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Regression

Given n points (x1, y1), (x2, y2), . . . , we want to determine a function
y = f (x) that is close to them.
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Regression
Based on knowledge of the underlying problem or on plotting the data,
you have an idea of the general form of the function, such as:

Line y = β0 + β1x Polynomial y = β0 + β1x + β2 x2 + β3 x3
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Exponential Decay y = Ae−Bx Logistic Curve y = A/(1 + B/C x)
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Goal: Compute the parameters (β0,β1, . . . or A, B, C, . . .) that give a
“best fit” to the data in some sense (least squares or MLEs).
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Regression

The methods we consider require the parameters to occur linearly.
It is fine if (x, y) do not occur linearly.
E.g., plugging (x, y) = (2, 3) into y = β0 + β1x + β2 x2 + β3 x3

gives 3 = β0 + 2β1 + 4β2 + 8β3.

For exponential decay, y = Ae−Bx, parameter B does not occur
linearly. Transform the equation to:

ln y = ln(A) − Bx = A ′ − Bx

When we plug in (x, y) values, the parameters A ′, B occur linearly.

Transform the logistic curve y = A/(1 + B/Cx) to:

ln
(

A
y
− 1
)

= ln(B) − x ln(C) = B ′ + C ′ x

where A is determined from A = lim
x→∞ y(x). Now B ′, C ′ occur linearly.
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Least squares fit to a line
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Given n points (x1, y1), (x2, y2), . . . , we will fit them to a line ŷ = β0 +β1x:

Independent variable: x. We assume the x’s are known exactly or
have negligible measurement errors.
Dependent variable: y. We assume the y’s depend on the x’s but
fluctuate due to a random process.
We do not have y = f (x), but instead, y = f (x) + error.
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Least squares fit to a line
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Given n points (x1, y1), (x2, y2), . . . , we will fit them to a line ŷ = β0 +β1x:

Predicted y value (on the line): ŷi = β0 + β1xi

Actual data (•): yi = β0 + β1xi + εi

Residual (actual y minus prediction): εi = yi − ŷi = yi − (β0 + β1xi)
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Least squares fit to a line
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We will use the least squares method : pick parameters β0,β1 that
minimize the sum of squares of the residuals.

L =

n∑
i=1

(yi − (β0 + β1xi))
2
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Least squares fit to a line

L =

n∑
i=1

(yi − (β0 + β1xi))
2

To find β0,β1 that minimize this, solve ∇L =
(
∂L
∂β0

, ∂L
∂β1

)
= (0, 0):

∂L
∂β0

= −2
n∑

i=1

(yi − (β0 + β1xi)) = 0 ⇒ nβ0 +

(
n∑

i=1

xi

)
β1 =

n∑
i=1

yi

∂L
∂β1

= −2
n∑

i=1

(yi − (β0 + β1xi))xi = 0 ⇒

(
n∑

i=1

xi

)
β0 +

(
n∑

i=1

xi
2

)
β1 =

n∑
i=1

xiyi

which has solution (all sums are i = 1 to n)

β1 =
n (

∑
i xi yi) − (

∑
i xi) (

∑
i yi)

n (
∑

i xi
2) − (

∑
i xi)

2 =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2 β0 = ȳ − β1x̄

Not shown: use 2nd derivatives to confirm it’s a minimum rather than a
maximum or saddle point.
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Best fitting line
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The best fit for y = β0 + β1x + error
or x = α0 + α1y + error give different lines!

y = β0 + β1x + error assumes the x’s are known exactly with no
errors, while the y’s have errors.
x = α0 + α1y + error is the other way around.

Prof. Tesler 8.4.3: Linear Regression Math 283 / Fall 2019 9 / 28



Total Least Squares / Principal Components Analysis
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Least squares vs. PCA
Errors in data:

Least squares: y = β0 + β1x + error
assumes x’s have no errors while y’s have errors.
PCA: assumes all coordinates have errors.

