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Scenario: Flip a fair coin three times

Flip a coin 3 times. The sample space is

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Define events

A = “First flip is heads” = {HHH, HHT, HTH, HTT}

B = “Two flips are heads” = {HHT, HTH, THH}

Venn diagram:

TTH
THT

A B

TTT

HHH
HTT

HHT
HTH THH
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Scenario: Flip a fair coin three times
A = “First flip is heads” P(A) = 4

8
= {HHH, HHT, HTH, HTT}

B = “Two flips are heads” P(B) = 3
8

= {HHT, HTH, THH}
TTH
THT

A B

TTT

HHH
HTT

HHT
HTH THH

Conditional probability
Flip a coin 3 times. If there are 2 heads, what’s the probability that
the first flip is heads?
Rephrase: Assuming B is true, what’s the probability of A?
Since B is true, the coin flips are one of HHT, HTH, or THH.
Out of those, the outcomes where A is true are HHT and HTH
(which is A ∩ B). So 2 out of the 3 possible outcomes in B give A.
The probability of A, given that B is true, is

P({HHT, HTH})

P({HHT, HTH, THH})
=

2/8
3/8

=
2
3

P(A | B) =
P(A ∩ B)

P(B)
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Conditional probability

A B

U

BA

P(A) = probability of A
measures A as a fraction of the sample space.

P(A | B) = conditional probability of A, given B
measures A ∩ B as a fraction of B:

P(A | B) =
P(A ∩ B)

P(B)
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Conditional probability

A B

U

BA

P(A | B) =
P(A ∩ B)

P(B)

We can solve this for:

P(A ∩ B) = P(A | B)P(B)

In the same way,

P(A ∩ B) = P(B ∩ A) = P(B | A)P(A)
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Earwax genetics

· · · T G G C C [C/T] G A G T A · · ·

In humans, a specific position in the DNA sequence of gene
ABCC11 can be a C or a T. This is an example of a Single
Nucleotide Polymorphism, or SNP (pronounced like “snip”).

Each cell has two copies of this gene, one inherited from each
parent, and the variations have this effect:

Genotype Phenotype
(versions of the gene) (resulting trait)

CC wet earwax, normal underarm odor
CT wet earwax, less odor
T T dry earwax, no odor
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Earwax in different populations

The 1000 Genomes Project studies variations like these in
thousands of individuals from different ancestral groups. Each
participant is considered to be in exactly one of these groups.

The prevalence of each genotype at this site is approximately*

Population CC CT T T
AFR (African) 98% 2% 0.15%
AMR (Ad-mixed American) 73% 25% 1%
EAS (East Asian) 7% 30% 63%
EUR (European) 75% 22% 2%
SAS (South Asian) 27% 50% 23%

(in some rows, percentages don’t total 100% due to rounding)

*1000 Genomes Project Phase 3, Ensembl release 94, Oct. 2018.
On ensembl.org, search for rs17822931, and select population genetics.
For more info, see links on the class website.
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Earwax in different populations

Population CC CT T T
AFR (African) 98% 2% 0.15%
AMR (Ad-mixed American) 73% 25% 1%
EAS (East Asian) 7% 30% 63%
EUR (European) 75% 22% 2%
SAS (South Asian) 27% 50% 23%

These are conditional probabilities. For example, the bottom row:

P(CC | SAS) = 0.27
P(CT | SAS) = 0.50
P(T T | SAS) = 0.23
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Example: Two groups

Example
A study sample is 40% AFR and 60% AMR.
In AFR, the probability of CC is 98%, while in AMR, it’s 73%.
A random individual is chosen from the sample.

Questions
1 What’s the probability they’re in AFR and have genotype CC?
2 What’s the probability their genotype is CC?
3 If the genotype is CC, what’s the probability they’re in AFR?
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1. Probability they’re in AFR and have genotype CC

A study sample is 40% AFR and 60% AMR.
In AFR, the probability of CC is 98%, while in AMR, it’s 73%.
A random individual is chosen from the sample.

