Math 262a, Fall 1999, Glenn Tesler Homework 9
 12/10/99

Problem 2

Here's how I generated the sequence:

```
> rec := proc(n)
    option remember;
    (3*n^2+2*n-1)*rec (n-2)+(4*n-5)*rec (n-1);
```

 end:
 \(\operatorname{rec}(0):=1: \operatorname{rec}(1):=2:\)
 $>$ terms $:=\left[{ }^{\prime}\right.$ rec (k)'\$k=0..16];
terms $:=[1,2,21,211,3476,69864,1741060,51222620,1743410160$,
67363596160, 2913873706640, 139508695484400, 7324686442350400,
418478888788169600, 25847105490242145600, 1716199939670189406400,
$121907633727244649312000]$

Normally you would find the start of the sequence from some empirical or brute force means.

$>$

> guessrec := proc(terms,I,J)
local i,j,k,template,grec,eqs,sols,N,frec;
$\mathrm{k}:=$ nops (terms) -1 ;
template :=
sum (sum (a[i,j]*n^i*f(n+j),i=0..I), j=0..J);
frec := unapply(terms[n+1],n); \# make this a
function
grec := subs(f=frec,template);
eqs $:=\{$ seq(eval(subs (n=N,grec)), $N=0 \ldots k-J)$;
sols := solve(eqs);
if sols=NULL then RETURN(FAIL) fi;
subs (sols,template) $=0$;
end:
$>$ guessrec (terms, 0,0);

$$
0=0
$$

> guessrec(terms,1,1);

$$
0=0
$$

> guessrec (terms,2,2);
$-15 a_{0,2} \mathrm{f}(n)-14 a_{0,2} n \mathrm{f}(n)-3 a_{0,2} n^{2} \mathrm{f}(n)-3 a_{0,2} \mathrm{f}(n+1)-4 a_{0,2} n \mathrm{f}(n+1)$

$$
+a_{0,2} \mathrm{f}(n+2)=0
$$

> simplify("/a[0,2]);

$$
-15 \mathrm{f}(n)-14 n \mathrm{f}(n)-3 n^{2} \mathrm{f}(n)-3 \mathrm{f}(n+1)-4 n \mathrm{f}(n+1)+\mathrm{f}(n+2)=0
$$

$>$ collect $(\mathrm{n},\{\mathrm{f}(\mathrm{n}), \mathrm{f}(\mathrm{n}+1), \mathrm{f}(\mathrm{n}+2)\})$;

$$
\mathrm{f}(n+2)+\left(-14 n-3 n^{2}-15\right) \mathrm{f}(n)+(-4 n-3) \mathrm{f}(n+1)=0
$$

Using too few terms gives spurious solutions:

$$
\begin{aligned}
& >\text { guessrec (terms [1..4], 2, 2); } \\
& \begin{array}{l}
\left(-2 a_{0,1}-21 a_{0,2}\right) \mathrm{f}(n)+a_{1,0} n \mathrm{f}(n) \\
\quad+\left(-\frac{17}{2} a_{0,1}-\frac{169}{2} a_{0,2}-a_{1,0}-\frac{21}{2} a_{1,1}-\frac{21}{2} a_{2,1}-\frac{211}{2} a_{1,2}-\frac{211}{2} a_{2,2}\right) n^{2} \mathrm{f}(n) \\
\quad+a_{0,1} \mathrm{f}(n+1)+a_{1,1} n \mathrm{f}(n+1)+a_{2,1} n^{2} \mathrm{f}(n+1)+a_{0,2} \mathrm{f}(n+2)+a_{1,2} n \mathrm{f}(n+2) \\
\quad+a_{2,2} n^{2} \mathrm{f}(n+2)=0
\end{array}
\end{aligned}
$$

