Math 262a — Topics in Combinatorics — Fall 1999 — Glenn Tesler Homework 8 answers — November 24, 1999

I will use AB to denote multiplication of operators, and A * f to denote the action of the operator A applied to the function f. If f is a function, it may be viewed as the operator of multiplication by that function. So for $D = \frac{d}{dx}$, we have Df = fD + D * f.

- 1. Factorization of operators. Consider the operator $L = E^2 2E + 1$ in the rational shift algebra $\mathbb{C}(n)[E; E, 0]$. The solutions of L * f(n) = 0 are f(n) = an + b for any constants a, b.
 - (a) Find a monic operator of order 1, $B = E + \alpha(n)$, annihilating an + b: B * (an + b) = 0.
 - Answer: The monic first order annihilator of f(n) = an + b is

$$B = E - (E * f(n))/f(n) = E - \frac{an + a + b}{an + b}$$

(b) Factorize L = AB. Do we have unique factorization? Answer: We could use the division algorithm. Instead, set $A = E + \beta(n)$,

$$L = AB = E^{2} + (\alpha(n+1) + \beta(n))E + \alpha(n)\beta(n) = E^{2} - 2E + 1,$$

so
$$\beta(n) = 1/\alpha(n) = -\frac{an+b}{an+a+b}$$
.
(Indeed, $\alpha(n+1) + \beta(n) = -\frac{an+2a+b}{an+a+b} - \frac{an+b}{an+a+b} = -\frac{2an+2a+2b}{an+a+b} = -2$.)

$$L = \left(E - \frac{an+b}{an+a+b}\right) \left(E - \frac{an+a+b}{an+b}\right)$$

for all constants a, b, with the denominators not vanishing, i.e., a and b aren't both 0. Apparently we do not have unique factorization.

(c) In the Weyl algebra, find all factorizations of $D^2 - 2D + 1$.

Answer: Let $L = D^2 - 2D + 1$. The solutions of L * f(x) = 0 are ax + b. The monic annihilator of ax + b is $B = D - \frac{(ax+b)'}{ax+b} = D - \frac{a}{ax+b}$, and we get

$$L = \left(D - rac{ax+b}{a}
ight)\left(D - rac{a}{ax+b}
ight)$$

for all constants a, b with $a \neq 0$.

2. Ore algebras. Consider the difference operator whose action is $\Delta * f(n) = f(n+1) - f(n)$. Put the operator $\Delta f(n)$ into normal form (Δ on right). Use the $\mathbb{K}[\partial; \sigma, \delta]$ notation to express the Ore Algebra of polynomials in Δ whose coefficients are rational functions of n placed on the left. Answer:

$$\Delta f(n) = (E-1)f(n) = f(n+1)E - f(n) = f(n+1)(1+\Delta) - f(n) = \boxed{f(n+1)\Delta + (f(n+1) - f(n))}$$

or $\Delta f(n) = (E * f(n))\Delta + (\Delta * f(n))$. Thus we are in the Ore algebra $\mathbb{K}[n][\Delta; E, \Delta]$ (or $\mathbb{K}(n)$, etc.).

Now do the same for the q-analogue $\Delta_x^{(q)} * f(x) = \frac{f(xq) - f(x)}{x(q-1)}$. Answer: We define the q-dilation operator $H_x^{(q)} * f(x) = f(qx)$. Then

$$\Delta_x^{(q)} = (x(1-q))^{-1}(H_x^{(q)} - 1) \quad \text{and} \quad H_x^{(q)} = x(1-q)\Delta_x^{(q)} + 1.$$

 \mathbf{So}

$$\begin{split} \Delta_x^{(q)} f(x) &= \frac{1}{x(1-q)} \left(H_x^{(q)} - 1 \right) f(x) = \frac{1}{x(1-q)} \left(f(qx) H_x^{(q)} - f(x) \right) \\ &= \frac{1}{x(1-q)} \left(f(qx) H_x^{(q)} - f(x) \right) = \frac{1}{x(1-q)} \left(f(qx) (x(1-q) \Delta_x^{(q)} + 1) - f(x) \right) \\ &= \boxed{f(qx) \Delta_x^{(q)} + \frac{f(qx) - f(x)}{x(1-q)}} = (H_x^{(q)} * f(x)) \Delta_x^{(q)} + (\Delta_x^{(q)} + (\Delta_x^{(q)} * f(x)) \Delta_x^{(q)} + (\Delta_x^{(q)} + (\Delta_x^{(q)} * f(x)) \Delta_x^{(q)} + (\Delta_x^{(q)} + (\Delta_x^{(q)} * f(x)) \Delta_x^{(q)} + (\Delta_x^{(q)} + (\Delta_x^{(q)}$$

and we are in the Ore algebra $\mathbb{K}(q, x)[\Delta_x^{(q)}; H_x^{(q)}, \Delta_x^{(q)}].$