Express the data using event notation
Event A = individual is in AFR, Ac = individual is in AMR

P(A) = .40 P(Ac) = .60

Event B = genotype CC
P(B|A) = .98 P(B|Ac) = .73
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1. Probability they’re in AFR and have genotype CC

Events: A = individual is in AFR, B = genotype CC.
A study sample is 40% AFR and 60% AMR:

P(A) = 0.40, P(Ac) = 0.60.
In AFR, the probability of CC is 98%, while in AMR, it’s 73%:

P(B|A) = 0.98, P(B|Ac) = 0.73.

Express the question using event notation: P(A ∩ B) = ?
We showed P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A).
We have the info for the second of these.
So P(A ∩ B) = P(B|A)P(A) = (.98)(.40) = .392 = 39.2% .

A B

.392

A B

.392.008
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2. Probability genotype is CC

Events: A = individual is in AFR, B = genotype CC.
A study sample is 40% AFR and 60% AMR:

P(A) = 0.40, P(Ac) = 0.60.
In AFR, the probability of CC is 98%, while in AMR, it’s 73%:

P(B|A) = 0.98, P(B|Ac) = 0.73.

Express the question using event notation: P(B) = ?
P(B)= P(B ∩ A) + P(B ∩ Ac)

= P(B|A)P(A) + P(B|Ac)P(Ac)

= (.98)(.40) + (.73)(.60) = .392 + .438 = .830 = 83.0%

.008

A B

.392 .438 .008

A B

.392 .438

.162
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3. If the genotype is CC, what’s the probability they’re in AFR?

Events: A = individual is in AFR, B = genotype CC.
A study sample is 40% AFR and 60% AMR:

P(A) = 0.40, P(Ac) = 0.60.
In AFR, the probability of CC is 98%, while in AMR, it’s 73%:

P(B|A) = 0.98, P(B|Ac) = 0.73.

Express the question using event notation: P(A|B) = ?

P(A|B) =
P(A ∩ B)

P(B)
=

P(B|A)P(A)
P(B)

=
(.98)(.40)

.830
≈ .472 ≈ 47.2%
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Bayes’ Theorem (simple version)

Theorem (Bayes’ Theorem)

P(A|B) =
P(B|A)P(A)

P(B)

This lets us express the probability of A given B, in terms of the
probability of B given A.

Alternate formulation of Bayes’ Theorem

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|Ac)P(Ac)
where we used

P(B) = P(B ∩ A) + P(B ∩ Ac) = P(B|A)P(A) + P(B|Ac)P(Ac)
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Partition of a sample space

1 A2 A3 4A

Mutually
exclusive

A2 A3 4AA1

Partition

A

Definition (Partition of S)
Events A1, . . . , An partition the sample space S when

P(Ai) > 0 for all i.
Ai ∩ Aj = ∅ for i , j. (pairwise mutually exclusive)
S = A1 ∪ · · · ∪ An.

In a partition, every element of the sample space is in exactly one of
the parts A1, . . . , An. Vs. for mutually exclusive, there could be
elements in S outside of those parts.
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Example: Multiple groups

Data
A study sample is 10% AFR, 20% AMR, 30% EAS, and 40% SAS.
It’s designed so that every individual is in exactly one group.
The probability of genotype CC in each group is

AFR: 98% AMR: 73% EAS: 7% SAS: 27%
A random individual is chosen from the sample.

Event notation
There are four groups:

A1 = AFR A2 = AMR A3 = EAS A4 = SAS
The sample space is S = A1 ∪ A2 ∪ A3 ∪ A4.
Since the groups don’t overlap, Ai ∩ Aj = ∅ when i , j.
B = genotype CC.
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Example: Multiple groups

Sample space, events, and probabilities

A1 = AFR A2 = AMR A3 = EAS A4 = SAS
P(A1) = 10% P(A2) = 20% P(A3) = 30% P(A4) = 40%

P(B|A1) = 98% P(B|A2) = 73% P(B|A3) = 7% P(B|A4) = 27%
where sample space S = A1 ∪ · · · ∪ A4 and B = genotype CC.
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Breaking down the probabilities of events

Sample space, events, and probabilities

A1 = AFR A2 = AMR A3 = EAS A4 = SAS
P(A1) = 10% P(A2) = 20% P(A3) = 30% P(A4) = 40%

P(B|A1) = 98% P(B|A2) = 73% P(B|A3) = 7% P(B|A4) = 27%
where sample space S = A1 ∪ · · · ∪ A4 and B = genotype CC.

