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Estimating parameters

@ Let Y be a random variable with a distribution of known type but
unknown parameter value 0.

e Bernoulli or geometric with unknown p.
e Poisson with unknown mean .

@ Denote the pdf of Y by
Py(y;0)
to emphasize that there is a parameter 0.

@ Do n independent trials to get data yi, y2, v3, ..., V.
The joint pdf is

PY1 Y(ylsJynse):Py(ylse)Py(ynse)

------

@ Goal: Use the data to estimate 0.
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Likelihood function

@ Previously, we knew the parameter 6 and regarded the y’'s as
unknowns (occurring with certain probabilities).

@ Define the likelihood of 0 given data yq,...,y, to be
L(ea)’l, O ,)’n) :PY Yn()’l, O ,Ynae) :Py()’he) o Py(ynse)

Tyenny

@ It's the exact same formula as the joint pdf; the difference is the
interpretation. Now the data yy, ..., y, is given while 0 is unknown.

The value 6 = 0 that maximizes L is the Maximum Likelihood Estimate.
Often, it is found using Calculus by locating a critical point:

However, be sure to check for complications such as discontinuities
and boundary values of ©.
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MLE for the Poisson distribution

@ Y has a Poisson distribution with unknown parameter u > 0.
@ Collect data from independent trials:

Y1 =y, Yo=y2, ---, Y, =y,

@ Likelihood:

. B Hyi
L(p,yl,...,yn):He H - =
. lL®

@ Log likelihood is maximized at the same u and is easier to use:
INL{w;y1,..osyn) = —np+ (1 + - +ya) Inp—In(y Ly, 1)

@ Critical point: Solve d(InL)/du = 0:

du u n
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MLE for the Poisson distribution

@ Log likelihood is maximized at the same p and is easier to use:
INL(Ww;y1,...,y0) = —np+ 1+ +y) Inp—In(y! -y,

@ Critical point: Solve d(InL)/du = 0:

dinL) _ ontdwm o0 o P R b
du ! n
@ Check second derivative is negative:
d’(INL) _ yi+- 4y n ~ 0
dp? p? D i

provided y; +---+y, > 0. Soit'sa max unless y; +--- +y, = 0.

@ Boundaries for range pu > 0: Must check 1 — 0% and p — oo.
Both send In L — —o0, so the u identified above gives the max.

The Maximum Likelihood Estimate for the Poisson distribution
yvi+---+y, O#of0s)+ 1(#of1's) +2(# of 2's) + - --

LL: —
n n
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MLE for the Poisson distribution

@ The exceptional case on the previous slide was y; +--- +y, =0,
giving y; = --- =y, =0 (since all y; > 0).

@ In this case,
INL(W;y1,.syn) =—np+ 1+ +y)Inp—In(y ! - y,1)
——nu+0lnpw—In(0!--- 0!
— —nu
@ On the range 1 > 0, this is maximized at (1t = 0, which agrees with

the main formula:

. Vit 0440
(L = = =0
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Repeating the estimation gives different results

@ Scenario: In a lab class, each student does 10 trials of an
experiment and averages them. How do their results compare?

® A does n trials yai, a2, - - -, yan, leading to MLE 0y,
B does n trials yp1, yg2, - - -, yaa, l€ading to MLE 65, etc.
How do 64, 03, ... compare?

@ Treat the n trials in each experiment as random variables Yy, ..., Y,
and the MLE as a random variable ©.

Estimate Poisson parameter with n = 10 trials (secret: u = 1.23)

mOoOO o>
O = W= =
WM O
O —=MNOO
Y VT
44 aw
O 2wo
ON—=-ON
S~ WNON
MDD = OO
N = = 2 N
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Desireable properties of an estimator O

@ O should be narrowly distributed around the correct value of 9.
@ Increasing »n should improve the estimate.
@ The distribution of © should be known.

The MLE often does this (though not always!).
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@ Suppose Y is Poisson with secret parameter .

@ Poisson MLE from data is
Yi+---+Y,

n

(=

@ If many MLEs are computed from independent data sets, the
average tends to

n Yi+.---4+Y%, EYy)+---+E(Y,)
E(u)=E< >=
n n
L+---+WL nu
— :—:H
n n

@ Since E([1) = u, we say (1 is an unbiased estimator of p.

Prof. Tesler 8.3 Maximum Likeilihood Estimation Math 283 / Fall 2019




@ If E(1) = u, then (tis an unbiased estimator of w.
Butif E({1) # u, then (1 is a biased estimator of w.

@ Contrived example: Estimator (i’ = 2Y; has E({1") = 2u, so it’s
biased (unless pu = 0).

@ We will soon see an example (normal distribution) where the MLE
gives a biased estimator.
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Efficiency (want estimates to have small spread)

Increasing n

@ Continue with Poisson MLE {1 = Y1+";-+Yn

@ The variance is

Var({t) = Var (

and secret mean .

2

n n

n Var(Y;) _ Var(Y;)

Y1—|—"'—|—Yn) Var(Y;) +--- + Var(Y,)

2
n n n
Increasing n makes the variance smaller (11 is more efficient).

Another estimator
o Set i/ = 122 (and ignore Y3, ..., ¥,).
. w42
E(i) = =
Var(Y;) +4Var(Y,) p+4u  Su

9 9 9
so it has higher variance (less efficient) than the MLE.

|

=u SO unbiased

Var({i') =
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