Math 262a - Topics in Combinatorics - Fall 1999 - Glenn Tesler
Homework 7 answers - November 19, 1999

1-2. See Maple worksheet.
3. (a) Let $D_{1}=a_{n}^{2 n-2} \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$ and $D_{2}=\frac{(-1)^{n(n-1) / 2}}{a_{n}} \operatorname{Res}\left(f, f^{\prime}, x\right)$.

View D_{1} and D_{2} as polynomials in the roots α_{i} of f and β_{j} of f^{\prime}. Let the degree of each α_{i} and β_{j} be 1 , and the degree of a_{n} be 0 . Then D_{1} has degree $2\binom{n}{2}=n(n-1)$ because it's a product indexed by pairs $1 \leq i<j \leq n$, each factor having degree 2 . The resultant $\operatorname{Res}\left(f, f^{\prime}, x\right)$ is the product of $n(n-1)$ factors $\alpha_{i}-\beta_{j}$, each with degree 1 . So D_{1} and D_{2} have the same degree.

The product $\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$ is a symmetric function of the α 's, homogeneous of degree $2\binom{n}{2}=n(n-1)$, so it may be expressed as a polynomial in $e_{k}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=-a_{n-k} / a_{n}$ for $k=1, \ldots, n$. Thus, D_{1} is a polynomial in the a_{k} 's divided by some power of a_{n}, and it vanishes iff $f(x)$ has a repeated root.

The second definition using the resultant also is a polynomial in the a_{k} 's, divided by a_{n}; but the bottom row of the Sylvester matrix is divisible by a_{n}, leaving just a polynomial in a_{n}. The resultant vanishes iff $f(x)$ and $f^{\prime}(x)$ have a common root iff $f(x)$ has a repeated root, so the same applies to D_{2}.

Since D_{1} and D_{2} have the same degrees and vanishing conditions, $D_{2}=p \cdot D_{1}$ for a function p of the a 's that never vanishes (provided $a_{n} \neq 0$). So $p=C a_{n}{ }^{k}$ for suitable constants C and k. Suppose \hat{f} is monic and $f=a_{n} \hat{f}$. Let \hat{D}_{1} and \hat{D}_{2} be the D_{1} and D_{2} for \hat{f}. Then $\operatorname{Res}\left(f, f^{\prime}, x\right)=a_{n}{ }^{2 n-1} \operatorname{Res}\left(\hat{f}, \hat{f}^{\prime}, x\right)$ and $D_{2}=a_{n}^{2 n-2} \hat{D}_{2}$, and we see that D_{1} scales this way too. So we chose the correct exponent, and $D_{2}=C D_{1}$ for a constant C, which turns out to be as above. [INCOMPLETE]
(b) The resultant is

$$
\operatorname{Res}\left(a x^{2}+b x+c, 2 a x+b, x\right)=\operatorname{det}\left[\begin{array}{ccc}
2 a & 0 & a \\
b & 2 a & b \\
0 & b & c
\end{array}\right]=-a\left(b^{2}-4 a c\right)
$$

so the discriminant is $b^{2}-4 a c$.
4. (a) In Koepf \# 5.1 it was shown that for $n^{\frac{k}{\underline{2}}}=\frac{n!}{(n-k)!}=n(n-1) \cdots(n-k+1)$ and $\Delta=\Delta_{n}$, $\Delta n^{\underline{k}}=k \cdot n^{\frac{k-1}{}}$.

$$
\left.\Delta^{r} n^{\underline{k}}\right|_{n=0}= \begin{cases}0 & \text { if } r \neq k \\ k! & \text { if } r=k\end{cases}
$$

The functions $\left\{n^{\underline{0}}, \ldots, n^{\underline{D}}\right\}$ span all polynomials of degrees $\leq D$, so we may represent any polynomial in the form

$$
f(n)=\sum_{k=0}^{\infty} b_{k} n^{\underline{k}}
$$

for suitable constants b_{k}, only finitely many of which are nonzero. Apply Δ^{r} and set $n=0$ to get $\left(\Delta^{k} f\right)(0)=k!b_{k}$. Then a more convenient way to write $f(n)$ is

$$
f(n)=\sum_{k=0}^{\infty} a_{k} \frac{n^{\underline{k}}}{k!} \quad \text { where } \quad a_{k}=\left(\Delta^{k} f\right)(0)
$$

To compute the given sum, let $f(n)=5 n^{3}+4 n^{2}$. We have

k	$\Delta^{k} f(n)$	$\left(\Delta^{k} f\right)(0)$
0	$5 n^{3}+4 n^{2}$	0
1	$15 n^{2}+23 n+9$	9
2	$30 n+38$	38
3	30	30
$k \geq 4$	0	0

so

$$
f(n)=\frac{9}{1!} n^{\frac{1}{2}}+\frac{38}{2!} n^{\underline{2}}+\frac{30}{3!} n^{\frac{3}{2}}
$$

and an antidifference $F(n)$ s.t. $\Delta F(n)=f(n)$ is

$$
F(n)=\frac{9}{2!} n^{\underline{2}}+\frac{38}{3!} n^{\frac{3}{3}}+\frac{30}{4!} n^{\frac{4}{4}} .
$$