Venn diagram

A1 A2 A3 A4
B B ∩ A1 B ∩ A2 B ∩ A3 B ∩ A4
Bc Bc ∩ A1 Bc ∩ A2 Bc ∩ A3 Bc ∩ A4
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Breaking down the probabilities of events

Sample space, events, and probabilities

A1 = AFR A2 = AMR A3 = EAS A4 = SAS
P(A1) = 10% P(A2) = 20% P(A3) = 30% P(A4) = 40%

P(B|A1) = 98% P(B|A2) = 73% P(B|A3) = 7% P(B|A4) = 27%
where sample space S = A1 ∪ · · · ∪ A4 and B = genotype CC.

Venn diagram with probabilities

A1 A2 A3 A4 Total
B P(B ∩ A1) P(B ∩ A2) P(B ∩ A3) P(B ∩ A4) P(B)
Bc P(Bc ∩ A1) P(Bc ∩ A2) P(Bc ∩ A3) P(Bc ∩ A4) P(Bc)

Total P(A1) P(A2) P(A3) P(A4) 1
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Breaking down the probabilities of events

Sample space, events, and probabilities

A1 = AFR A2 = AMR A3 = EAS A4 = SAS
P(A1) = 10% P(A2) = 20% P(A3) = 30% P(A4) = 40%

P(B|A1) = 98% P(B|A2) = 73% P(B|A3) = 7% P(B|A4) = 27%
where sample space S = A1 ∪ · · · ∪ A4 and B = genotype CC.

Venn diagram with probabilities
Fill in top row with P(B ∩ Ai) = P(B|Ai)P(Ai),
and fill in column totals P(Ai).

A1 A2 A3 A4 Total
B (.98)(.1) (.73)(.2) (.07)(.3) (.27)(.4) P(B)

= .098 = .146 = .021 = .108
Bc P(Bc ∩ A1) P(Bc ∩ A2) P(Bc ∩ A3) P(Bc ∩ A4) P(Bc)

Total .1 .2 .3 .4 1
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Breaking down the probabilities of events

Sample space, events, and probabilities

A1 = AFR A2 = AMR A3 = EAS A4 = SAS
P(A1) = 10% P(A2) = 20% P(A3) = 30% P(A4) = 40%

P(B|A1) = 98% P(B|A2) = 73% P(B|A3) = 7% P(B|A4) = 27%
where sample space S = A1 ∪ · · · ∪ A4 and B = genotype CC.

Venn diagram with probabilities
Fill in rest of table to complete column totals. Then compute row totals.

A1 A2 A3 A4 Total
B .098 .146 .021 .108 .373
Bc .002 .054 .279 .292 .627

Total .1 .2 .3 .4 1

P(B) = P(B ∩ A1) + · · ·+ P(B ∩ A4)
= P(B|A1)P(A1) + · · ·+ P(B|A4)P(A4)
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Questions
Events and probabilities

P(A1) = .1 P(B|A1) = .98
P(A2) = .2 P(B|A2) = .73
P(A3) = .3 P(B|A3) = .07
P(A4) = .4 P(B|A4) = .27

A1 A2 A3 A4 Total
B .098 .146 .021 .108 .373
Bc .002 .054 .279 .292 .627

Total .1 .2 .3 .4 1

What is the total probability of CC? P(B) = .373 = 37.3%
If the sample size is 10000, approximately how many individuals
have genotype CC? (10000)(.373) = 3730
If a random individual has genotype CC, what’s the probability
they’re from the ith group?

