Chapters 1–2

Discrete random variables Permutations Binomial and related distributions Expected value and variance

Prof. Tesler

Math 283 Fall 2019

- Flip a coin 3 times. The possible *outcomes* are *HHH HHT HTH HTT THH THT TTH TTT*
- The *sample space* is the set of all possible outcomes: $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
- An *event* is any subset of *S*. The event that there are exactly two heads is $A = \{HHT, HTH, THH\}$
- The probability of heads is *p* and of tails is *q* = 1 *p*. The flips are independent, which gives these *probabilities for each outcome*: *P*(*HHH*) = *p*³ *P*(*HHT*) = *P*(*HTH*) = *P*(*THH*) = *p*²*q P*(*TTT*) = *q*³ *P*(*HTT*) = *P*(*THT*) = *P*(*TTH*) = *pq*²
 These are each between 0 and 1, and they add up to 1: *p*³ + 3*p*²*q* + 3*pq*² + *q*³ = (*p* + *q*)³ = 1³ = 1

Sample spaces and events

- Flip a coin 3 times. The possible *outcomes* are *HHH HHT HTH HTT THH THT TTH TTT*
- The *sample space* is the set of all possible outcomes: $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
- An *event* is any subset of *S*. The event that there are exactly two heads is $A = \{HHT, HTH, THH\}$
- The probability of heads is p and of tails is q = 1 p. The flips are independent, which gives these *probabilities for each outcome*: $P(HHH) = p^3 \quad P(HHT) = P(HTH) = P(THH) = p^2 q$ $P(TTT) = q^3 \quad P(HTT) = P(THT) = P(TTH) = pq^2$
- The *probability of an event* is the sum of probabilities of its outcomes:

 $P(A) = P(HHT) + P(HTH) + P(THH) = 3p^2q$

Random variables

 A random variable X is a function assigning a real number to each outcome.

• Let *X* be the number of heads:

X(HHH) = 3 X(HHT) = X(HTH) = X(THH) = 2X(TTT) = 0 X(HTT) = X(THT) = X(TTH) = 1

- The *range of X* is {0, 1, 2, 3}.
- That range is a *discrete set* as opposed to a continuum, such as all real numbers [0, 3]. So X is a *discrete random variable*.

• The discrete probability density function (pdf) or probability mass function (pmf) is $p_X(k) = P(X = k)$, defined for all real numbers k: $p_X(0) = q^3$ $p_X(1) = 3pq^2$ $p_X(2) = 3p^2q$ $p_X(3) = p^3$ $p_X(k) = 0$ otherwise: $p_X(2.5) = 0$ $p_X(-1) = 0$

 Use capital letters (X) for random variables and lowercase (k) to stand for numeric values.

- Measure several properties at once using multiple random variables:
 - X = # heads
 - Y = position of first head (1,2,3) or 4 if no heads

<i>HHH</i> : $X = 3, Y = 1$	<i>THH</i> : $X = 2, Y = 2$
<i>HHT</i> : $X = 2, Y = 1$	<i>THT</i> : $X = 1, Y = 2$
<i>HTH</i> : $X = 2, Y = 1$	<i>TTH</i> : $X = 1, Y = 3$
HTT: X = 1, Y = 1	TTT: X = 0, Y = 4

• Reorganize as a two dimensional table:

	X = 0	X = 1	X = 2	X = 3
Y = 1		HTT	HHT, HTH	HHH
Y = 2		THT	THH	
Y = 3		TTH		
Y = 4				

Joint probability density

• The (discrete) *joint probability density function* is $p_{X,Y}(x, y) = P(X = x, Y = y)$:

					Iotal
$p_{X,Y}(x,y)$	x = 0		x = 2	x = 3	$p_{Y}(y)$
y = 1	0	pq^2		p^3	p
y = 2	0	pq^2	p^2q	0	pq
y = 3	0	pq^2	0	0	pq^2
y = 4	q^3	0	0	0	q^3
Total $p_X(x)$	q^3	$3pq^2$	$3p^2q$	p^3	1

• It's defined for all real numbers. It equals zero outside the table. In table: $p_{X,Y}(3,1) = p^3$ Not in table: $p_{X,Y}(1,-.5) = 0$

• Row totals: $p_{Y}(y) = \sum_{x} p_{X,Y}(x, y)$ Columns: $p_{X}(x) = \sum_{y} p_{X,Y}(x, y)$

These are in the right and bottom margins of the table, so $p_X(x)$, $p_Y(y)$ are called *marginal densities* of the joint pdf $p_{X,Y}(x,y)$.

Joint probability density — marginal density

Row totals

- Bob flips a coin 3 times and tells you that X = 2 (two heads), but no further information.
 What does that tell you about Y (flip number of first head)?
- The possible outcomes with X = 2 are *HHT*, *HTH*, *THH*, each with the same probability p^2q .
- We're restricted to three equally likely outcomes *HHT*, *HTH*, *THH*:

Probability Y = 1 is 2/3 (*HHT*, *HTH*) Probability Y = 2 is 1/3 (*THH*) Other values of Y are not possible

• These are called *conditional probabilities*.

Conditional probability formula

• You know that event *B* holds. What's the probability of event *A*?