For (xi, yi) data, we minimize the sum of . . .
Least squares: squared vertical distances from points to the line.
PCA: squared orthogonal distances from points to the line.
Due to centering data, the lines all go through (x̄, ȳ).
For multivariate data, lines are replaced by planes, etc.

Different units/scaling on inputs (x) and outputs ( y):
Least squares gives equivalent solutions if you change units or
scaling, while PCA is sensitive to changes in these.
Example: (a) x in seconds, y in cm vs. (b) x in seconds, y in mm
give equivalent results for least squares, inequivalent for PCA.
For PCA, a workaround is to convert coordinates to Z-scores.
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Distribution of values at each x
(a) Homoscedastic (b) Heteroscedastic
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On repeated trials, at each x we get a distribution of values of y
rather than a single value.
In (a), the error term is a normal distribution with the same
variance for every x. This is the case we will study. Assume the
errors are independent of x and have a normal distribution with
mean 0, SD σ.
In (b), the variance changes for different values of x.
Use a generalization called Weighted Least Squares.
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Maximum Likelihood Estimate for best fitting line

The method of least squares uses a geometrical perspective.
Now we’ll assume the data has certain statistical properties.
Simple linear model:

Y = β0 + β1x + E

Assume the x’s are known (so lowercase) and E is Gaussian with
mean 0 and standard deviation σ, making E, Y random variables.
At each x, there is a distribution of possible y’s, giving a conditional
distribution: fY|X=x(y).
Assume conditional distributions for different x’s are independent.
The means of these conditional distributions form a line

y = E(Y |X = x) = β0 + β1x.

Denote the MLE values by β̂0, β̂1, σ̂2 to distinguish them from the
true (hidden) values.
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Maximum Likelihood Estimate for best fitting line

Given data (x1, y1), . . . , (xn, yn), we have

yi = β0 + β1xi + εi

where
εi = yi − (β0 + β1xi)

has a normal distribution with mean 0 and standard deviation σ.
The likelihood of the data is the product of the pdf of the normal
distribution at εi over all i:

L =
1

(
√

2πσ)n
exp

(
−

n∑
i=1

(yi − (β0 + β1xi))
2

2σ2

)
Finding β0,β1 that maximize L (or log L) is equivalent to minimizing

n∑
i=1

(yi − (β0 + β1xi))
2

so we get the same answer as using least squares!
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Confidence intervals
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The best fit line — is different than the true line —.
We found point estimates of β0 and β1.
Assuming errors are independent of x and normally distributed gives

Confidence intervals for β0, β1.
A prediction interval to extrapolate y = f (x) at other x’s.
Warning: it may diverge from the true line when we go out too far.
Not shown: one can also do hypothesis tests on the values of β0
and β1, and on whether two samples give the same line.
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Confidence intervals
The method of least squares gave point estimates of β0 and β1:

β̂1 =
n
∑

i xiyi − (
∑

i xi) (
∑

i yi)

n (
∑

i xi
2) − (

∑
i xi)

2 =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2 β̂0 = ȳ − β̂1x̄

The sample variance of the residuals is

s2 =
1

n − 2

n∑
i=1

(yi − (β̂0 + β̂1xi))
2 (with df = n − 2).

100(1 − α)% confidence intervals:

β0 :

(
β̂0 − tα/2,n−2

s
√∑

i xi2√
n
∑

i(xi−x̄)
, β̂0 + tα/2,n−2

s
√∑

i xi2√
n
∑

i(xi−x̄)

)
β1 :

(
β̂1 − tα/2,n−2

s√∑
i(xi−x̄)

, β̂1 + tα/2,n−2
s√∑

i(xi−x̄)

)
y at new x : (ŷ − w, ŷ + w) with ŷ = β0 + β1x

and w = tα/2,n−2 · s ·
√

1 + 1
n +

(x−x̄)2∑
i(xi−x̄)2
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Correlation coefficient

Let X and Y be two random variables.
Their correlation coefficient is

ρ(X, Y) =
Cov(X, Y)√
Var(X)Var(Y)

