Math 283 Linear Algebra Review

Jocelyne Bruand

May 25, 2008

1 Matrix Multiplication

Let A be an m-by- n matrix and B be an n-by- p matrix. Then the product of A and B is given by

$$
(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Example 1

$\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right] \cdot\left[\begin{array}{c}g \\ h \\ i\end{array}\right]=\left[\begin{array}{c}a g+b h+c i \\ d g+e h+f i\end{array}\right]$
Problem 1 Do the following matrix multiplication
$\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 2\end{array}\right]=$

2 Determinant

The determinant of a 2-by-2 matrix is given by

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

The determinant of a 3-by-3 matrix is given by

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a e i+b f g+c d h-a f h-b d i-c e g
$$

Example 2

$\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=1 \cdot 4-2 \cdot 3=-2$
In matlab: In R:

$$
\begin{array}{ll}
\operatorname{det}\left(\left[\begin{array}{llll}
1 & 2 ; & 3 & 4
\end{array}\right]\right) & \operatorname{det}(\operatorname{array}(c(1,3,2,4), c(2,2))) \\
\operatorname{ans}= & {[1]-2} \\
-2 &
\end{array}
$$

Problem 2 Calculate the following determinant
$\left|\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 2 & 4\end{array}\right|=$

3 Matrix Inversion

A matrix is invertible if and only if its determinant is non-zero. The inverse matrix A^{-1} of the n-by- n matrix A is a unique n-by- n which satisfies

$$
A A^{-1}=A^{-1} A=I_{n}
$$

where I_{n} is the n-by- n identity matrix.

Example 3

$$
\begin{aligned}
& {\left[\begin{array}{ll|ll}
1 & 2 & 1 & 0 \\
3 & 4 & 0 & 1
\end{array}\right] \cong\left[\begin{array}{rr|rr}
1 & 2 & 1 & 0 \\
0 & -2 & -3 & 1
\end{array}\right] \quad R_{2} \leftarrow R_{2}-3 R_{1}} \\
& \cong\left[\begin{array}{rr|rr}
1 & 0 & -2 & 1 \\
0 & 1 & \frac{3}{2} & -\frac{1}{2}
\end{array}\right] \begin{array}{l}
R_{1} \leftarrow R_{1}+R_{2} \\
R_{2} \leftarrow-\frac{1}{2} R_{2}
\end{array} \\
& \text { In matlab: } \\
& \text { In R: } \\
& \text { >> inv([1 2; 3 4]) > solve(array (c(1,3,2,4), c(2,2))) } \\
& \text { ans }=\text { [,1] [,2] } \\
& -2.0000 \quad[1.0000-2.0 \quad 1.0 \\
& 1.5000-0.5000 \quad[2,] \quad 1.5-0.5
\end{aligned}
$$

Problem 3 Find the inverse of $\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]$.

4 Eigenvalues and Eigenvectors

The vector \vec{x} is an eigenvector for A if there exist a scalar λ such that $A \vec{x}=\lambda \vec{x}$. λ is the eigenvalue corresponding to \vec{x}. It can be shown that λ is an eigenvalue of A if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.

Example 4 We want to find the eigenvalues and eigenvectors of $\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$.
$\begin{aligned} \operatorname{det}\left(A-\lambda I_{n}\right) & =\left|\begin{array}{cc}2-\lambda & 1 \\ 0 & 1-\lambda\end{array}\right| \\ & =(2-\lambda)(1-\lambda)\end{aligned}$
The roots of $(2-\lambda)(1-\lambda)$ are 1 and 2 . These are the eigenvalues of A.
Now we want to solve $A \vec{x}=\lambda \vec{x}$.
$A \vec{x}=\lambda \vec{x} \Rightarrow\left\{\begin{aligned} 2 x_{1}+x_{2} & =\lambda x_{1} \\ x_{2} & =\lambda x_{2}\end{aligned}\right.$
For $\lambda_{1}=1, x_{2}=-x_{1}$ so the eigenvectors have the form $\left[\begin{array}{c}c \\ -c\end{array}\right]$.
For $\lambda_{2}=2, x_{2}=0$ so the eigenvectors have the form $\left[\begin{array}{l}c \\ 0\end{array}\right]$.

