N-2 k+r+1) \pi\left(w_{1} \ldots w_{k} w_{r+1} \ldots w_{k}\right)\right) \\
& \quad-\left(\frac{((N-2 k+2)+(N-k))(k-1)}{2}(\pi(w))^{2}\right)
\end{aligned}
$$

## Mean and variance of number of occurrences

Combining all the parts together and simplifiying gives

## Mean number of occurrences

$$
E(Y)=(N-k+1) E\left(I_{k}\right)=(N-k+1) \pi(w)
$$

## Variance of number of occurrences

$$
\begin{aligned}
\operatorname{Var}(Y)= & (N-k+1) \pi(w)-\left((2 k-1) N-3 k^{2}+4 k-1\right)(\pi(w))^{2} \\
& +2 \sum_{r=1}^{k-1} \varepsilon_{r} \cdot(N-2 k+r+1) \pi\left(w_{1} \ldots w_{k} w_{r+1} \ldots w_{k}\right)
\end{aligned}
$$

## Computation for $w=w_{1} \ldots w_{9}=$ ATAGATAGA $(k=9)$

 over all $\tau$ of length $N$$$
\begin{aligned}
\pi(w)= & p_{A}{ }^{5} p_{T}{ }^{2} p_{G}^{2} \quad \text { and } w \text { self-overlaps at } r=1,5 \\
E(Y)= & (N-k+1) \pi(w)=(N-8) \pi(w)=(N-8) p_{A}{ }^{5} p_{T}{ }^{2} p_{G}{ }^{2} \\
\operatorname{Var}(Y)= & (N-k+1) \pi(w)-\left((2 k-1) N-3 k^{2}+4 k-1\right)(\pi(w))^{2} \\
& +2 \sum_{r=1}^{k-1} \varepsilon_{r} \cdot(N-2 k+r+1) \pi\left(w_{1} \ldots w_{k} w_{r+1} \ldots w_{k}\right) \\
= & (N-8) \pi(w)-(17 N-208)(\pi(w))^{2} \\
& +2(N-16) \pi(\text { ATAGATAGATAGATAGA }) \\
& +2(N-12) \pi(\text { ATAGATAGATAGA)} \\
= & (N-8) p_{A}{ }^{5} p_{T}{ }^{2} p_{G}{ }^{2}-(17 N-208) p_{A}{ }^{10} p_{T}{ }^{4} p_{G}{ }^{4} \\
& +2(N-2 k+2) p_{A}^{9} p_{G}^{4} p_{T}^{4}+2(N-2 k+6) p_{A}{ }^{7} p_{G}^{3} p_{T}^{3}
\end{aligned}
$$

## Frequencies of words and motifs in SARS

- The genome of SARS described previously has $N=29751$ bases:

| Nucleotide | Frequency | Proportion |
| :---: | :---: | :---: |
| A | 8481 | $p_{A} \approx 0.2851$ |
| C | 5940 | $p_{C} \approx 0.1997$ |
| G | 6187 | $p_{G} \approx 0.2080$ |
| T | 9143 | $p_{T} \approx 0.3073$ |
| Total | $N=29751$ | 1 |

- These were used below to compute "Estimated" $\mu$ and $\sigma$.
- "Observed frequency" $y$ was determined from the DNA sequence.

| Word | Estimated |  | Observed |  |  |
| :---: | ---: | ---: | ---: | :---: | :---: |
|  | $\mu$ | $\sigma$ | $y=$ Freq. $z=(y-\mu) / \sigma$ | $\Phi(z)$ |  |
| GAGA | 104.5456 | 10.6943 | 106 | 0.1360 | 0.5541 |
| GCGA | 73.2226 | 8.4830 | 37 | -4.2700 | $10^{-5}$ |
| TGCG | 78.9381 | 8.8018 | 59 | -2.2652 | 0.0118 |
| motif $M$ | 256.7064 | 17.6583 | 202 | -3.0980 | $10^{-3}$ |

( $M$ consists of all three words; details on computing $\mu, \sigma$ are later.)

## Hypothesis tests on frequencies in SARS

- We have not determined the complete distribution of $Y$. We will assume it is approximately normal with mean and standard deviation as computed above.
- That lets us compute $Z$ and use it as a test statistic to see if the observed frequencies are consistent with a "random" sequence.


## Three possible hypothesis tests

Null Hypothesis $\boldsymbol{H}_{\mathbf{0}}$ : The genome sequence is generated by independent rolls of a 4-sided die with probabilities for each letter $p_{A}, \ldots, p_{T}$ as given previously.
vs. one of three alternative hypotheses:
$\boldsymbol{H}_{1}$ : The word $w$ (or motif $M$ ) is over-represented.
$\boldsymbol{H}_{2}$ : The word $w$ (or motif $M$ ) is under-represented.
$\boldsymbol{H}_{3}$ : The word $w$ (or motif $M$ ) is over- or under-represented.