Thus
$\sum_{n=0}^{m} 5 n^{3}+4 n^{2}=F(m+1)-F(0)$
$=\frac{5}{4}(m+1)^{4}-\frac{7}{6}(m+1)^{3}-\frac{3}{4}(m+1)^{2}+\frac{2}{3}(m+1)$ $=\frac{5}{4} m^{4}+\frac{23}{6} m^{3}+\frac{13}{4} m^{2}+\frac{2}{3} m$
(b) Let $\mathbf{b}_{k}(n)=\Gamma(n) / \Gamma(n+k+\alpha)$.

First evaluate Δ and n applied to this basis:

$$
\begin{gathered}
\Delta \mathbf{b}_{k}(n)=\mathbf{b}_{k}(n) \cdot\left(\frac{n}{n+k+\alpha}-1\right)=\mathbf{b}_{k}(n)\left(1-\frac{k+\alpha}{n+k+\alpha}-1\right)=-(k+\alpha) \mathbf{b}_{k+1}(n) \\
n \mathbf{b}_{k}(n)=\frac{n}{n+k+\alpha-1} \mathbf{b}_{k-1}(n)=\mathbf{b}_{k-1}(n)-(k+\alpha-1) \mathbf{b}_{k}(n)
\end{gathered}
$$

Combine these to get
$n \Delta \mathbf{b}_{k}(n)=-(k+\alpha) n \mathbf{b}_{k+1}(n)$

$$
=-(k+\alpha)\left(\mathbf{b}_{k}(n)-(k+1+\alpha-1) \mathbf{b}_{k+1}(n)\right)
$$

$$
=-(k+\alpha) \mathbf{b}_{k}(n)+(k+\alpha)^{2} \mathbf{b}_{k+1}(n)
$$

Set

$$
f(n)=\sum_{k=0}^{\infty} c_{k} \mathbf{b}_{k}(n)
$$

and plug this into $n \Delta f(n)=f(n)$ to obtain

$$
\sum_{k=0}^{\infty} c_{k}\left(-(k+\alpha) \mathbf{b}_{k}(n)+(k+\alpha)^{2} \mathbf{b}_{k+1}(n)\right)=\sum_{k=0}^{\infty} c_{k} \mathbf{b}_{k}(n) .
$$

Collecting coefficients in terms of this basis gives
$0=\sum_{k}\left(-(k+\alpha) c_{k}+(k-1+\alpha)^{2} c_{k-1}-c_{k}\right) \mathbf{b}_{k}(n)=\sum_{k}\left(-(k+\alpha+1) c_{k}+(k+\alpha-1)^{2} c_{k-1}\right) \mathbf{b}_{k}(n)$
where we sum over all k with the understanding that $c_{k}=0$ for $k \leq 0$. This gives the recursion

$$
\begin{equation*}
-(k+\alpha+1) c_{k}+(k+\alpha-1)^{2} c_{k-1}=0 . \tag{1}
\end{equation*}
$$

Now get the indicial equation: at $k=0$ this becomes
$0=-(0+\alpha+1) c_{0}+(0+\alpha-1)^{2} c_{-1}=-(\alpha+1) c_{0}+(\alpha-1)^{2} \cdot 0=-(\alpha+1) c_{0}$
where $c_{-1}=0$ and $c_{0} \neq 0$; thus, $\alpha=-1$ is the root of the indicial equation. So the final recursion for the c 's is

$$
-k c_{k}+(k-2)^{2} c_{k-1}=0 \quad \text { so } \quad c_{k}=\frac{(k-2)^{2}}{k} c_{k-1} \quad \text { for } k \geq 1
$$

Iterating gives $c_{1}=c_{0}, c_{2}=c_{3}=\cdots=0$. So the final answer is

$$
f(n)=c_{0}\left(\mathbf{b}_{0}(n)+\mathbf{b}_{1}(n)\right)=c_{0}\left(\frac{\Gamma(n)}{\Gamma(n-1+0)}+\frac{\Gamma(n)}{\Gamma(n-1+1)}\right)=c_{0}((n-1)+(1))=\boldsymbol{c}_{\mathbf{0}} \boldsymbol{n} .
$$

Alternately, rewrite the original equation as

$$
n(f(n+1)-f(n))=f(n) \quad \Rightarrow f(n+1)=\frac{n+1}{n} f(n) \quad \Rightarrow f(\boldsymbol{n})=\boldsymbol{n} \boldsymbol{f}(\mathbf{1}) .
$$

