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Regression

Given n points (x, y1), (x2,¥2), ..., we want to determine a function
y = f(x) that is close to them.

Scatter plot of data (x,y)
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Regression

Based on knowledge of the underlying problem or on plotting the data,
you have an idea of the general form of the function, such as:

Liney =3¢+ B1x Polynomial y = 3¢ + B1x + P2x* + B3 x>
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Exponential Decay y = Ae—2* Logistic Curvey =A4/(1+ B/C¥)
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Goal: Compute the parameters (¢, f1,...0r A, B, C,...) that give a

“pest fit” to the data in some sense (least squares or MLEsSs).
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Regression

@ The methods we consider require the parameters to occur linearly.
It is fine if (x, y) do not occur linearly.
E.g., plugging (x,y) = (2,3) into  y=Bo+ Bix+ Pox*+ P3x
gives 3 =0+ 2p1 +4p2+ 8PB3.

@ For exponential decay, y = Ae—5*, parameter B does not occur
linearly. Transform the equation to:

Iny =In(A) —Bx =A" — Bx
When we plug in (x, y) values, the parameters A’, B occur linearly.

@ Transform the logistic curve y =A/(1 4+ B/C*) to:
A / /
In <— - 1) —In(B) —xIn(C) =B "+ C'x
y
where A is determined from A = lim y(x). Now B’, C’ occur linearly.

X— 00
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Least squares fit to a line
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Given n points (xi,y1), (x2,y2), ..., we will fit them to a line y = 3o+ B1x:
@ /ndependent variable: x. We assume the x’s are known exactly or
have negligible measurement errors.

@ Dependent variable: y. We assume the y’'s depend on the x’s but
fluctuate due to a random process.

@ We do not have y = f(x), but instead, y = f(x) + error.
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Least squares fit to a line
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Given n points (xi,y1), (x2,y2), ..., we will fit themto aline y = o+ 1x:

Predicted y value (on the line): yi = Po + PBix;
Actual data (e): yi = Po+ Pi1x; + €;
Residual (actual y minus prediction): €; =vi—3y; = vi — (Bo + PB1x;i)
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Least squares fit to a line
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We will use the least squares method: pick parameters 3¢, 3 that
minimize the sum of squares of the residuals.

L= Z BO"‘lez))
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Least squares fit to a line

L= Z ﬁO‘l_Bl-xl))

To find B, B, that minimize this, solve VL = (aa(go, aa[gl) — (0,0):

6—60 — _2Z — (Po+ Pix;)) =0 = nPo + <in> B = Z)’i
i=1 i=1
a—f51 —ZZ —(Bo+P1x))xi=0 = (Z?@) Bo + (in2> S inyi

which has solution (all sums are i =1 to n)

L (Zixi)’i) — (Z,-Xi) (Zi)’i) o Zi(xi —Xx)(yi — ) — Yy —Bx
b1 = n (Zixiz) — (Zixi)z B 2_i(xi —X)? Po=y—Pi

Not shown: use 2nd derivatives to confirm it's a minimum rather than a
maximum or saddle point.
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Best fitting line

y=Bo+Pix+e X =0 +0qy+E€
o _| o _|
Lo —— y=24.9494 +0.6180x slope =0.6180 Lo —— X=-28.2067 +1.1501y slope =0.8695
o _| o _|
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@ The best fit for y = 3¢ + 1x + error
or x = xy + &1y + error give different lines!
@ y=[3p+ Pix+ error assumes the x's are known exactly with no
errors, while the y’'s have errors.
@ x = o + 1y + error is the other way around.
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Total Least Squares / Principal Components Analysis

y=Bo+Pix+e X=0p+oy+e
o _| o _|
0 —— y=24.9494+0.6180x slope =0.6180 0 —— x=-28.2067+1.1501y  slope =0.8695
o _| o _|
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First principal component
P P P All three
of centered data

o _| o
0 slope = 0.6934274 o X=1.685727 y=25.99114
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Least squares vs. PCA
Errors in data:

@ Least squares: y = 39 + p1x + error
assumes x’s have no errors while y’'s have errors.

@ PCA: assumes all coordinates have errors.

