Math 262a — Topics in Combinatorics — Fall 1999 — Glenn Tesler
Homework 7 answers — November 19, 1999

Maple worksheet.

Let Dy = a2~ 2]_[KJ( —aj)? and Dy = (=1 Res(f, [/, x).

View D; and D- as polynomials in the roots a; of f and 3; of f’. Let the degree of
each o; and ; be 1, and the degree of a, be 0. Then D; has degree 2(}) = n(n — 1)
because it’s a product indexed by pairs 1 < i < j < n, each factor having degree 2. The
resultant Res(f, f’,x) is the product of n(n — 1) factors a; — 3;, each with degree 1. So
D; and D5 have the same degree.

n(n—1)/2

The product [, <J( aj)2 is a symmetric function of the a’s, homogeneous of degree
2(3) = n(n — 1), so it may be expressed as a polynomial in eg(ai, ..., ) = —an—k/an
for k =1,...,n. Thus, D; is a polynomial in the a;’s divided by some power of a,, and

it vanishes iff f(z) has a repeated root.

The second definition using the resultant also is a polynomial in the aj’s, divided by ay;
but the bottom row of the Sylvester matrix is divisible by a,,, leaving just a polynomial in
an. The resultant vanishes iff f(z) and f’(x) have a common root iff f(z) has a repeated
root, so the same applies to Ds.

Since Dy and Dy have the same degrees and vanishing conditions, Dy = p - Dy for a
function p of the a’s that never vanishes (provided an =+ 0) So p = Ca,” for suitable
constants C' and k. Suppose f is monic and f = a, f Let Dy and D5 be the D; and Dy
for f. Then Res(f, f/, ) = an?" ' Res(f, f',x) and Dy = 2" 2Ds, and we see that D;
scales this way too. So we chose the correct exponent, and Dy = C D1 for a constant C,
which turns out to be as above. [INCOMPLETE]

The resultant is

2 0 a
Res(az? + bz + ¢,2ax + b,x) =det | b 2a b| = —a(b? — 4ac)
0 b c

so the discriminant is b% — 4ac.

In Koepf # 5.1 it was shown that for nt = (nf!k)! =nn—1)---(n—k+1)and A = A,,

1

k [
An-=k-n— X X )
Iterating, A'n~ = k" -n~—. Note that n~— = 0 when r > n. Thus

_JO ifr#£ ks
n=0 | k! ifr=*k.

The functions {ng, e ,ng} span all polynomials of degrees < D, so we may represent

k

A'n

any polynomial in the form

o0

k

= hn
k=0

for suitable constants by, only finitely many of which are nonzero. Apply A" and set n =0
to get (A*£)(0) = k! by. Then a more convenient way to write f(n) is

n) = Zak% where a = (AFf)(0) .
k=0 '

1



To compute the given sum, let f(n) = 5n> + 4n%. We have

k A f(n) (A% f)(0)
0 5n3 + 4n? 0
1 15n2+23n+9 9
2 30n + 38 38
3 30 30
k>4 0 0
SO
f(n) = gnL ﬁng + @ns

9 2 38 3 30 4
= — n
Thus

Zm:5n3+4n2:F(m+1)—F(0)

_b 47 3_3 2, 2
—4(m+1) 6(m+1) 4(m—i—l) +3(m+1)

(b) Let bg(n) =T(n)/T(n+k+ «).
First evaluate A and n applied to this basis:

Abun) = i) (g 1) =butn) (1= e 1) = (b a)bea(n)
nb(n) =~y (1) = by (n) — (k -+ o — by(n)

Combine these to get
nAbg(n) = —(k + a)nbgi1(n)
—(k+ ) (be(n) — (k +1+a — Dbgs1(n))
—(k + a)bi(n) + (k + a)*bps1(n)
Set

= Z ckbi(n)
k=0

and plug this into nA f(n) = f(n) to obtain

ch k:—i—a bk( )+ (k:—i—a bk+1 chbk

Collectlng coefﬁments in terms of this basis gives
Z (k+a)ep + (k—1+a)cp 1 — ck) bi(n) = Z (—(k: +a+ 1)+ (k+a— 1)20k_1) by (n)
k k
where we sum over all £ with the understanding that ¢, = 0 for £ < 0. This gives the

recursion

—(k+a+Dep+ (k+a—1)2%c1=0. (1)



Now get the indicial equation: at & = 0 this becomes
0=—-0+a+De+O0+a—-1)%c1=—(a+1)c+(a—1)?-0=—(a+ 1)

where ¢c_1 = 0 and ¢y # 0; thus, @ = —1 is the root of the indicial equation. So the final
recursion for the ¢’s is
(k—2)
k
Tterating gives ¢ = ¢g, co = c3 = - -+ = 0. So the final answer is
f(n) = co(bo(n) +bi(n)) = co (F(nr_(ﬁ ot F(nr_(?+ 1)> =co((n—1)+ (1) = .

Alternately, rewrite the original equation as

n(fn+1)=f(n))=f(n) =fln+1)=

—keg + (k— 2)%c;_1 =0 SO cp = cp—1 for k>1.

i) =[Fm) =ni@)].




