
Math 262a — Topics in Combinatorics — Fall 1999 — Glenn Tesler
Homework 7 answers — November 19, 1999

1–2. See Maple worksheet.

3. (a) Let D1 = a2n−2
n

∏
i<j(αi − αj)2 and D2 = (−1)n(n−1)/2

an
Res(f, f ′, x).

View D1 and D2 as polynomials in the roots αi of f and βj of f ′. Let the degree of
each αi and βj be 1, and the degree of an be 0. Then D1 has degree 2

(
n
2

)
= n(n − 1)

because it’s a product indexed by pairs 1 ≤ i < j ≤ n, each factor having degree 2. The
resultant Res(f, f ′, x) is the product of n(n− 1) factors αi − βj, each with degree 1. So
D1 and D2 have the same degree.

The product
∏
i<j(αi−αj)2 is a symmetric function of the α’s, homogeneous of degree

2
(
n
2

)
= n(n− 1), so it may be expressed as a polynomial in ek(α1, . . . , αn) = −an−k/an

for k = 1, . . . , n. Thus, D1 is a polynomial in the ak’s divided by some power of an, and
it vanishes iff f(x) has a repeated root.

The second definition using the resultant also is a polynomial in the ak’s, divided by an;
but the bottom row of the Sylvester matrix is divisible by an, leaving just a polynomial in
an. The resultant vanishes iff f(x) and f ′(x) have a common root iff f(x) has a repeated
root, so the same applies to D2.

Since D1 and D2 have the same degrees and vanishing conditions, D2 = p ·D1 for a
function p of the a’s that never vanishes (provided an 6= 0). So p = Can

k for suitable
constants C and k. Suppose f̂ is monic and f = an f̂ . Let D̂1 and D̂2 be the D1 and D2

for f̂ . Then Res(f, f ′, x) = an
2n−1 Res(f̂ , f̂ ′, x) and D2 = a2n−2

n D̂2, and we see that D1

scales this way too. So we chose the correct exponent, and D2 = C D1 for a constant C,
which turns out to be as above. [INCOMPLETE]

(b) The resultant is

Res(ax2 + bx+ c, 2ax+ b, x) = det

2a 0 a
b 2a b
0 b c

 = −a(b2 − 4ac)

so the discriminant is b2 − 4ac.

4. (a) In Koepf # 5.1 it was shown that for n
k

= n!
(n−k)! = n(n− 1) · · ·(n− k+ 1) and ∆ = ∆n,

∆n
k

= k · nk−1
.

Iterating, ∆rn
k

= k
r · nk−r . Note that n

r−1
= 0 when r > n. Thus

∆rn
k
∣∣∣
n=0

=

{
0 if r 6= k;
k! if r = k.

The functions
{
n

0
, . . . , n

D
}

span all polynomials of degrees ≤ D, so we may represent
any polynomial in the form

f(n) =
∞∑
k=0

bk n
k

for suitable constants bk, only finitely many of which are nonzero. Apply ∆r and set n = 0
to get (∆kf)(0) = k! bk. Then a more convenient way to write f(n) is

f(n) =
∞∑
k=0

ak
n
k

k!
where ak = (∆kf)(0) .
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To compute the given sum, let f(n) = 5n3 + 4n2. We have

k ∆kf(n) (∆kf)(0)
0 5n3 + 4n2 0
1 15n2 + 23n+ 9 9
2 30n+ 38 38
3 30 30

k ≥ 4 0 0
so

f(n) =
9
1!
n

1
+

38
2!
n

2
+

30
3!
n

3

and an antidifference F (n) s.t. ∆F (n) = f(n) is

F (n) =
9
2!
n

2
+

38
3!
n

3
+

30
4!
n

4
.

Thus
m∑
n=0

5n3 + 4n2 = F (m+ 1)− F (0)

=
5
4

(m+ 1)4 − 7
6

(m+ 1)3 − 3
4

(m+ 1)2 +
2
3

(m+ 1)

=
5
4
m4 +

23
6
m3 +

13
4
m2 +

2
3
m

(b) Let bk(n) = Γ(n)/Γ(n+ k + α).
First evaluate ∆ and n applied to this basis:

∆bk(n) = bk(n) ·
(

n

n+ k + α
− 1
)

= bk(n)
(

1− k + α

n + k + α
− 1
)

= −(k + α)bk+1(n)

nbk(n) =
n

n + k + α− 1
bk−1(n) = bk−1(n)− (k + α − 1)bk(n)

Combine these to get

n∆bk(n) = −(k + α)nbk+1(n)

= −(k + α) (bk(n)− (k + 1 + α− 1)bk+1(n))

= −(k + α)bk(n) + (k + α)2bk+1(n)

Set

f(n) =
∞∑
k=0

ckbk(n)

and plug this into n∆f(n) = f(n) to obtain
∞∑
k=0

ck
(
−(k + α)bk(n) + (k + α)2bk+1(n)

)
=
∞∑
k=0

ckbk(n) .

Collecting coefficients in terms of this basis gives

0 =
∑
k

(
−(k + α)ck + (k− 1 + α)2ck−1 − ck

)
bk(n) =

∑
k

(
−(k + α + 1)ck + (k + α − 1)2ck−1

)
bk(n)

where we sum over all k with the understanding that ck = 0 for k ≤ 0. This gives the
recursion

−(k + α+ 1)ck + (k + α− 1)2ck−1 = 0 . (1)
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Now get the indicial equation: at k = 0 this becomes

0 = −(0 + α + 1)c0 + (0 + α − 1)2c−1 = −(α+ 1)c0 + (α− 1)2 · 0 = −(α+ 1)c0

where c−1 = 0 and c0 6= 0; thus, α = −1 is the root of the indicial equation. So the final
recursion for the c’s is

−k ck + (k − 2)2ck−1 = 0 so ck =
(k − 2)2

k
ck−1 for k ≥ 1.

Iterating gives c1 = c0, c2 = c3 = · · ·= 0. So the final answer is

f(n) = c0(b0(n) + b1(n)) = c0

(
Γ(n)

Γ(n− 1 + 0)
+

Γ(n)
Γ(n− 1 + 1)

)
= c0 ((n− 1) + (1)) = c0 n .

Alternately, rewrite the original equation as

n(f(n+ 1)− f(n)) = f(n) ⇒ f(n+ 1) =
n + 1
n

f(n) ⇒ f(n) = nf(1) .