For (x;,y;) data, we minimize the sum of ...
@ Least squares: squared vertical distances from points to the line.
@ PCA: squared orthogonal distances from points to the line.
@ Due to centering data, the lines all go through (x, y).
@ For multivariate data, lines are replaced by planes, etc.

Different units/scaling on inputs (x) and outputs (y):

@ Least squares gives equivalent solutions if you change units or
scaling, while PCA is sensitive to changes in these.

@ Example: (a) x in seconds, yincm vs. (b)xinseconds, yin mm
give equivalent results for least squares, inequivalent for PCA.

@ For PCA, a workaround is to convert coordinates to Z-scores.
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Distribution of values at each x

(a) Homoscedastic (b) Heteroscedastic
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@ On repeated trials, at each x we get a distribution of values of y
rather than a single value.

@ In (a), the error term is a normal distribution with the same
variance for every x. This is the case we will study. Assume the
errors are independent of x and have a normal distribution with
mean 0, SD o.

@ In (b), the variance changes for different values of x.
Use a generalization called Weighted Least Squares.
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Maximum Likelihood Estimate for best fitting line

@ The method of least squares uses a geometrical perspective.
@ Now we’ll assume the data has certain statistical properties.
@ Simple linear model:

Y=PBo+Pix+¢C

Assume the x’s are known (so lowercase) and € is Gaussian with
mean 0 and standard deviation o, making &, Y random variables.

@ At each x, there is a distribution of possible y’'s, giving a conditional
d/Stf/bUtlon fYIX:x (y) .

@ Assume conditional distributions for different x’s are independent.
@ The means of these conditional distributions form a line

y=EY[|X =x) = o+ Prx.

@ Denote the MLE values by 3¢, 1, 62 to distinguish them from the
true (hidden) values.
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Maximum Likelihood Estimate for best fitting line

Given data (x1,y1),..., (x:, y.), we have

yi = PBo+ Bixi + €
where
€i =Yyi— (Bo+ B1xi)

has a normal distribution with mean 0 and standard deviation o.

The likelinood of the data is the product of the pdf of the normal
distribution at €; over all i:

_ 1 — (yi — (Bo + B1x:))?
b= (V2mo)? =Xp <Z 202 )

i=1

Finding (o, 31 that maximize L (or log L) is equivalent to minimizing

n

D i — (Bo+ Bixi))

i=1
SO we get the same answer as using least squares!
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Confidence intervals

y=Po+P1X+e

— true line

e sample data

—— bestfit line

95% prediction interval
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@ The best fit ine — is different than the true line —.

@ We found point estimates of 3o and f3;.
@ Assuming errors are independent of x and normally distributed gives
e Confidence intervals for 3¢, 3.
@ A prediction interval to extrapolate y = f(x) at other x’s.
Warning: it may diverge from the true line when we go out too far.
@ Not shown: one can also do hypothesis tests on the values of 3
and 3, and on whether two samples give the same line.
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Confidence intervals

@ The method of least squares gave point estimates of 3o and (3;:

_ n) ;i xiyi — (Q_;xi) (2_; yi) _ 2_i(xi —x)(yi — )

. : A -
P n(Zixiz)_(Zixi)z >_i(x;i —X)? Po=y=Fr
@ The sample variance of the residuals is
1 Ao
2 _ L )2 i —
5 —n_zg(y, (Bo+ B1x))* (with df =n—2).

@ 100(1 — «)% confidence intervals:

. » s 0 s
Br: (Bl Lo /2,n—2 \/Zi(xi—i), B1+ Lo /2,n—2 \/Z,‘(%‘ﬂ)
yatnewx: (y—w,y+w) with y =0+ px
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Correlation coefficient

Let X and Y be two random variables.
Their correlation coefficient is

Cov(X,Y)

p(X,Y) =
\/Var ) Var(Y

@ This is a normalized version of covariance, and is between +1.
@ Foraline Y = aX + b with a, b constants (a # 0),
a Var(X) ac? a

PIX, Y] = v/ Var(X) 4/ Var(aX) B lalo N lal = =l {sign of a)

@ p(X,Y)==1iff Y =aX + b with a, b constants (a # 0).
@ Closer to #1: more linear. Closer to O: less linear.