AFR: P(A1|B) =
P(B|A1)P(A1)

P(B)
=

(.98)(.10)
.373

≈ .263

AMR: P(A2|B) =
(.73)(.20)

.373 ≈ .391

EAS: P(A3|B) =
(.07)(.30)

.373 ≈ .056

SAS: P(A4|B) =
(.27)(.40)

.373 ≈ .290
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Full version of Bayes’ Theorem

Let A1, . . . , An be mutually exclusive events that partition sample space
S, and B be any event on S. Then

P(B) =
∑n

i=1 P(B|Ai)P(Ai)

If P(B) > 0 then for each j = 1, . . . , n,

P(Aj|B) =
P(B|Aj)P(Aj)

P(B)
=

P(B|Aj)P(Aj)∑n
i=1 P(B|Ai)P(Ai)
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Events can be named based on the problem instead of A, B

We could have called the events
AFR, AMR, EAS, SAS instead of A1, . . . , A4,

and CC instead of B.
In this notation, the initial data is

P(AFR) = 10% P(CC|AFR) = 98%
P(AMR) = 20% P(CC|AMR) = 73%
P(EAS) = 30% P(CC|EAS) = 7%
P(SAS) = 40% P(CC|SAS) = 27%

The total probability of CC is

P(CC) = P(CC|AFR)P(AFR) + P(CC|AMR)P(AMR)
+ P(CC|EAS)P(EAS) + P(CC|SAS)P(SAS)

If a random individual has genotype CC, the probability they’re
from each group is

P(AFR|CC) =
P(CC|AFR)P(AFR)

P(CC)
, etc.
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Independence (2.5)
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Independence

Independence
Events A and B are independent when

P(A ∩ B) = P(A)P(B)

Derivation from conditional probability
A and B are independent when knowledge of one event doesn’t affect
the probability of the other event:

P(A|B) = P(A) ⇔ P(A ∩ B)
P(B)

= P(A) ⇔ P(A∩B) = P(A)P(B)

Prof. Tesler Conditional Probability and Bayes’ Theorem Math 186 & 283 / Fall 2019 26 / 38



Independence examples

Rolling two dice (red and green)
P(red = 1) = 1/6

P(green = 2) = 1/6

P(red = 1 and green = 2) = (1/6)(1/6) = 1/36

The two rolls are independent.

Dealing cards
Draw two cards X, Y from a standard 52 card deck.
Separately, without knowledge of the other card:

P(X is red) = 1/2 and P(Y is red) = 1/2

Recall that P(A ∩ B) = P(A|B)P(B):
P(X is red and Y is red) =

P(X is red | Y is red)P(Y is red) = (25/51)(1/2) = 25
102

This doesn’t equal (1/2)(1/2) = 1/4, so the cards are dependent.
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Independence for multiple events

Rolling two dice (red and green)

A = “red is even” P(A) = 1/2
B = “green is even” P(B) = 1/2
C = “red+green is even” P(C) = 1/2

Question: If red is even and red+green is odd, what’s the parity of
green? odd
Any two of the above imply the third, so they are not independent.
We need a way to check this.
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Independence for multiple events

Rolling two dice (red and green)
A = “red is even”, B = “green is even”, C = “red+green is even”

S = { (r, g) : r = 1, . . . , 6 and g = 1, . . . , 6 }

A ∩ B = { (r, g) : r = 2, 4, 6 and g = 2, 4, 6 }

P(A ∩ B) = 32/62 = 9/36 = 1/4
P(A)P(B) = (1/2)(1/2) = 1/4 so A and B are independent.

A ∩ B = A ∩ C = B ∩ C = { (r, g) : r = 2, 4, 6 and g = 2, 4, 6 }
Likewise, A and C are independent, and B and C are independent.