In matlab,

```
>> [V,D] = eig([[2 1; 0 1]) > eig = eigen(array(c(2,0,1,1), c(2,2)))
V =
    1.0000 -0.7071
        0.7071
D =
    2 

In \(R\) :
```

> eig

```
> eig
$values
$values
[1] 2 1
[1] 2 1
$vectors
$vectors
                                    [,1] [,2]
                                    [,1] [,2]
    [1,] 1 -0.7071068
    [1,] 1 -0.7071068
    [2,] 0 0.7071068
```

```
    [2,] 0 0.7071068
```

```

Note that matlab and \(R\) will normalize the eigenvectors.
Problem 4 Find the eigenvalues and eigenvectors of \(A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]\).

\section*{5 Matrix Diagonalization}

A square matrix \(A\) is diagonalizable if there exists an invertible matrix \(V\) such that \(A=V D V^{-1}\) is a diagonal matrix. Matrix diagonalization is the process of finding \(V\) and \(D\). One can form \(D\) by putting the eigenvalues along the diagonal of a matrix, and \(V\) by having the corresponding eigenvectors in each column.

Example 5 Let's look at the previous example. We had \(\lambda_{1}=1\) and \(\lambda_{2}=2\). Therefore, we find
\[
D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
\]

We found the corresponding eigenvectors to be of the forms \(\left[\begin{array}{r}c \\ -c\end{array}\right]\) and \(\left[\begin{array}{l}c \\ 0\end{array}\right]\) respectively, so
\[
V=\left[\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right] .
\]

Now, we can show that
\[
V^{-1}=\left[\begin{array}{rr}
0 & -1 \\
1 & 1
\end{array}\right]
\]
and
\[
V D V^{-1}=\left[\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \cdot\left[\begin{array}{rr}
0 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]=A
\]

Problem 5 Diagonalize \(A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]\).
Hint: Use previous problem.

\section*{6 Spectral Decomposition}

We can obtain the \(n^{\text {th }}\) power of a matrix by multiplying it with itself \(n\) times. So \(A^{n}=A \cdot A \cdot \ldots \cdot A\). Now, if \(A\) is diagonalizable then we can find \(V\) and \(D\) such that \(D=V^{-1} A V \Rightarrow A=V D V^{-1}\). Thus we can write the following expansion:
\[
A^{n}=V D V^{-1} \cdot V D V^{-1} \ldots V D V^{-1}=V D^{n} V^{-1}
\]

Now, we have \(V=\left[\overrightarrow{r_{1}} \overrightarrow{r_{2}} \ldots \overrightarrow{r_{m}}\right]\) where \(\overrightarrow{r_{1}}, \overrightarrow{r_{2}}, \ldots, \overrightarrow{r_{m}}\) are the columns of \(V\) so the right eigenvectors of \(A\). We have \(V^{-1}=\left[\begin{array}{c}\overrightarrow{l_{1}^{\prime}} \\ \vdots \\ \overrightarrow{l_{m}^{\prime}}\end{array}\right]\) where \(\overrightarrow{\vec{l}_{1}^{\prime}}, \overrightarrow{l_{2}^{\prime}}, \ldots, \overrightarrow{l_{m}^{\prime}}\) are the rows of \(V^{-1}\) so the tranposes of the left eigenvectors of \(A\) (solution to \(\lambda \vec{x}=A^{T} \vec{x}\) ). Then,
\[
\begin{aligned}
V D^{n} V^{-1} & =V\left[\begin{array}{cccc}
\lambda_{1}^{n} & 0 & \ldots & 0 \\
0 & \lambda_{2}^{n} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{m}^{n}
\end{array}\right] V^{-1} \\
& =V\left[\begin{array}{cccc}
\lambda_{1}^{n} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right] V^{-1}+\ldots+V\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{m}^{n}
\end{array}\right] V^{-1} \\
& =\overrightarrow{r_{1}} \lambda_{1}^{n} \overrightarrow{l_{1}^{\prime}}+\overrightarrow{r_{2}} \lambda_{2}^{n} \overrightarrow{l_{2}^{\prime}}+\ldots+\overrightarrow{r_{m}} \lambda_{m}^{n} \overrightarrow{l_{m}^{\prime}} \\
& =\lambda_{1}^{n} \overrightarrow{r_{1}} \overrightarrow{l_{1}^{\prime}}+\lambda_{2}^{n} \overrightarrow{r_{2}} \overrightarrow{l_{2}^{\prime}}+\ldots+\lambda_{m}^{n} \overrightarrow{r_{m}} \overrightarrow{l_{m}^{\prime}}
\end{aligned}
\]

This is the spectral decomposition of \(A^{n}\).
Example 6 Let's continue the previous example. We have
\[
A=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right] \quad V=\left[\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right] \quad D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \quad V^{-1}=\left[\begin{array}{rr}
0 & -1 \\
1 & 1
\end{array}\right] .
\]

We can calculate
\[
A^{3}=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]^{3}=\left[\begin{array}{ll}
4 & 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
8 & 7 \\
0 & 1
\end{array}\right]
\]

If we use the spectral decomposition, we get
\[
\begin{aligned}
A^{3} & =1^{3}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\left[\begin{array}{ll}
0 & -1
\end{array}\right]+2^{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
8 & 8 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lr}
8 & 7 \\
0 & 1
\end{array}\right]
\end{aligned}
\]

Problem 6 Calculate \(A^{3}\) for \(A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]\) using both basic matrix multiplication and spectral decomposition.```