Conditional Probability Formula

The conditional probability of A, given B, is

$$P(A|B) = rac{P(A ext{ and } B)}{P(B)} = rac{P(A \cap B)}{P(B)}$$

• The probability that Y = 1 given X = 2 is P(Y = 1 | X = 2):

- The event Y = 1 is $A = \{HHH, HHT, HTH, HTT\}$.
- The event X = 2 is $B = \{HHT, HTH, THH\}$.

$$P(Y = 1 | X = 2) = \frac{P(X = 2 \text{ and } Y = 1)}{P(X = 2)}$$
$$= \frac{P(\{HHT, HTH\})}{P(\{HHT, HTH, THH\})} = \frac{2p^2q}{3p^2q} = \frac{2}{3}$$

Conditional probability formula

Bayes' Theorem

The conditional probability of A, given B, is

$$P(A|B) = rac{P(A ext{ and } B)}{P(B)} = rac{P(A \cap B)}{P(B)}$$

The conditional probability that Y = y given that X = x is

$$P(Y = y | X = x) = \frac{P(Y = y \text{ and } X = x)}{P(X = x)} = \frac{p_{X,Y}(x, y)}{p_X(x)}$$

$$P(Y = 1 | X = 2) = \frac{p_{X,Y}(2,1)}{p_X(2)} = \frac{2p^2q}{3p^2q} = \frac{2}{3}$$

Independent random variables

- In the previous example, knowing X = 2 affected the probabilities of the values of Y. So X and Y are *dependent*.
- Discrete random variables U, V, W are *independent* if
 P(U = u, V = v, W = w) = P(U = u)P(V = v)P(W = w)
 factorizes for *all* values of u, v, w, and *dependent* if there are any
 exceptions. This generalizes to any number of random variables.
- In terms of conditional probability, X and Y are independent if P(Y = y|X = x) = P(Y = y) for all x, y (with $P(X = x) \neq 0$).

Examples of independent random variables

- Let *U*, *V*, *W* denote three flips of a coin, coded 0=tails, 1=heads.
- Let X_1, \ldots, X_{10} denote the values of 10 separate rolls of a die.

Example of dependent random variables

• Drawing cards U, V from a deck without replacement (so $V \neq U$).

Permutations of distinct objects

Permutations

Here are all the permutations of *A*, *B*, *C*:

ABC ACB BAC BCA CAB CBA

- There are 3 items: *A*, *B*, *C*.
- There are 3 choices for which item to put first.
- There are 2 choices remaining to put second.
- There is 1 choice remaining to put third.
- Thus, the total number of permutations is $3 \cdot 2 \cdot 1 = 6$.

Factorials

- The number of permutations of *n* distinct items is "*n*-factorial": $n! = n(n-1)(n-2)\cdots 1$ for integers n = 1, 2, ...
- 0! = 1

Here are all the permutations of the letters of ALLELE:

EEALLL	EELALL	EELLAL	EELLLA	EAELLL	EALELL
EALLEL	EALLLE	ELEALL	ELELAL	ELELLA	ELAELL
ELALEL	ELALLE	ELLEAL	ELLELA	ELLAEL	ELLALE
ELLLEA	ELLLAE	AEELLL	AELELL	AELLEL	AELLLE
ALEELL	ALELEL	ALELLE	ALLEEL	ALLELE	ALLLEE
LEEALL	LEELAL	LEELLA	LEAELL	LEALEL	LEALLE
LELEAL	LELELA	LELAEL	LELALE	LELLEA	LELLAE
LAEELL	LAELEL	LAELLE	LALEEL	LALELE	LALLEE
LLEEAL	LLEELA	LLEAEL	LLEALE	LLELEA	LLELAE
LLAEEL	LLAELE	LLALEE	LLLEEA	LLLEAE	LLLAEE

Permutations with repetitions

- There are 6! = 720 ways to permute the subscripted letters $A_1, L_1, L_2, E_1, L_3, E_2$.
- Here are all the ways to put subscripts on EALLEL:

$E_1A_1L_1L_2E_2L_3$	$E_1A_1L_1L_3E_2L_2$	$E_2A_1L_1L_2E_1L_3$	$E_2A_1L_1L_3E_1L_2$
$E_1A_1L_2L_1E_2L_3$	$E_1A_1L_2L_3E_2L_1$	$E_2A_1L_2L_1E_1L_3$	$E_2A_1L_2L_3E_1L_1$
$E_1A_1L_3L_1E_2L_2$	$E_1A_1L_3L_2E_2L_1$	$E_2A_1L_3L_1E_1L_2$	$E_2A_1L_3L_2E_1L_1$

- Each rearrangement of ALLELE has
 - 1! = 1 way to subscript the A's;
 - 2! = 2 ways to subscript the E's; and
 - 3! = 6 ways to subscript the L's,

giving $1! \cdot 2! \cdot 3! = 1 \cdot 2 \cdot 6 = 12$ ways to assign subscripts.

 Since each permutation of ALLELE is represented 12 different ways in permutations of A₁L₁L₂E₁L₃E₂, the number of permutations of ALLELE is

$$\frac{6!}{1!2!3!} = \frac{720}{12} = 60.$$

For a word of length n with k_1 of one letter, k_2 of a second letter, etc., the number of permutations is given by the multinomial coefficient:

$$\binom{n}{k_1, k_2, \dots, k_r} = \frac{n!}{k_1! k_2! \cdots k_r!}$$

where n, k_1, k_2, \ldots, k_r are integers ≥ 0 and $n = k_1 + \cdots + k_r$.

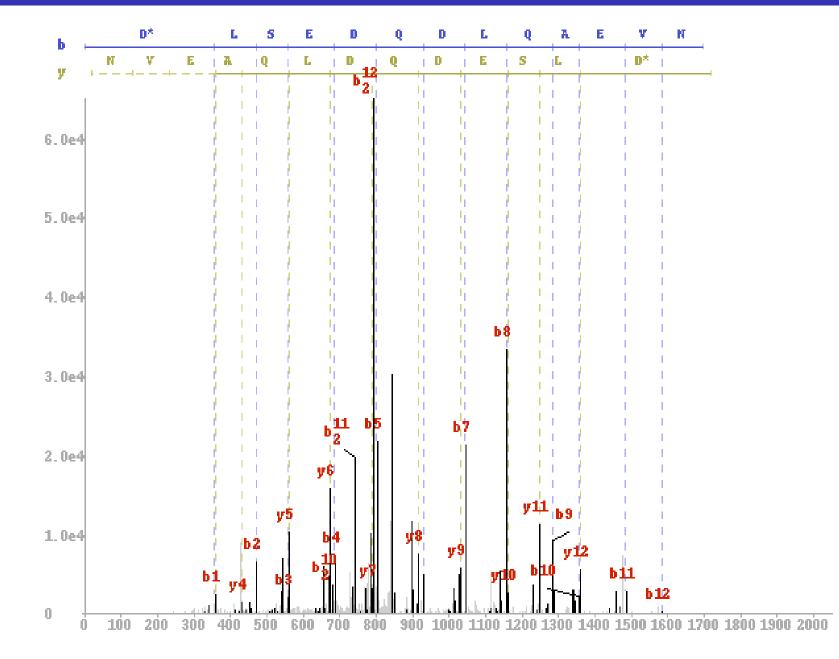
Previous slide example: ALLELE

n = 6 letters, with 1 A, 2 E's, 3 L's:

$$\binom{6}{1,2,3} = \frac{6!}{1!\,2!\,3!} = \frac{720}{12} = 60$$

Mass Spectrometry (Mass Spec)