@ If X and Y are independent then p(X, Y)=0.
The converse is not valid: dependent variables can have p(X, Y)=0.
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Sample correlation coefficient r

@ p(X,Y) is estimated from data by the sample correlation coefficient
(a.k.a. Pearson product-moment correlation coefficient):

cov(x,y) _ > (i —x)(yi—y)
artovary) | /0 — 3 /05

@ People often report > (between 0 and 1) instead of r.
@ The slopes of the least squares lines are

r(x,y) =

y=Bix+po+e x=ouy+ oo+ e’
A — 2_i(xi —x)(yi —y) 5, — 2ildi =00 —y)
1 >_i(xi —x)? 1 > i(yi—y)?

(slope in normal orientation is 1/&;)

sOr=++vV&p ==+ \/Bl/(l/&l) (with same =+ sign as slopes)
IS the square root of the ratio of the slopes of the lines.
@ An aside: B; = cov(x,y)/ var(x).
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Sample correlation coefficient r

@ r° is a biased estimator of p?.

@ |f the data comes from a bivariate normal distribution, then for
large n, the estimate is good (asymptotically unbiased and
efficient).

@ See this Wikipedia article for more information on exceptions.

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient#Sample_size
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Sample correlation coefficient r

0 0 0 0
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http://en.wikipedia.org/wiki/File:Correlation_examples2.svg
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

@ Middle row: Perfect linear relation Y = aX + b gives
r=1 for lines with positive slope (a > 0)
r=—1 for lines with negative slope (a < 0)
r undefined for horizontal line (Y = b)

@ Other rows: coming up!
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Interpretation of 7

@ Letd = Bix; + Bo
be the predicted y-value for x; based on the least squares line.
@ Write the deviation of y; from y as
= (i—y) + (i—y)
Unexplained Explained
by line by line
@ It can be shown that the sum of squared deviations for all y's is

= > =)+ 20—y + 2, i—3)0i— )
Unexplained Explained = 0 by a miracle!
variation variation (Tedious algebra not shown)

and that

, Y .(3i—y)? Explained variation
r = —

@ r=1: 100% of the variation is explained by the line and
0% is due to other factors, and the slope is positive.
@ r = —.8: 64% of the variation is explained by the line and
36% is due to other factors, and the slope is negative.

8.4.3: Linear Regression Math 283 / Fall 2019 21/28

Prof. Tesler



Sample correlation coefficient r
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http://en.wikipedia.org/wiki/File:Correlation_examples2.svg
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

@ Top row: Linear relations with varying r.
@ Bottom: » =0, yet X and Y are dependent in all of these (except
possibly the last); it's just that the relationship is not a line.
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Correlation does not imply causation

@ High correlation between X and Y doesn’t mean X causes Y or
vice-versa. It could be a coincidence. Or they could both be
caused by a third variable.

@ Website tylervigen.com plots many data sets (various quantities
by year) against each other to find spurious correlations:

spurious correlations spurious correlations
Divorce rate in Maine Money spent on pets (US)
correlates with inversely correlates with
Per capita consumption of margarine (US) Per capita consumption of whole milk (US)

2000 . 2001 : 2002 : 2003 = 2004 & 2005 : 2006 - 2007 - 2008 : 2009 2000 @ 2001 : 2002 : 2003 : 2004 : 2005 : 2006 : 2007 : 2008 :@ 2009
Dhvorces per o Maive | 5 14,7 14.614.4 43141142 4.2 4.2 4.1 bilions of dollars (6 f2enE o Pets (US) 397 41.9 44.6 46.8 49.8 53.1 56.9 61.8 65.7 67.1
Per capite conrumption of morgrine (%) 1 8,2 | 7 16.515.3/5.2 4 [4.6/4.5/4.2!3.7 e ctpite commmmption of whols mit Q) | 7.7 1 7.4 (73172 7 16665 6159 57
Correlation: 0.992558 Correlation: -0.995478
http://www.tylervigen.com/view_correlation?id=1703 http://tylervigen.com/view_correlation?id=1759
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More about interpretation of correlation

@ Low r? does NOT guarantee independence; it just means that a
line y = 3¢ + 1x is not a good fit to the data.

