
Math 262a — Topics in Combinatorics — Fall 1999 — Glenn Tesler
Homework 8 answers — November 24, 1999

I will use AB to denote multiplication of operators, and A ∗ f to denote the action of the operator A
applied to the function f . If f is a function, it may be viewed as the operator of multiplication by that
function. So for D = d

dx , we have Df = fD +D ∗ f .
1. Factorization of operators. Consider the operator L = E2 − 2E + 1 in the rational shift algebra
C(n)[E;E, 0]. The solutions of L ∗ f(n) = 0 are f(n) = an+ b for any constants a, b.
(a) Find a monic operator of order 1, B = E + α(n), annihilating an+ b: B ∗ (an + b) = 0.

Answer: The monic first order annihilator of f(n) = an+ b is

B = E − (E ∗ f(n))/f(n) = E −
an + a+ b

an+ b
.

(b) Factorize L = AB. Do we have unique factorization?
Answer: We could use the division algorithm. Instead, set A = E + β(n),

L = AB = E2 + (α(n+ 1) + β(n))E + α(n)β(n) = E2 − 2E + 1,

so β(n) = 1/α(n) = − an+b
an+a+b .

(Indeed, α(n+ 1) + β(n) = −an+2a+b
an+a+b

− an+b
an+a+b

= −2an+2a+2b
an+a+b

= −2.)

L =
(
E −

an + b

an + a+ b

)(
E −

an+ a+ b

an + b

)
for all constants a, b, with the denominators not vanishing, i.e., a and b aren’t both 0. Apparently
we do not have unique factorization.

(c) In the Weyl algebra, find all factorizations of D2 − 2D + 1.
Answer: Let L = D2 − 2D + 1. The solutions of L ∗ f(x) = 0 are ax+ b. The monic annihilator
of ax+ b is B = D − (ax+b)′

ax+b
= D − a

ax+b
, and we get

L =
(
D −

ax+ b

a

)(
D−

a

ax+ b

)
for all constants a, b with a 6= 0.

2. Ore algebras. Consider the difference operator whose action is ∆ ∗ f(n) = f(n + 1)− f(n). Put the
operator ∆f(n) into normal form (∆ on right). Use the K[∂; σ, δ] notation to express the Ore Algebra
of polynomials in ∆ whose coefficients are rational functions of n placed on the left.
Answer:

∆f(n) = (E− 1)f(n) = f(n+ 1)E − f(n) = f(n+ 1)(1 + ∆)− f(n) = f(n+ 1)∆ + (f(n+ 1)− f(n))

or ∆f(n) = (E ∗ f(n))∆ + (∆ ∗ f(n)). Thus we are in the Ore algebra K[n][∆;E,∆] (or K(n), etc.).

Now do the same for the q-analogue ∆(q)
x ∗ f(x) = f(xq)−f(x)

x(q−1) .

Answer: We define the q-dilation operator H(q)
x ∗ f(x) = f(qx). Then

∆(q)
x = (x(1− q))−1(H(q)

x − 1) and H(q)
x = x(1− q)∆(q)

x + 1.

So

∆(q)
x f(x) =

1
x(1− q)

(
H(q)
x − 1

)
f(x) =

1
x(1− q)

(
f(qx)H(q)

x − f(x)
)

=
1

x(1− q)
(
f(qx)H(q)

x − f(x)
)

=
1

x(1− q)
(
f(qx)(x(1 − q)∆(q)

x + 1)− f(x)
)

= f(qx)∆(q)
x +

f(qx)− f(x)

x(1− q)
= (H(q)

x ∗ f(x))∆(q)
x + (∆(q)

x ∗ f(x))

1



2

and we are in the Ore algebra K(q, x)[∆(q)
x ;H(q)

x ,∆(q)
x ].

3. “D”-finite functions. If (nE − 1)f(n) = 0 and (E2 − n)g(n) = 0, find a homogeneous recurrence
equation with Q[n] coefficients satisfied by h(n) = f(n)g(n) − g(n). (Certain initial conditions may
allow smaller recurrences, but we’re not concerned with that: this single recurrence should hold for all
possible f(n), g(n) satisfing the given equations.)
Answer: See the maple worksheet.

4. Gröbner bases.
(a) Let f(x, y, z) = 2x+ 3y + 4z + 5x2 + 6xy + 7z3. Write f with terms in decreasing order; LT(f);

LC(f); LM(f); and multideg(f), for each of these orders: lex order with x > y > z; lex order with
z > y > x; and grlex order with x > y > z.
Answer:

order f in that order LT(f) LC(f) LM(f) multideg(f)

lex order, x > y > z 5x2 + 6xy + 2x+ 3y + 7z3 + 4z 5x2 5 x2 (2, 0, 0)

lex order, z > y > x 7z3 + 4z + 6xy + 3y + 5x2 + 2x 7z3 7 z3 (0, 0, 3)

grlex order, x > y > z 7z3 + 5x2 + 6xy + 2x+ 3y + 4z 7z3 7 z3 (0, 0, 3)

(b) Let f = x3 − x2y − x2z + x, f1 = x2y − z, f2 = xy− 1.
(i) In grlex order with x > y > z, compute

r1 = remainder of f on division by (f1, f2);
r2 = remainder of f on division by (f2, f1).

Answer: First compute r1:
x3 − x2y − x2z + x: x3 goes into the remainder; r = x3.
−x2y − x2z + x: the lead term = −LT(f1) so q1 = −1 and we subtract −f1.
−x2z + x− z: No term is divisible by LT(f1) or LT(f2), so all remaining terms are put in

the remainder, giving r = x3 − x2z + x− z.
Thus f = q1f1 + q2f2 + r1 with q1 = −1, q2 = 0, r1 = x3 − x2z + x− z .

Compute r2:
x3 − x2y − x2z + x: x3 goes into the remainder; r = x3.
−x2y − x2z + x: the lead term = −xLT(f2) so q2 = −x and we subtract −xf2.
−x2z: Neither lead term goes into this, so it is contributed to the remainder.
This division gives f = q′1f1 + q′2f2 + r2 with q′1 = 0, q′2 = −x, r2 = x3 − x2z .

(ii) Is r = r1− r2 in the ideal 〈f1, f2〉? If so, find an explicit expression r = Af1 +Bf2; if not, say
why not.
Answer: r = r1− r2 = x− z is in the ideal because r1− r2 = (q′1f1 + q′2f2)− (q1f1 + q2f2) =
(q′1 − q1)f1 + (q′2 − q2)f2 = (1)f1 + (−x)f2 .

(iii) Compute the remainder of r on division by (f1, f2). Why could you have predicted the answer
in advance?
Answer: No term of r1 or r2 is divisible by LT(f1) or LT(f2), so no term of r1 − r2 is either,
and thus all terms of this will be contributed to the remainder. So x− z(f1,f2) = x− z.

(iv) Does the division algorithm give us a solution for the “ideal membership problem” for the
ideal 〈f1, f2〉?
Answer: No, because r is in the ideal, but r(f1,f2) 6= 0.