## Hypothesis tests (at significance level $\alpha=5 \%$ )

| Word | Estimated |  | Observed |  |  |
| :---: | ---: | ---: | ---: | :---: | :---: |
|  | $\mu$ | $\sigma$ | $y=$ Freq. $z=(y-\mu) / \sigma$ | $\Phi(z)$ |  |
| GAGA | 104.5456 | 10.6943 | 106 | 0.1360 | 0.5541 |
| GCGA | 73.2226 | 8.4830 | 37 | -4.2700 | $10^{-5}$ |
| TGCG | 78.9381 | 8.8018 | 59 | -2.2652 | 0.0118 |
| motif $M$ | 256.7064 | 17.6583 | 202 | -3.0980 | $10^{-3}$ |

- $\boldsymbol{H}_{\mathbf{0}}$ vs. $\boldsymbol{H}_{1}$ (over-represented). Reject $H_{0}$ if $Z$ is too big: $\Phi(Z) \geqslant 0.95$, so $Z \geqslant 1.6449$. In all the cases shown, we accept $H_{0}$ (a.k.a. "insufficient evidence to reject $H_{0}$ ").
- $\boldsymbol{H}_{\mathbf{0}}$ vs. $\boldsymbol{H}_{\mathbf{2}}$ (under-represented). Reject $H_{0}$ if $Z$ is too small: $\Phi(Z) \leqslant 0.05$, so $Z \leqslant-1.6449$. By this test, GAGA is not under-represented, but each of GCGA, TGCG, and motif $M$, are considered to be under-represented.
- $\boldsymbol{H}_{\mathbf{0}}$ vs. $\boldsymbol{H}_{\mathbf{3}}$ (under or over). Reject $H_{0}$ if $Z$ is too far away from 0 : $\Phi(Z) \leqslant 0.025$ (so $Z \leqslant-1.96$ ) or $\Phi(Z) \geqslant 0.975$ (so $Z \geqslant 1.96$ ). We accept $H_{3}$ for GCGA, for TGCG, and for $M$, and accept $H_{0}$ for GAGA.


## Critical regions (at significance level $\alpha=5 \%$ )

- For TGCG \& $N=29751$, the null hypothesis gives $\mu=78.9381$ and $\sigma=8.8018$.
- The critical region (where we reject $H_{0}$ ) is blue. The acceptance region is white.
- The one-sided critical regions have area $\alpha=0.05$.

The two-sided critical regions have area $\alpha / 2=0.025$ in each part.

- Our test statistic $y=59$ or $z=-2.2652$ is shown as a red line.


## $H_{1}$ : Over-represented?

Critical region for $\mathrm{H}_{1}$ : One-sided (right), $\alpha=0.05$


Critical region for $\mathrm{H}_{1}$ : One-sided (right), $\alpha=0.05$


## $H_{2}$ : Under-represented?

Critical region for $\mathrm{H}_{2}$ : One-sided (left), $\alpha=0.05$


Critical region for $\mathrm{H}_{2}$ : One-sided (left), $\alpha=0.05$


## $H_{3}$ : Either over or under?

Critical region for $\mathrm{H}_{3}$ : Two-sided, $\alpha=0.05$


Critical region for $\mathrm{H}_{3}$ : Two-sided, $\alpha=0.05$


## Same tests using $P$-values (at sig. level $\alpha=5 \%$ )

- TGCG has $P(Z \leqslant-2.2652)=\Phi(-2.2652)=0.0118$.
- $H_{0}$ vs. $H_{1}$ (over-represented?):

$$
P=P(Z \geqslant-2.2652)=1-0.0118=0.9881
$$

Since $P>\alpha$, we accept $H_{0}$ (TGCG is not over-represented).

- $H_{0}$ vs. $H_{2}$ (under-represented?):

$$
P=P(Z \leqslant-2.2652)=0.0118 .
$$

Since $P \leqslant \alpha$, we accept $H_{2}$ (TGCG is under-represented).

- $H_{\mathbf{0}}$ vs. $H_{\mathbf{3}}$ (either of over or under?):

$$
P=P(|Z| \geqslant 2.2652)=2(0.0118)=0.0236
$$

Since $P \leqslant \alpha$, we accept $H_{3}$ (TGCG is over- or under-represented).

- $P$-values let us check any $\alpha$ easily.

At $\alpha=1 \%$, all three tests accept $H_{0}$.
At $\alpha=2 \%, H_{2}$ says it's under-represented but $H_{3}$ does not.