This is a normalized version of covariance, and is between ±1.
For a line Y = aX + b with a, b constants (a , 0),

ρ(X, Y) =
a Var(X)√

Var(X)
√

Var(aX)
=

aσ2

σ · |a|σ
=

a
|a|

= ±1 (sign of a)

ρ(X, Y) = ±1 iff Y = aX + b with a, b constants (a , 0).
Closer to ±1: more linear. Closer to 0: less linear.
If X and Y are independent then ρ(X, Y)=0.
The converse is not valid: dependent variables can have ρ(X, Y)=0.
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Sample correlation coefficient r

ρ(X,Y) is estimated from data by the sample correlation coefficient
(a.k.a. Pearson product-moment correlation coefficient):

r(x, y) =
cov(x, y)√
var(x) var(y)

=

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2

People often report r2 (between 0 and 1) instead of r.
The slopes of the least squares lines are

y = β1x + β0 + ε x = α1y + α0 + ε
′

β̂1 =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2 α̂1 =

∑
i(xi − x̄)(yi − ȳ)∑

i(yi − ȳ)2

(slope in normal orientation is 1/α̂1)

so r = ±
√
α̂1β̂1 = ±

√
β̂1/(1/α̂1) (with same ± sign as slopes)

is the square root of the ratio of the slopes of the lines.
An aside: β̂1 = cov(x, y)/ var(x).
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Sample correlation coefficient r

r2 is a biased estimator of ρ2.
If the data comes from a bivariate normal distribution, then for
large n, the estimate is good (asymptotically unbiased and
efficient).
See this Wikipedia article for more information on exceptions.

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient#Sample_size
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Sample correlation coefficient r
1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

http://en.wikipedia.org/wiki/File:Correlation_examples2.svg
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Middle row: Perfect linear relation Y = aX + b gives
r = 1 for lines with positive slope (a > 0)
r = −1 for lines with negative slope (a < 0)
r undefined for horizontal line (Y = b)

Other rows: coming up!
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Interpretation of r2

Let ŷi = β̂1xi + β̂0
be the predicted y-value for xi based on the least squares line.
Write the deviation of yi from ȳ as

yi − ȳ = (yi − ŷi) + (ŷi − ȳ)
Total Unexplained Explained

deviation by line by line

It can be shown that the sum of squared deviations for all y’s is∑
i(yi − ȳ)2 =

∑
i(yi − ŷi)

2 +
∑

i(ŷi − ȳ)2 + 2
∑

i(yi − ŷi)(ŷi − ȳ)
Total Unexplained Explained = 0 by a miracle!

variation variation variation (Tedious algebra not shown)

and that

r2 =

∑
i(ŷi − ȳ)2∑
i(yi − ȳ)2 =

Explained variation
Total variation

r = 1: 100% of the variation is explained by the line and
0% is due to other factors, and the slope is positive.

r = −.8: 64% of the variation is explained by the line and
36% is due to other factors, and the slope is negative.
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Sample correlation coefficient r

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

http://en.wikipedia.org/wiki/File:Correlation_examples2.svg
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Top row: Linear relations with varying r.
Bottom: r = 0, yet X and Y are dependent in all of these (except
possibly the last); it’s just that the relationship is not a line.
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Correlation does not imply causation
High correlation between X and Y doesn’t mean X causes Y or
vice-versa. It could be a coincidence. Or they could both be
caused by a third variable.
Website tylervigen.com plots many data sets (various quantities
by year) against each other to find spurious correlations:

http://www.tylervigen.com/view_correlation?id=1703 http://tylervigen.com/view_correlation?id=1759
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More about interpretation of correlation

Low r2 does NOT guarantee independence; it just means that a
line y = β0 + β1x is not a good fit to the data.

r is an estimate of ρ. The estimate improves with higher n.
With additional assumptions on the underlying joint distribution of
X, Y, we can use r to test

H0: ρ = 0 vs. H1: ρ , 0 (or other values).