Peptide [242.3]D[I,L]SED[Q,K]D[I,L][Q,K]AEVN; Figure courtesy Nuno Bandeira



Peptide ABCDEF is ionized into fragments A / BCDEF, AB / CDEF, etc. giving a spectrum with intermingled peaks:

- b-ions: b₁ = mass(A), b₂ = mass(AB), ..., b₆ = mass(ABCDEF) successively separated by mass(B), mass(C), ..., mass(F)
- y-ions: y₁ = mass(F), y₂ = mass(EF), ..., y₆ = mass(ABCDEF) successively separated by mass(E), mass(D), ..., mass(A)
- Plus more peaks (multiple fragments, \pm smaller chemicals, etc.).

Mass Spectrometry — Amino Acid Composition

List of the 20 amino acids

Amino Acid	Code	Mass (Daltons)	Amino Acid	Code	Mass (Daltons)
Alanine	А	71.037113787	Leucine	L	113.084063979
Arginine	R	156.101111026	Lysine	K	128.094963016
Aspartic acid	D	115.026943031	Methionine	Μ	131.040484605
Asparagine	Ν	114.042927446	Phenylalanine	F	147.068413915
Cysteine	С	160.030648200	Proline	Р	97.052763851
Glutamic acid	Е	129.042593095	Serine	S	87.032028409
Glutamine	Q	128.058577510	Threonine	Т	101.047678473
Glycine	G	57.021463723	Tryptophan	W	186.079312952
Histidine	Н	137.058911861	Tyrosine	Y	163.063328537
Isoleucine	I	113.084063979	Valine	V	99.068413915

 Note mass(I)=mass(L), mass(N)=mass(GG) and mass(GA)=mass(Q)≈mass(K).

- A fragment of mass ≈ 242.3 could be mass(NE) = 243.09 mass(LQ) = 241.14 mass(KI) = 241.18 mass(GGE) = 243.09 mass(GAL) = 241.14
- Or any permutations of those since they have the same mass: NE, EN, LQ, QL, KI, IK, GGE, GEG, EGG, GAL, GLA, ALG, etc.

Multinomial distribution

- Consider a biased 6-sided die:
 - q_i is the probability of rolling *i*, for i = 1, 2, ..., 6.
 - Each q_i is between 0 and 1, and $q_1 + \cdots + q_6 = 1$.
 - 6 sides is an example; it could be any # sides.
- The probability of a sequence of independent rolls is $P(1131326) = q_1 q_1 q_3 q_1 q_3 q_2 q_6 = q_1^3 q_2 q_3^2 q_6 = \prod_{i=1}^6 q_i^{\#is}$
- Roll the die *n* times (n = 0, 1, 2, 3, ...). Let X_1 be the number of 1's, X_2 be the number of 2's, etc. $p_{X_1,X_2,...,X_6}(k_1, k_2, ..., k_6) = P(X_1 = k_1, X_2 = k_2, ..., X_6 = k_6)$ $= \begin{cases} \binom{n}{k_1,k_2,...,k_6} q_1^{k_1} q_2^{k_2} \dots q_6^{k_6} \\ \text{if } k_1, \dots, k_6 \text{ are integers } > 0 \text{ adding up to } n; \\ 0 & \text{otherwise.} \end{cases}$

Suppose you flip a coin n = 5 times. How many sequences of flips are there with k = 3 heads? Ten:

 HHHTT
 HHTHT
 HHTHT
 HTHHT
 HTHHT

 HTTHH
 THHHT
 THHTH
 THHHT
 TTHHH

Definition (Binomial coefficient)

• "*n* choose
$$k$$
" = $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
provided *n*, *k* are integers and $0 \le k \le n$.

$$\bullet \ \binom{n}{0} = 1$$

- Some people use ${}_{n}C_{k}$ instead of $\binom{n}{k}$.
- Binomial coefficient $\binom{n}{k}$ = multinomial coefficient $\binom{n}{k,n-k}$.

Top of slide:
$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{120}{(6)(2)} = 10.$$

Binomial distribution

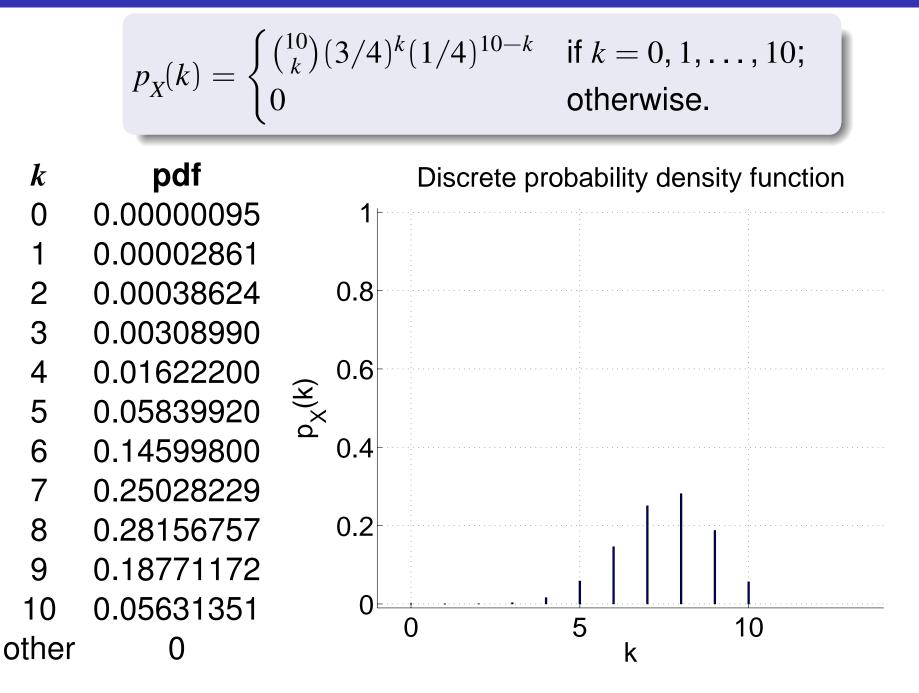
- A biased coin has probability p of heads, q = 1 p of tails.
- Flip the coin *n* times (n = 0, 1, 2, 3, ...).
- $P(HHTHTTH) = ppqpqqp = p^4q^3 = p^{\text{\# heads}}q^{\text{\# tails}}$
- Let *X* be the number of heads in the *n* flips. The probability density function (pdf) of *X* is