## Motifs

- A motif is a set $M$ of words that don't contain each other. Usually the words are very similar and have similar lengths.
- Suppose $M$ has $m$ words, all with length $k$ :

$$
M=\left\{w^{(1)}, \ldots, w^{(m)}\right\}
$$

- We'll work with an example of $m=3$ words, each with $k=4$ letters:

$$
M=\{\mathrm{GAGA}, \mathrm{TGCG}, \mathrm{GCGA}\} .
$$

- When words of length $k$ are generated at random by a 4-sided die, the total probability of the words in $M$ is

$$
\pi(M)=\pi\left(w^{(1)}\right)+\cdots+\pi\left(w^{(m)}\right)
$$

which is $p_{A}^{2} p_{G}^{2}+p_{C} p_{G}^{2} p_{t}+p_{A} p_{C} p_{G}^{2}$ in this example.

## Number of occurrences of a motif

- $M$ occurs at position $j$ in a nucleotide sequence $\tau$ if any of its words occurs (i.e., ends) there.
- Let $I_{j}= \begin{cases}1 & \text { if } M \text { occurs in } \tau \text { at } j ; \\ 0 & \text { otherwise } .\end{cases}$
- The number of occurrences of $M$ in $\tau$ is $Y=I_{k}+\cdots+I_{N}$.
- Note that $E\left(I_{j}\right)=\pi(M)$ and

$$
E(Y)=(N-k+1) \pi(M)
$$

by the same argument as for one word before. For motifs of length $k=4$, this becomes $E(Y)=(N-3) \pi(M)$.

- In the variance formula, $\pi(w)$ is replaced by $\pi(M)$ as well, and we must recompute $\operatorname{Cov}\left(I_{j}, I_{j+k-r}\right)$ to take into account overlaps between any two words of $M$.


## Overlaps between words in a motif

- If the first $r$ letters of $w^{(u)}$ equal the last $r$ letters of $w^{(v)}$
$(r=1, \ldots, k-1)$ :
- Set $\varepsilon_{r}(u, v)=1$;
- let $w_{r}(u, v)$ be $w^{(v)}$ followed by $w^{(u)}$ but overlapped on the $r$ letters;
- let $\pi_{r}(u, v)=\pi\left(w_{r}(u, v)\right)$.

Otherwise, set $\varepsilon_{r}(u, v)=\pi_{r}(u, v)=0$.

- For words $w^{(3)}=$ GCGA and $w^{(2)}=$ TGCG, the overlaps are

$$
\begin{array}{cccl}
w^{(2)}: & \text { TGCG } & \\
\hline r=4 & \text { GCGA } & \varepsilon_{4}(3,2)=0 & \\
r=3 & \text { GCGA } & \varepsilon_{3}(3,2)=1 & w_{3}(3,2)=\text { TGCGA } \pi_{3}(3,2)=\pi(\text { TGCGA }) \\
r=2 & \text { GCGA } & \varepsilon_{2}(3,2)=0 & \\
r=1 & \text { GCGA } & \varepsilon_{1}(3,2)=1 & w_{1}(3,2)=\text { TGCGCGA } \pi_{1}(3,2)=\pi(\text { TGCGCGA })
\end{array}
$$

( $r=4$ is shown, although we only need to go up to $r=k-1=3$.)

## Overlap between words in a motif

| $\varepsilon_{r}(u, v)$ | $v=1$ | $v=2$ | $v=3$ |
| :--- | :--- | :--- | :--- |
| $w_{r}(u, v)$ | $w^{(1)}=$ GAGA | $w^{(2)}=$ TGCG | $w^{(3)}=\mathrm{GCGA}$ |
| $u=1$ | $\varepsilon_{1}(1,1)=0$ | $\varepsilon_{1}(1,2)=1$ | $\varepsilon_{1}(1,3)=0$ |
| $w^{(1)}=\mathrm{GAGA}$ |  | TGCGAGA |  |
|  | $\varepsilon_{2}(1,1)=1$ | $\varepsilon_{2}(1,2)=0$ | $\varepsilon_{2}(1,3)=1$ |
|  | GAGAGA |  | GCGAGA |
|  | $\varepsilon_{3}(1,1)=0$ | $\varepsilon_{3}(1,2)=0$ | $\varepsilon_{3}(1,3)=0$ |
| $u=2$ | $\varepsilon_{1}(2,1)=0$ | $\varepsilon_{1}(2,2)=0$ | $\varepsilon_{1}(2,3)=0$ |
| $w^{(2)}=$ TGCG | $\varepsilon_{2}(2,1)=0$ | $\varepsilon_{2}(2,2)=0$ | $\varepsilon_{2}(2,3)=0$ |
|  | $\varepsilon_{3}(2,1)=0$ | $\varepsilon_{3}(2,2)=0$ | $\varepsilon_{3}(2,3)=0$ |
| $u=3$ | $\varepsilon_{1}(3,1)=0$ | $\varepsilon_{1}(3,2)=1$ | $\varepsilon_{1}(3,3)=0$ |
| $w^{(3)}=$ GCGA |  | TGCGCGA |  |
|  | $\varepsilon_{2}(3,1)=0$ | $\varepsilon_{2}(3,2)=0$ | $\varepsilon_{2}(3,3)=0$ |
|  | $\varepsilon_{3}(3,1)=0$ | $\varepsilon_{3}(3,2)=1$ | $\varepsilon_{3}(3,3)=0$ |
|  |  | TGCGA |  |