@ ris an estimate of p. The estimate improves with higher n.
With additional assumptions on the underlying joint distribution of
X, Y, we can use r to test
Hy:p=0 vs. H;:p#0 (orothervalues).

@ Best fits and correlation generalize to other models, including

Polynomial regression y=PRo+Brx+Pax*+ -+ Bpx”
Multiple linear regression y =[{¢+p1t+Pou+---+p,w

t,u,...,w: multiple independent variables
y: dependent variable

Weighted versions When the variance is different at each
value of the independent variables
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Polynomial regression

@ Model y as a polynomial in x of degree p.

y=Bo+B1x 4 Pax’ 4o+ By

@ The ith observation (x;, y;) gives
yi = Bo+ Bixi + Boxi® + -+ Bpx + €;

@ Matrix notation: y = Xf + €

¥y = X (design matrix) - 3 Loz
_YI_ 1 x x12 coxqP _BO_ €
2 I xp x? - xP B, .
p— . _|_
_yl’l_ _1 Xn 'xl’lz . e e xnp_ _6])_ _en_
nxl nx(p+1) (p+1)x1 nxl1

@ MLE point estimate of § is p = (X'X)~1X'5.
Need X’'X to be non-singular and n > p + 1 (usually a lot bigger).
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Multiple linear regression

@ Model one dependent variable as constant + linear combination of
p independent variables. Goal is a best fit for

y=Po+ B1x) + Paxy + -+ Bpx(p)

@ The ith observation (x;1,xp,...,xj,yi) gives

Vi = Bo + Bixin + Poxio + -+ Ppxip + €

@ Matrix notation: y X[S + €
¥y = X (design matrix) . B + @
V1 1 x5 xip e X1y o =
V2 1 X1 x20 -+ X B1 €2
. — : . +
_yn_ _1 Xnl Xn2 - xnp_ _Bp_ _en_
nxl1 nx(p+1) (p+1) x1 nxl1

@ MLE point estimate of f is (5 (X'X)~1X'y.
Need X’X to be non-singular and n > p + 1 (usually a lot bigger).

Prof. Tesler
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Example in Matlab

Example INn Matlab Fit is y = 9.5968x*> — 0.6319x + 30.5096

>> # but random errors in y

>> x = (-10:10)"; # column vector
>> err = normrnd (0, 100, size(x));
>> y = 10%(x.72) - 3%xx + 6 + err;

] —— y=10x*-3x+6 (True curve, hidden)
y = B,x° +Bx + B, (Best fit quadratic)

1000

>> # Poilnt estimate (no conf. int.):
>> polyfit(x,v,2)
9.5968 -0.6319 30.5096

800
I

>> # Interval estimate (with conf. int.)
>> # Create the design matrix
>> Xdesign = [ones(size(x)), %X, xX."2]
Xdesign =

1 -10 100

1 -9 81

600
I

400
I

1 10 100

200
I

>> [b, bint] = regress(y, Xdesign)
b =
30.5096 o - . ;
-0.6319 . :
9.5968 I I I I |
-10 -5 0 5 10

bint =
-48.6394 109.6587 X
-9.3294 8.0655
7.9854 11.2082
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Example in R

Fit is y = 9.5968040x* — 0.6319475x + 30.5096087

Fitting a polynomial to data

Example in R

o
> # Generate data with known x § ] N - Y= 10X'_3X+6(ﬁuecmve hidden)
> # but random errors in y : S Bzx +B1X+Bo (Best fit quadratic)
> x = -10:10;
> n = length(x); S |
> err = rnorm(n, 0, 100); @
>y = 10xx"2 - 3%xx + 6 + err;
o
> # Fit to y = b0 + bl+x + b2xx"2 3
> # intercept b0 is implied: -~
> bestfit = Im(y ~ I(x) + I(x"2));
S |
> coefficients (bestfit) ~
(Intercept) I(x) I(x"2)
30.5096087 -0.6319475 9.5968040 o
S
> confint (bestfit)
2.5 % 97.5 %
(Intercept) -48.639445 109.658662 o — . ) ;
I(x) -9.329402 8.065507 . ) ¢
I(x"2) 7.985427 11.208181 | | | | |
J -10 -5 0 5 10
X
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