$$p_X(k) = P(X = k) = \begin{cases} \binom{n}{k} p^k q^{n-k} & \text{if } k = 0, 1, \dots, n; \\ 0 & \text{otherwise.} \end{cases}$$

It's ≥ 0 and the total is $\sum_{k=0}^{n} {n \choose k} p^k q^{n-k} = (p+q)^n = 1^n = 1$.

• Interpretation: Repeat this experiment (flipping a coin *n* times and counting the heads) a huge number of times. The fraction of experiments with X = k will usually be approximately $p_X(k)$.

Binomial distribution for n = 10, p = 3/4



Where the distribution names come from

Binomial Theorem

For integers
$$n \ge 0$$
,
 $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$

$$(x+y)^3 = \binom{3}{0}x^0y^3 + \binom{3}{1}x^1y^2 + \binom{3}{2}x^2y^1 + \binom{3}{3}x^3y^0 = y^3 + 3xy^2 + 3x^2y + x^3$$

Multinomial Theorem

For integers $n \ge 0$, $(x+y+z)^n = \sum_{\substack{i=0 \ i=j=0}}^n \sum_{\substack{j=0 \ k=0}}^n \sum_{\substack{k=0 \ i+j+k=n}}^n \binom{n}{i,j,k} x^i y^j z^k$

$$(x + y + z)^{2} = \binom{2}{2,0,0} x^{2} y^{0} z^{0} + \binom{2}{0,2,0} x^{0} y^{2} z^{0} + \binom{2}{0,0,2} x^{0} y^{0} z^{2} + \binom{2}{1,1,0} x^{1} y^{1} z^{0} + \binom{2}{1,0,1} x^{1} y^{0} z^{1} + \binom{2}{0,1,1} x^{0} y^{1} z^{1} = x^{2} + y^{2} + z^{2} + 2xy + 2xz + 2yz$$

 $(x_1 + \cdots + x_m)^n$ works similarly with *m* iterated sums.

Genetics example

- Consider a cross of two pea plants.
- We will study the genes for plant height (alleles T=tall, t=short) and pea shape (R=round, r=wrinkled).
- T,R are dominant and t,r are recessive.
- The T and R loci are on different chromosomes so these recombine independently.
- Consider a TtRR×TtRr cross of pea plants:

D	unnett Square	Genotype	Prob.
F	TR(1/2) $tR(1/2)$	TTRR	1/8
TD(1/A)		TtRR	2/8 = 1/4
	TTRR (1/8) TtRR (1/8)	TTRr	1/8
	TTRr (1/8) TtRr (1/8)		2/8 = 1/4
	TtRR(1/8) $ttRR(1/8)$	ttRR	
tr(1/4)	TtRr(1/8) ttRr(1/8)	ttRr	,

Genetics example

If there are 27 offspring, what is the probability that 9 offspring have genotype TTRR, 2 have genotype TtRR, 3 have genotype TTRr, 5 have genotype TtRr, 7 have genotype ttRR, and 1 has genotype ttRr?

Use the multinomial distribution:

	Genotype	Probability	Frequency	
	TTRR	1/8	9	
	TtRR	1/4	2	
	TTRr	1/8	3	
	TtRr	1/4	5	
	ttRR	1/8	7	
	ttRr	1/8	1	
	Total	1	27	
$=\frac{27!}{9!2!3!5!7!1!}\left(\frac{1}{8}\right)^9 \left(\frac{1}{4}\right)^2 \left(\frac{1}{8}\right)^3 \left(\frac{1}{4}\right)^5 \left(\frac{1}{8}\right)^7 \left(\frac{1}{8}\right)^1 \approx 2.19 \cdot 10^{-7}$				

P

If there are 25 offspring, what is the probability that 9 offspring have genotype TTRR, 2 have genotype TtRR, 3 have genotype TTRr, 5 have genotype TtRr, 7 have genotype ttRR, and 1 has genotype ttRr?

P = 0 because the numbers 9, 2, 3, 5, 7, 1 do not add up to 25.

Genetics example

Genotype	Probability	Phenotype
TTRR	1/8	tall and round
TtRR	1/4	tall and round
TTRr	1/8	tall and round
TtRr	1/4	tall and round
ttRR	1/8	short and round
ttRr	1/8	short and round

For phenotypes,

P(tall and round) = 1/8 + 1/4 + 1/8 + 1/4 = 3/4

P(short and round) = 1/8 + 1/8 = 1/4

P(tall and wrinkled) = P(short and wrinkled) = 0If there are 10 offspring, the number of tall offspring has a binomial distribution with n = 10, p = 3/4.

Later: We'll cover other Bioinformatics applications using the binomial distribution, including genome assembly and Haldane's model of recombination.