> guessrec(terms[1..9],2,2);

$$
\left(-15 a_{0,2}-\frac{4227789970168920}{1935065306831} a_{2,2}\right) \mathrm{f}(n)
$$

$$
+\left(-14 a_{0,2}+\frac{5950106790518264}{1935065306831} a_{2,2}\right) n \mathrm{f}(n)
$$

$$
+\left(-3 a_{0,2}+\frac{24797627660448628}{1935065306831} a_{2,2}\right) n^{2} \mathrm{f}(n)
$$

$$
+\left(-3 a_{0,2}+\frac{2113894985084460}{1935065306831} a_{2,2}\right) \mathrm{f}(n+1)
$$

$$
+\left(-4 a_{0,2}+\frac{488340789368264}{1935065306831} a_{2,2}\right) n \mathrm{f}(n+1)
$$

$$
+\frac{4197158147100063}{1935065306831} a_{2,2} n^{2} \mathrm{f}(n+1)+a_{0,2} \mathrm{f}(n+2)
$$

$$
-\frac{930025877222492}{1935065306831} a_{2,2} n \mathrm{f}(n+2)+a_{2,2} n^{2} \mathrm{f}(n+2)=0
$$

Using too high order/degree gives multiples of the desired recurrence with lots of
a[i,j]'s still free:
> bigrec := guessrec (terms, 3,3);
bigrec $:=\left(-15 a_{0,2}-105 a_{0,3}\right) \mathrm{f}(n)+\left(160 a_{1,3}+6 a_{0,2}+142 a_{0,3}+5 a_{1,1}\right) n \mathrm{f}(n)$

$$
\begin{aligned}
& +\left(\frac{47}{3} a_{0,2}+203 a_{0,3}+\frac{448}{3} a_{1,3}+\frac{14}{3} a_{1,1}\right) n^{2} \mathrm{f}(n) \\
& +\left(32 a_{1,3}+4 a_{0,2}+48 a_{0,3}+a_{1,1}\right) n^{3} \mathrm{f}(n)+\left(-3 a_{0,2}-53 a_{0,3}\right) \mathrm{f}(n+1) \\
& +a_{1,1} n \mathrm{f}(n+1)+\left(\frac{68}{3} a_{1,3}+\frac{16}{3} a_{0,2}+61 a_{0,3}+\frac{4}{3} a_{1,1}\right) n^{2} \mathrm{f}(n+1) \\
& -3 a_{1,3} n^{3} \mathrm{f}(n+1)+a_{0,2} \mathrm{f}(n+2) \\
& +\left(-\frac{53}{3} a_{1,3}-\frac{4}{3} a_{0,2}-20 a_{0,3}-\frac{1}{3} a_{1,1}\right) n \mathrm{f}(n+2)-4 a_{1,3} n^{2} \mathrm{f}(n+2) \\
& +a_{0,3} \mathrm{f}(n+3)+a_{1,3} n \mathrm{f}(n+3)=0
\end{aligned}
$$

The distinction between the last two things is that in bigrec, the number of equations $\mathrm{k}-\mathrm{J}+1$ greatly exceeds the number of unknowns, $(\mathrm{I}+1)(\mathrm{J}+1)$, yet is still solvable; but with too few terms, the number of equations is smaller than the number of unknowns, and of course there's a solution, but it's meaningless due to insufficient data.
In bigrec, the coefficient of each $a[i, j]$ is a recurrence:
> as := indets(bigrec,indexed);

$$
\text { as }:=\left\{a_{0,2}, a_{0,3}, a_{1,3}, a_{1,1}\right\}
$$

> map(collect, [coeffs(expand(lhs(bigrec)), as)],\{f(n),f(n+1
), f(n+2),f(n+3)\},factor);
$\left[\left(1-\frac{4}{3} n\right) \mathrm{f}(n+2)+\frac{1}{3}(3 n+5)(n+3)(4 n-3) \mathrm{f}(n)\right.$
$+\frac{1}{3}(4 n-3)(4 n+3) \mathrm{f}(n+1),-20 n \mathrm{f}(n+2)+(3 n+5)(16 n-7)(n+3) \mathrm{f}(n)$
$+\left(-53+61 n^{2}\right) \mathrm{f}(n+1)+\mathrm{f}(n+3),-\frac{1}{3} n(12 n+53) \mathrm{f}(n+2)$
$+\frac{32}{3} n(n+3)(3 n+5) \mathrm{f}(n)-\frac{1}{3} n^{2}(-68+9 n) \mathrm{f}(n+1)+n \mathrm{f}(n+3)$,
$\left.-\frac{1}{3} n \mathrm{f}(n+2)+\frac{1}{3} n(n+3)(3 n+5) \mathrm{f}(n)+\frac{1}{3} n(4 n+3) \mathrm{f}(n+1)\right]$
Express them in operator notation and take their GCD to get the optimal recurrence.