3. "D"-finite functions. If (nE-1)f(n) = 0 and $(E^2 - n)g(n) = 0$, find a homogeneous recurrence equation with $\mathbb{Q}[n]$ coefficients satisfied by h(n) = f(n)g(n) - g(n). (Certain initial conditions may allow smaller recurrences, but we're not concerned with that: this single recurrence should hold for all possible f(n), g(n) satisfing the given equations.) Answer: See the maple worksheet.

4. Gröbner bases.

(a) Let $f(x, y, z) = 2x + 3y + 4z + 5x^2 + 6xy + 7z^3$. Write f with terms in decreasing order; LT(f); LC(f); LM(f); and multideg(f), for each of these orders: lex order with x > y > z; lex order with z > y > x; and greex order with x > y > z.

order	f in that order	LT(f)	$\mathrm{LC}(f)$	$\mathrm{LM}(f)$	$\operatorname{multideg}(f)$
lex order, $x > y > z$	$5x^2 + 6xy + 2x + 3y + 7z^3 + 4z$	$5x^2$	5	x^2	(2, 0, 0)
lex order, $z > y > x$	$7z^3 + 4z + 6xy + 3y + 5x^2 + 2x$	$7z^3$	7	z^3	(0, 0, 3)
grlex order, $x > y > z$	$7z^3 + 5x^2 + 6xy + 2x + 3y + 4z$	$7z^3$	7	z^3	(0, 0, 3)

(b) Let $f = x^3 - x^2y - x^2z + x$, $f_1 = x^2y - z$, $f_2 = xy - 1$.

(i) In greex order with x > y > z, compute

 r_1 = remainder of f on division by (f_1, f_2) ;

 r_2 = remainder of f on division by (f_2, f_1) .

Answer: First compute r_1 :

 $x^3 - x^2y - x^2z + x$: x^3 goes into the remainder; $r = x^3$.

 $-x^2y - x^2z + x$: the lead term $= -LT(f_1)$ so $q_1 = -1$ and we subtract $-f_1$.

 $-x^2z + x - z$: No term is divisible by $LT(f_1)$ or $LT(f_2)$, so all remaining terms are put in the remainder, giving $r = x^3 - x^2z + x - z$.

Thus $f = q_1 f_1 + q_2 f_2 + r_1$ with $q_1 = -1$, $q_2 = 0$, $r_1 = \boxed{x^3 - x^2 z + x - z}$.

Compute r_2 :

 $x^3 - x^2y - x^2z + x$: x^3 goes into the remainder; $r = x^3$.

 $-x^2y - x^2z + x$: the lead term $= -x \operatorname{LT}(f_2)$ so $q_2 = -x$ and we subtract $-xf_2$.

 $-x^2z$: Neither lead term goes into this, so it is contributed to the remainder.

This division gives $f = q'_1 f_1 + q'_2 f_2 + r_2$ with $q'_1 = 0, q'_2 = -x, r_2 = \boxed{x^3 - x^2 z}$

(ii) Is $r = r_1 - r_2$ in the ideal $\langle f_1, f_2 \rangle$? If so, find an explicit expression $r = Af_1 + Bf_2$; if not, say why not.

Answer:
$$r = r_1 - r_2 = x - z$$
 is in the ideal because $r_1 - r_2 = (q'_1 f_1 + q'_2 f_2) - (q_1 f_1 + q_2 f_2) = (q'_1 - q_1)f_1 + (q'_2 - q_2)f_2 = (1)f_1 + (-x)f_2$.

(iii) Compute the remainder of r on division by (f_1, f_2) . Why could you have predicted the answer in advance? Answer: No term of r_1 or r_2 is divisible by $LT(f_1)$ or $LT(f_2)$, so no term of $r_1 - r_2$ is either,

Answer: No term of r_1 of r_2 is divisible by L1 (J_1) of L1 (J_2) , so no term of $r_1 - r_2$ is either, and thus all terms of this will be contributed to the remainder. So $\overline{x-z}^{(f_1,f_2)} = x-z$.

(iv) Does the division algorithm give us a solution for the "ideal membership problem" for the ideal $\langle f_1, f_2 \rangle$?

Answer: No, because r is in the ideal, but $\overline{r}^{(f_1, f_2)} \neq 0$.