Expected value of a random variable

(Technical name for long term average)

- Consider a biased coin with probability p = 3/4 for heads.
- Flip it 10 times and record the number of heads, x₁.
 Flip it another 10 times, get x₂ heads.
 Repeat to get x₁, ..., x₁₀₀₀.
- Estimate the average of x_1, \ldots, x_{1000} : 10(3/4) = 7.5
- An estimate based on the pdf: About $1000p_X(k)$ of the x_i 's equal k for each k = 0, ..., 10, so

average of
$$x_i$$
's = $\frac{\sum_{i=1}^{1000} x_i}{1000} \approx \frac{\sum_{k=0}^{10} k \cdot 1000 p_X(k)}{1000} = \sum_{k=0}^{10} k \cdot p_X(k)$

Expected value of a random variable

(Technical name for long term average)

• The expected value of a discrete random variable *X* is

$$E(X) = \sum_{x} x \cdot p_X(x)$$

- E(X) is often called the mean value of X and denoted μ (or μ_X if there are other random variables).
- It turns out E(X) = np for the binomial distribution.
- On the previous slide, although E(X) = np = 10(3/4) = 7.5, this is not a possible value for X.
- Expected value does *not* mean we anticipate observing that value.
- It means the long term average of many independent measurements of X will be approximately E(X).

Mean of the Binomial Distribution

Proof that $\mu = np$ for binomial distribution.

$$E(X) = \sum_{k} k \cdot p_{X}(k)$$
$$= \sum_{k=0}^{n} k \cdot {n \choose k} p^{k} q^{n-k}$$

Calculus Trick: $(p+q)^n = \sum_{k=0}^n {n \choose k} p^k q^{n-k}$ Differentiate: $\frac{\partial}{\partial p} (p+q)^n = \sum_{k=0}^n k {n \choose k} p^{k-1} q^{n-k}$ Times p: $p \frac{\partial}{\partial p} (p+q)^n = \sum_{k=0}^n k {n \choose k} p^k q^{n-k} = E(X)$

Evaluate left side: $p \frac{\partial}{\partial p} (p+q)^n = p \cdot n(p+q)^{n-1}$ = $p \cdot n \cdot 1^{n-1} = np$ since p+q = 1.

So E(X) = np.

Expected values of functions

• Let $X = \text{roll of a biased 6-sided die and } Z = (X - 3)^2$.

X	$p_X(x)$	$z = (x - 3)^2$	$p_{Z}(z)$
1	q_1	4	
2	q_2	1	
3	q_3	0	$p_{Z}(0) = q_{3}$
4	q_4	1	$p_{Z}(\bar{1}) = q_{2} + q_{4}$
5	q_5	4	$p_{Z}(4) = q_{1} + q_{5}$
6	q_6	9	$p_{Z}(9) = q_{6}$
		l	

pdf of *X*: Each $q_i \ge 0$ and $q_1 + \cdots + q_6 = 1$. **pdf of** *Z*: Each probability is also ≥ 0 , and the total sum is also 1.

- E(Z), in terms of values of Z and the pdf of Z, is $E(Z) = \sum_{z} z \cdot p_{Z}(z) = 0(q_{3}) + 1(q_{2} + q_{4}) + 4(q_{1} + q_{5}) + 9(q_{6})$
- Regroup it in terms of *X*:

$$= 4q_1 + 1q_2 + 0q_3 + 1q_4 + 4q_5 + 9q_6 = \sum_{x=1}^{\infty} (x-3)^2 q_x$$

6

Define

$$E(g(X)) = \sum_{x} g(x) \cdot p_{X}(x)$$

In general, if Z = g(X) then E(Z) = E(g(X)). The preceding slide demonstrates this for $Z = (X - 3)^2$.

• For functions of two variables, define

$$E(g(X, Y)) = \sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$$

and for more variables, do more iterated sums.

Expected values — properties

•
$$E(aX + b) = aE(X) + b$$
 where a, b are constants:

$$E(aX + b) = \sum_{x} p_X(x)(ax + b) = a \sum_{x} xp_X(x) + b \sum_{x} p_X(x)$$

$$= aE(X) + b \cdot 1 = aE(X) + b$$

•
$$E(a g(X)) = aE(g(X))$$

 $E(a) = a$
 $E(g(X, Y) + h(X, Y)) = E(g(X, Y)) + E(h(X, Y))$

• If X and Y are independent then E(XY) = E(X)E(Y):

$$E(XY) = \sum_{x} \sum_{y} p_{X,Y}(x,y) \cdot xy$$

= $\sum_{x} \sum_{y} p_{X}(x)p_{Y}(y) \cdot xy$ if X, Y independent!
= $\left(\sum_{x} p_{X}(x)x\right) \left(\sum_{y} p_{Y}(y)y\right) = E(X)E(Y)$

Expected value of a product — dependent variables

Example (Dependent)

- Let *U* be the roll of a fair 6-sided die.
- Let V be the value of the exact same roll of the die (U = V).
- $E(U) = E(V) = \frac{1+2+3+4+5+6}{6} = \frac{21}{6} = \frac{7}{2}$ and $E(U)E(V) = \frac{49}{4}$. • $E(UV) = \frac{1\cdot 1+2\cdot 2+3\cdot 3+4\cdot 4+5\cdot 5+6\cdot 6}{6} = \frac{91}{6}$

Example (Independent)

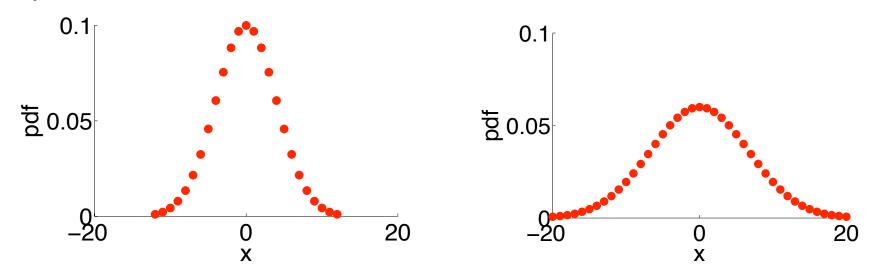
 Now let U, V be the values of two independent rolls of a fair 6-sided die.

$$E(UV) = \sum_{x=1}^{6} \sum_{y=1}^{6} \frac{x \cdot y}{36} = \frac{441}{36} = \frac{49}{4}$$

and E(U)E(V) = (7/2)(7/2) = 49/4

Variance

 These distributions both have mean=0, but the right one is more spread out.