## Dependence between positions

- $I_{j} I_{j+k-r}=1$ if there are overlapping words $\left(\varepsilon_{r}(u, v)=1\right.$ for some $u, v)$ whose combination word $w_{r}(u, v)$ occurs in $\tau$ at $j+k-r$.
- $I_{j} I_{j+k-r}=0$ if nothing of that form occurs at $j+k-r$.
- So

$$
E\left(I_{j} I_{j+k-r}\right)=\sum_{u=1}^{m} \sum_{v=1}^{m} \varepsilon_{r}(u, v) \pi_{r}(u, v)
$$

replaces the analogous term for the one word case, leading to

## Variance of number of occurrences of a motif

$$
\begin{aligned}
\operatorname{Var}(Y)= & (N-k+1) \pi(M) \\
& -\left((2 k-1) N-3 k^{2}+4 k-1\right)(\pi(M))^{2} \\
& +2 \sum_{r=1}^{k-1}(N-2 k+r+1) \sum_{u=1}^{m} \sum_{v=1}^{m} \varepsilon_{r}(u, v) \cdot \pi_{r}(u, v)
\end{aligned}
$$

## Example

## $M=\{$ GAGA, TGCG, GCGA $\}$ has $m=3$ words of length $k=4$, and 5 overlaps

$$
\begin{aligned}
\pi(M)= & \pi(\mathrm{GAGA})+\pi(\mathrm{TGCG})+\pi(\mathrm{GCGA}) \\
E(Y)= & (N-3) \pi(M) \\
\operatorname{Var}(Y)= & (N-3) \pi(M)-(7 N-33)(\pi(M))^{2} \\
& +2(N-5) \pi(\mathrm{GAGAGA})+2(N-6) \pi(\mathrm{TGCGAGA}) \\
& +2(N-5) \pi(\mathrm{GCGAGA})+2(N-6) \pi(\mathrm{TGCGCGA}) \\
& +2(N-4) \pi(\mathrm{TGCGA})
\end{aligned}
$$

If all nucleotides have equal probability $1 / 4$, this becomes

$$
\begin{aligned}
\pi(M)= & 3 / 4^{4}=3 / 256 \\
E(Y)= & (N-3)(3 / 256)=3(N-3) / 256 \\
\operatorname{Var}(Y)= & (N-3)(3 / 256)-(7 N-33)(9 / 65536) \\
& +2(N-5) 4^{-6}+2(N-6) 4^{-7} \\
& +2(N-5) 4^{-6}+2(N-6) 4^{-7}+2(N-4) 4^{-5} \\
= & (913 N-2935) / 65536
\end{aligned}
$$

Repeats in C. elegans that facilitate homologous pairing in meoisis Sanford and Perry, Nucleic Acids Research, 2001, 29(14):2920-2926.

- 1998: C. elegans is the first multicellular organism completely sequenced. 6 chromosomes, $13-21 \mathrm{Mb}$ each, 100 Mb total.
- NAR 2001: Christopher Sanford and Marc Perry (U. Toronto) count all $k$-mers in C. elegans for $2 \leqslant k \leqslant 20$, looking for those over-represented on just one chromosome, plus other constraints.
- They found one unique candidate per chromosome, and speculate these facilitate homologous pairing during meiosis:

|  | seq. \#o | on |  |
| :---: | :---: | :---: | :---: |
|  | TTGGTTGAGGCT | 611 (44.1) | 201 (2.5) |
| II | ttTGTAGTCTAGCA | 152 (10.3) | 54 (0.7) |
| III | tGctanatatttagca | A 197 (15.4) | .0) |
| IV | gTataitcatg | 347 (21.5) | 251 (3.2) |
| V | TGGGCGCTGCT | 713 (34.2) | 13 (0.2) |
| X | TGGTCAGTGCA | 335 (19.4) | 74 (0.9) |

- RECOMB 2007: Abby Dernburg (UC Berkeley) announces her lab proved it experimentally (but some $k$-mers were slightly adjusted).