Three-way intersection:
A ∩ B ∩ C = { (r, g) : r = 2, 4, 6 and g = 2, 4, 6 }

P(A ∩ B ∩ C)=1/4 , P(A)P(B)P(C)=(1/2)(1/2)(1/2)=1/8
A, B, C are dependent.
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Independence for multiple events

Events A1, A2, . . . , An are independent if all combinations of them have
multiplicative probabilities:

All pairs: P(Ai ∩ Aj) = P(Ai)P(Aj) i, j distinct

All triples: P(Ai ∩ Aj ∩ Ak) = P(Ai)P(Aj)P(Ak) i, j, k distinct

All 4-way, All 5-way, . . . , All n-way

If any of the above equations fail to hold, then A1, A2, . . . , An are
dependent.
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Venn diagram of independence
Event A is split into A ∩ B and A ∩ Bc.
If A and B are independent, then

P(A ∩ Bc) = P(A) − P(A ∩ B)

= P(A) − P(A)P(B) = P(A)(1 − P(B)) = P(A)P(Bc)

A and B are independent iff all regions of the Venn diagram have
multiplicative probabilities

P(A    B ) =
P(A )P(B )

P(A    B) =

P(A )P(B)P(A)P(B )

U

U

U

U

A B
P(A   B ) =

P(A)P(B)
P(A   B) =

c

c

c

cc

c c
c
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Venn diagram of independence for multiple events

A, B, C are independent iff all 8 regions follow the multiplication
rule; e.g., for the region indicated,

P(Ac ∩ B ∩ C) = P(Ac)P(B)P(C)

C

A B

For a Venn diagram on n sets, the sets are independent iff all 2n

regions obey the multiplication rule.
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Independent vs. mutually exclusive

C

A B

C

Independent Mutually exclusive

A B

A, B, C independent:
Full Venn diagram with intersecting sets.
Intersections and Venn diagram regions have probabilities given by
the multiplication formulas.

A, B, C mutually exclusive: No overlaps between sets.
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Repeated independent trials

Repeat an experiment over and over, with all trials independent.

Roll a die over and over
The probabilities of the values of the rolls are not influenced by
previous rolls, so they are independent.

Draw cards from a deck without replacement
The card values are influenced by previous draws, so they are not
independent.
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Roll a die 10 times

Probability of at least one 3
The rolls are R1, R2, . . . , R10.

P(rolling at least one 3) = 1 − P(no 3’s)
P(no 3’s) = P(R1 , 3)P(R2 , 3) · · ·P(R10 , 3) = (5/6)10

P(rolling at least one 3) = 1 − (5/6)10

Probability of rolling exactly one 3

P(roll exactly one 3) =
10∑

i=1

P(Ri = 3, others , 3)

=

10∑
i=1

(1/6)(5/6)9 = 10(1/6)(5/6)9
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Review of geometric series

Geometric series

a + ar + ar2 + ar3 + · · · =
∞∑

i=0

ari =
a

1 − r

where a is the initial term
and r is the ratio, with |r| < 1.
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A solitaire game

The Rules
Roll a die repeatedly.

Win if it shows 3.
Lose if it shows 4.
Try again otherwise.

Events
What are the probabilities of winning; losing; and playing forever
without winning or losing?
Events: A = “win”, B = “lose”, C = “play forever”.
A, B, C are mutually exclusive and C = (A ∪ B)c.
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Probability of winning
A = “win” = A1 ∪ A2 ∪ A3 ∪ · · · =

⋃∞
k=1 Ak

where Ak is the event that you win on the kth roll.
To win on the kth roll,

each of the first k − 1 rolls must be one of 1, 2, 5, or 6,
and the kth roll must be 3.

P(Ak) = (4/6)k−1(1/6)

P(A) =
∑∞

k=1 P(Ak) =
∑∞

k=1(4/6)k−1(1/6)

Geometric series:
First term (plug in k = 1): (4/6)0(1/6) = 1/6

Ratio: 4/6
Sum: P(A) = 1/6

1−(4/6) =
1/6
2/6 = 1

2

Probability of losing is similarly computed as P(B) = 1/2.
Probability of never winning or losing:

C = (A ∪ B)c

P(C) = 1 − P(A) − P(B) = 1 − (1/2) − (1/2) = 0.
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