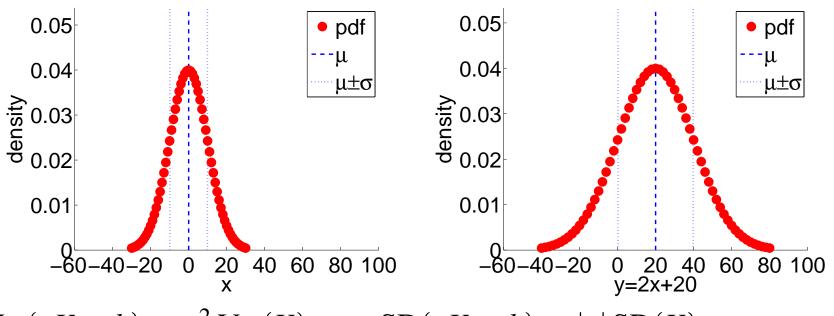
• Variance measures the square of the spread from the mean:

$$\sigma^2 = \operatorname{Var}(X) = E((X - \mu)^2)$$

• Standard deviation measures how wide the curve is:

$$\sigma = \mathrm{SD}(X) = \sqrt{\mathrm{Var}(X)}$$

Variance — properties



• $\operatorname{Var}(aX+b) = a^2 \operatorname{Var}(X)$ $\operatorname{SD}(aX+b) = |a| \operatorname{SD}(X)$

- Adding b shifts the curve without changing the width, so b disappears on the right side of the variance formula.
- Multiplying by *a* dilates the width a factor of *a*, so variance goes up a factor a^2 .

• For
$$Y = aX + b$$
, we have $\sigma_Y = |a| \sigma_X$ and $\mu_Y = a \mu_X + b$.

• **Example:** Convert measurements in $^{\circ}C$ to $^{\circ}F$: F = (9/5)C + 32 $\mu_F = (9/5)\mu_C + 32$ $\sigma_F = (9/5)\sigma_C$

Variance — properties

Useful alternative formula for variance

$$\sigma^2 = \operatorname{Var}(X) = E(X^2) - \mu^2 = E(X^2) - (E(X))^2$$

Proof.

$$Var(X) = E((X - \mu)^2) = E(X^2 - 2\mu X + \mu^2)$$

= $E(X^2) - 2\mu E(X) + \mu^2$
= $E(X^2) - 2\mu \cdot \mu + \mu^2 = E(X^2) - \mu^2$

Proof of $Var(aX + b) = a^2 Var(X)$.

$$E((aX + b)^{2}) = E(a^{2}X^{2} + 2ab X + b^{2}) = a^{2}E(X^{2}) + 2ab E(X) + b^{2}$$

$$(E(aX + b))^{2} = (aE(X) + b)^{2} = a^{2}(E(X))^{2} + 2ab E(X) + b^{2}$$

$$Var(aX + b) = \text{difference} = a^{2}\left(E(X^{2}) - (E(X))^{2}\right)$$

$$= a^{2} Var(X) \square$$

Variance of a sum — dependent variables

• We will show that if *X*, *Y* are independent, then

$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$$

Example (Dependent)

First consider this dependent example: Let *X* be any non-constant random variable and Y = -X.

$$\operatorname{Var}(X+Y) = \operatorname{Var}(0) = 0$$

$$Var(X) + Var(Y) = Var(X) + Var(-X)$$
$$= Var(X) + (-1)^2 Var(X) = 2 Var(X)$$

but usually $Var(X) \neq 0$ (the only exception would be if X is a constant).

Variance of a sum — independent variables

Theorem

If X, Y are independent, then Var(X + Y) = Var(X) + Var(Y).

Proof.

$$E((X + Y)^2) = E(X^2 + 2XY + Y^2) = E(X^2) + 2E(XY) + E(Y^2)$$
$$(E(X + Y))^2 = (E(X) + E(Y))^2 = (E(X))^2 + 2E(X)E(Y) + (E(Y))^2$$

$$Var(X + Y) = E((X + Y)^{2}) - (E(X + Y))^{2}$$

= $(E(X^{2}) - (E(X))^{2})$
+ $2(E(XY) - E(X)E(Y))$
+ $(E(Y^{2}) - (E(Y))^{2})$
= $Var(X) + 2(E(XY) - E(X)E(Y)) + Var(Y)$

If *X*, *Y* are independent, E(XY) = E(X)E(Y), so the middle term is 0.

Generalization

If X, Y, Z, \ldots are pairwise independent:

 $\operatorname{Var}(X + Y + Z + \cdots) = \operatorname{Var}(X) + \operatorname{Var}(Y) + \operatorname{Var}(Z) + \cdots$

 $\operatorname{Var}(aX + bY + cZ + \cdots) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) + c^2 \operatorname{Var}(Z) + \cdots$

П

Variance of a sum — dependent variables

Covariance

• For dependent variables, the cross-terms remain:

 $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + 2(E(XY) - E(X)E(Y)) + \operatorname{Var}(Y)$

• Define Cov(X, Y) = E(XY) - E(X)E(Y). Then

Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y)

Two formulas for covariance: $Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)) = E(XY) - E(X)E(Y)$

$$\begin{split} E((X - \mu_X)(Y - \mu_Y)) &= E(XY) - \mu_X E(Y) - E(X)\mu_Y + \mu_X \mu_Y \\ &= E(XY) - E(X)E(Y) - E(X)E(Y) + E(X)E(Y) \\ &= E(XY) - E(X)E(Y) \end{split}$$