Best fits and correlation generalize to other models, including

Polynomial regression y = β0 + β1 x + β2 x2 + · · ·+ βp x p

Multiple linear regression y = β0 + β1 t + β2 u + · · ·+ βp w

t, u, . . . , w: multiple independent variables
y: dependent variable

Weighted versions When the variance is different at each
value of the independent variables
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Polynomial regression

Model y as a polynomial in x of degree p.

y = β0 + β1x + β2x2 + · · ·+ βpxp

The ith observation (xi, yi) gives
yi = β0 + β1xi + β2xi

2 + · · ·+ βpxi
p + εi

Matrix notation: ~y = X~β+ ~ε

~y = X (design matrix) · ~β + ~ε
y1
y2
...

yn

 =


1 x1 x1

2 · · · x1
p

1 x2 x2
2 · · · x2

p

...
...

... · · ·
...

1 xn xn
2 · · · xn

p

 ·


β0
β1
...
βp

 +


ε1
ε2
...
εn


n× 1 n× (p + 1) (p + 1)× 1 n× 1

MLE point estimate of ~β is ~̂β = (X ′X)−1X ′~y.
Need X ′X to be non-singular and n > p + 1 (usually a lot bigger).
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Multiple linear regression

Model one dependent variable as constant + linear combination of
p independent variables. Goal is a best fit for

y = β0 + β1x(1) + β2x(2) + · · ·+ βpx(p)

The ith observation (xi1, xi2, . . . , xip, yi) gives
yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi

Matrix notation: ~y = X~β+ ~ε

~y = X (design matrix) · ~β + ~ε
y1
y2
...

yn

 =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...

...
... · · ·

...
1 xn1 xn2 · · · xnp

 ·


β0
β1
...
βp

 +


ε1
ε2
...
εn


n× 1 n× (p + 1) (p + 1)× 1 n× 1

MLE point estimate of ~β is ~̂β = (X ′X)−1X ′~y.
Need X ′X to be non-singular and n > p + 1 (usually a lot bigger).
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Example in Matlab

Example in Matlab
>> # Generate data with known x
>> # but random errors in y
>> x = (-10:10)’; # column vector
>> err = normrnd(0, 100, size(x));
>> y = 10*(x.^2) - 3*x + 6 + err;

>> # Point estimate (no conf. int.):
>> polyfit(x,y,2)

9.5968 -0.6319 30.5096

>> # Interval estimate (with conf. int.)
>> # Create the design matrix
>> Xdesign = [ones(size(x)), x, x.^2]
Xdesign =

1 -10 100
1 -9 81

...
1 10 100

>> [b, bint] = regress(y, Xdesign)
b =

30.5096
-0.6319
9.5968

bint =
-48.6394 109.6587
-9.3294 8.0655
7.9854 11.2082

Fit is y = 9.5968x2 − 0.6319x + 30.5096
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Fitting a polynomial to data

x

y

y = 10x2 − 3x + 6 (True curve, hidden)

y = β̂2x
2 + β̂1x + β̂0 (Best fit quadratic)
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Example in R

Example in R
> # Generate data with known x
> # but random errors in y
> x = -10:10;
> n = length(x);
> err = rnorm(n, 0, 100);
> y = 10*x^2 - 3*x + 6 + err;

> # Fit to y = b0 + b1*x + b2*x^2
> # intercept b0 is implied:
> bestfit = lm(y ~ I(x) + I(x^2));

> coefficients(bestfit)
(Intercept) I(x) I(x^2)
30.5096087 -0.6319475 9.5968040

> confint(bestfit)
2.5 % 97.5 %

(Intercept) -48.639445 109.658662
I(x) -9.329402 8.065507
I(x^2) 7.985427 11.208181

Fit is y = 9.5968040x2 − 0.6319475x + 30.5096087
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Fitting a polynomial to data

x

y

y = 10x2 − 3x + 6 (True curve, hidden)

y = β̂2x
2 + β̂1x + β̂0 (Best fit quadratic)
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