Covariance properties

$$Var(X) = E((X - \mu_X)^2) = E(X^2) - (E(X))^2$$

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)) = E(XY) - E(X)E(Y)$$

Additional properties

- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$
- If X, Y are independent then Cov(X, Y) = 0.
 Beware, this is not reversible: Cov(X, Y) could be 0 for dependent variables.
- Cov(aX + b, cY + d) = ac Cov(X, Y) (*a*, *b*, *c*, *d* are constants)
- $\operatorname{Cov}(X + Z, Y) = \operatorname{Cov}(X, Y) + \operatorname{Cov}(Z, Y)$ and $\operatorname{Cov}(X, Y + Z) = \operatorname{Cov}(X, Y) + \operatorname{Cov}(X, Z)$
- $\operatorname{Var}(X_1 + X_2 + \dots + X_n) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n) + 2\sum_{1 \leq i < j \leq n} \operatorname{Cov}(X_i, X_j)$

Mean and variance of the Binomial Distribution

• A Bernoulli trial is a single coin flip,

 $P(\text{heads}) = p, \qquad P(\text{tails}) = 1 - p = q.$

• Do *n* coin flips (*n* Bernoulli trials). Set

 $X_i = \begin{cases} 1 & \text{if flip } i \text{ is heads;} \\ 0 & \text{if flip } i \text{ is tails.} \end{cases}$

- The total number of heads in all flips is $X = X_1 + X_2 + \cdots + X_n$.
- Flips *HTTHT*: X = 1 + 0 + 0 + 1 + 0 = 2.
- X_1, \ldots, X_n are independent and have the same pdfs, so they are i.i.d. (independent identically distributed) random variables.

•
$$E(X_1) = 0(1-p) + 1p = p$$

 $E(X_1^2) = 0^2(1-p) + 1^2p = p$
 $Var(X_1) = E(X_1^2) - (E(X_1))^2 = p - p^2 = p(1-p)$
• $E(X_i) = p$ and $Var(X_i) = p(1-p)$ for all $i = 1, ..., n$
because they are identically distributed.

Mean and variance of the Binomial Distribution

The total number of heads in all flips is X = X₁ + X₂ + · · · + X_n.
E(X_i) = p and Var(X_i) = p(1 − p) for all i = 1,...,n.

Mean:

$$\begin{split} \mu_X &= E(X) &= E(X_1 + \dots + X_n) \\ &= E(X_1) + \dots + E(X_n) \\ &= p + \dots + p = np \quad \text{identically distributed} \end{split}$$

Variance:

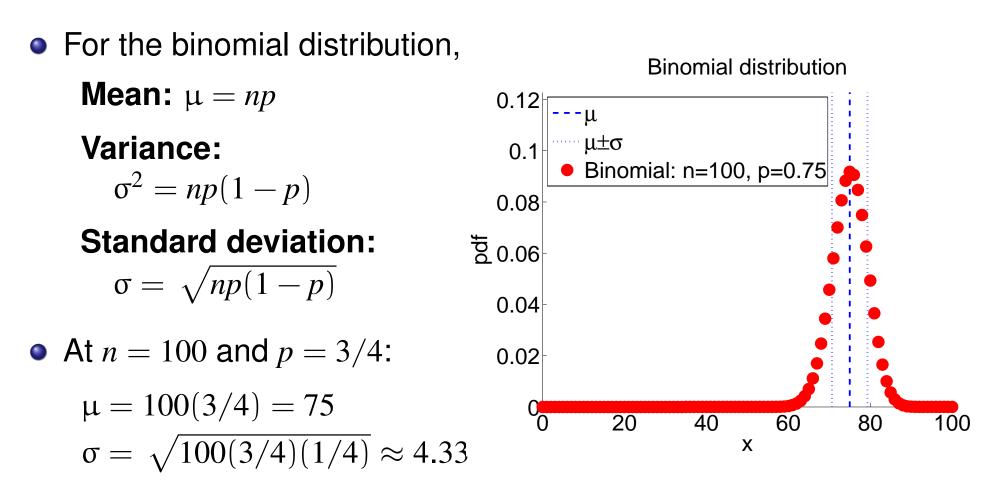
$$\sigma_X^{2} = \operatorname{Var}(X) = \operatorname{Var}(X_1 + \dots + X_n)$$

= $\operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n)$ by independence
= $p(1-p) + \dots + p(1-p)$ identically distributed
= $np(1-p) = npq$

Standard deviation:

$$\sigma_X = \sqrt{np(1-p)} = \sqrt{npq}$$

Mean and variance of the Binomial Distribution



Approximately 68% of the probability is for X between μ±σ.
 Approximately 95% of the probability is for X between μ±2σ.
 More on that later when we do the normal distribution.

- Consider a biased coin with probability p of heads.
- Flip it repeatedly (potentially ∞ times).
- Let *X* be the number of flips until the first head.
- **Example:** *TTTHTTHHT* has X = 4.
- The pdf is

$$p_X(k) = \begin{cases} (1-p)^{k-1}p & \text{for } k = 1, 2, 3, \dots; \\ 0 & \text{otherwise} \end{cases}$$

• Mean: $\mu = \frac{1}{p}$ Variance: $\sigma^2 = \frac{1-p}{p^2}$ Std dev: $\sigma = \frac{\sqrt{1-p}}{p}$

Negative Binomial Distribution

- Consider a biased coin with probability p of heads.
- Flip it repeatedly (potentially ∞ times).
- Let X be the number of flips until the rth head (r = 1, 2, 3, ... is a fixed parameter).
- For r = 3, *TTTHTHHTTH* has X = 7.
- X = k when
 - first k 1 flips: r 1 heads and k r tails in any order;
 - *k*th flip: heads
 - so the pdf is

$$p_X(k) = \binom{k-1}{r-1} p^{r-1} (1-p)^{k-r} \cdot p = \binom{k-1}{r-1} p^r (1-p)^{k-r}$$

provided k = r, r + 1, r + 2, ...;

$$p_X(k) = 0$$
 otherwise.

Negative Binomial Distribution – mean and variance

- Consider the sequence of flips *TTTHTHHTTH*.
- Break it up at each heads:

$$\underbrace{TTTH}_{X_1=4} / \underbrace{TH}_{X_2=2} / \underbrace{H}_{X_3=1} / \underbrace{TTH}_{X_4=3}$$

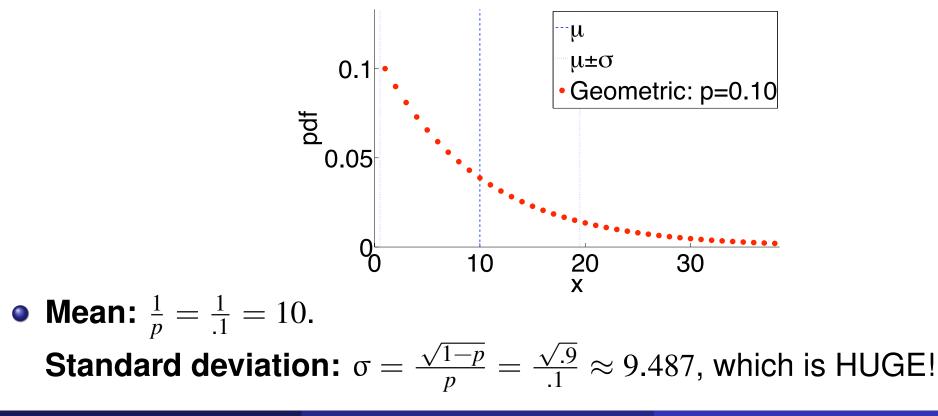
- X₁ is the number of flips until the first heads;
 X₂ is the number of additional flips until the 2nd heads;
 X₃ is the number of additional flips until the 3rd heads;
- The X_i 's are i.i.d. geometric random variables with parameter p, and $X = X_1 + \cdots + X_r$.
- Mean: $E(X) = E(X_1) + \dots + E(X_r) = \frac{1}{p} + \dots + \frac{1}{p} = \frac{r}{p}$ Variance: $\sigma^2 = \frac{1-p}{p^2} + \dots + \frac{1-p}{p^2} = \frac{r(1-p)}{p^2}$ Standard deviation: $\sigma = \frac{\sqrt{r(1-p)}}{p}$

Geometric Distribution – example

- About 10% of the population is left-handed.
- Look at the handedness of babies in birth order in a hospital.
- Number of births until first left-handed baby: Geometric distribution with p = .1:

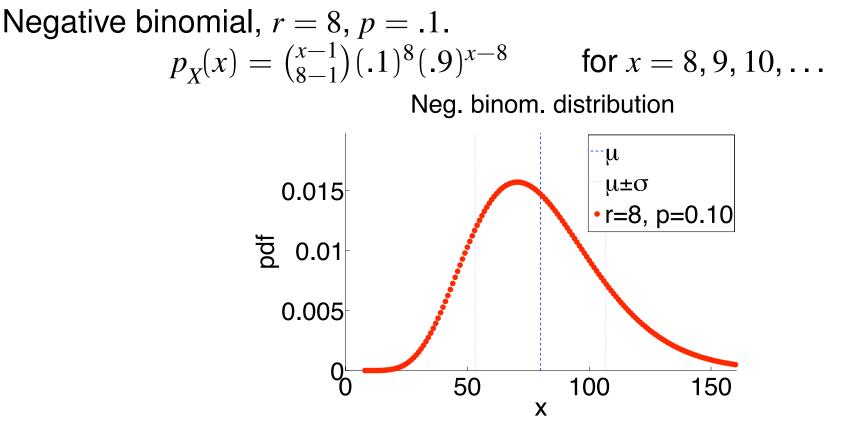
$$p_X(x) = .9^{x-1} \cdot .1$$
 for $x = 1, 2, 3, ...$

Geometric distribution



Negative Binomial Distribution – example

• Number of births until 8th left-handed baby:



• Mean: r/p = 8/.1 = 80. Standard deviation: $\frac{\sqrt{r(1-p)}}{p} = \frac{\sqrt{8(.9)}}{.1} \approx 26.833$.

• Probability the 50th baby is the 8th left-handed one: $p_X(50) = {50-1 \choose 8-1} (.1)^8 (.9)^{50-8} = {49 \choose 7} (.1)^8 (.9)^{42} \approx 0.0103$

Where do the distribution names come from?

The PDFs correspond to the terms in certain Taylor series

Geometric series

• For real a, x with |x| < 1,

$$\frac{a}{1-x} = \sum_{i=0}^{\infty} a x^{i}$$
$$= a + ax + ax^{2} + \cdots$$

Total probability for the geometric distribution:

$$\sum_{k=1}^{\infty} (1-p)^{k-1}p$$

p

$$= \frac{p}{1 - (1 - p)}$$
$$= \frac{p}{-1} = 1$$

Negative binomial series

• For integer r > 0 and real x with |x| < 1,

$$\frac{1}{(1-x)^r} = \sum_{k=r}^{\infty} \binom{k-1}{r-1} x^{k-r}$$

 Total probability for the negative binomial distribution:

$$\sum_{k=r}^{\infty} \binom{k-1}{r-1} p^r (1-p)^{k-r}$$

$$= p^r \sum_{k=r}^{\infty} \binom{k-1}{r-1} (1-p)^{k-r}$$

Geometric and Negative Binomial – versions

Unfortunately, there are 4 versions of the definitions of these distributions. Our book uses versions 1 and 2 below, and you may see the others elsewhere. Authors should be careful to state which definition they're using.

- Version 1: the definitions we already did (call the variable *X*).
- Version 2 (geometric): Let *Y* be the number of tails before the first heads, so TTTHTTHHT has Y = 3.

pdf:
$$p_Y(k) = \begin{cases} (1-p)^k p & \text{for } k = 0, 1, 2, ...; \\ 0 & \text{otherwise} \end{cases}$$

Since Y = X - 1, we have $E(Y) = \frac{1}{p} - 1$, $Var(Y) = \frac{1-p}{p^2}$.

• Version 2 (negative binomial): Let *Y* be the number of tails before the *r*th heads, so Y = X - r.

$$p_Y(k) = \begin{cases} \binom{k+r-1}{r-1} p^r (1-p)^k & \text{for } k = 0, 1, 2, \dots; \\ 0 & \text{otherwise} \end{cases}$$

 Versions 3 and 4: switch the roles of heads and tails in the first two versions (so *p* and 1 − *p* are switched).