
Math 262a — Topics in Combinatorics — Fall 1999 — Glenn Tesler
Homework 7 — November 19, 1999

1. Suppose that f(n), g(n) are nonzero solutions to

f(n+ 2)− (n+ 3)f(n+ 1) + 2n f(n) = 0 (1)

g(n+ 2)− (2n+ 1)g(n+ 1) + n2 g(n) = 0 . (2)

(a) Find a single nontrivial recurrence of which both f(n) and g(n) are solutions.

(b) If f(n) = g(n) for all n, then what is f(n)?

(c) What specific finite amount of additional data needs to be supplied to determine that
f(n) = g(n)?

(d) Express the above recurrences in f(n), g(n) in operator notation, with the operators fully
factorized.

2. You have learned two different techniques applicable to the following problems.
(a) Find a nonzero homogeneous differential equation

I∑
i=0

pi(x)y(i)(x) = 0

of minimal order whose solutions are spanned by sin(x) and x. Now do the same if the
pi(x)’s must be polynomials in x. differential equation must be polynomials in x.

(b) Find a nonzero homogeneous recursion whose solutions are spanned by n! and the Fi-
bonacci numbers: first the minimal equation, then the minimal equation whose coefficients
are polynomials in n.

3. The discriminant of a polynomial

f(x) = anx
n + · · ·+ a0 = an(x− α1) · · · (x− αn)

(where for a field K and its algebraic closure K, ai ∈ K and αi ∈ K) is defined as

disc(f, x) = a2n−2
n

∏
i<j

(αi − αj)2 =
(−1)n(n−1)/2

an
Res(f, f ′, x)

The first definition implies that the discriminant vanishes iff f(x) has a repeated root over
the extension field K, while the second implies that the discriminant is simply a polynomial
in the coefficients of f(x) in K.
(a) Prove these definitions are the same.

(b) Compute disc(ax2 + bx+ c, x).

Turn the page for more questions.



4. Further methods of solving recurrence equations. Many of the methods you learned
for solving differential equations have counterparts for recurrence equations. Last week’s
homework had reduction of order. Now we do series solutions.
(a) Review Koepf # 5.1. Then show that any polynomial f(n) can be given by a variation

of Taylor/Frobenius series:

f(n) =
∞∑
k=0

ak
n
k

k!
where ak = (∆kf)(0)

and use this to compute
m∑
n=0

(5n3 + 4n2).

(b) Solve

n∆f(n) = f(n) (3)

by the following series method.
(i) Form a basis bk(n) = Γ(n)/Γ(n + k + α). Plug f(n) =

∑∞
k=0 ckbk(n) into (3) and

express both sides in terms of this basis with the coefficients free of n. Collect terms
with respect to this basis and find a recurrence for the ck’s. This is just like plugging
into a generic Taylor series with basis b′k(x) = xk, reindexing if necessary to collect
powers of x, and finding a recursion for the coefficients.

(ii) The coefficients ck = 0 for negative integers k, while c0 6= 0 is the first nonzero term.
This condition gives the indicial equation, used to solve for α. Do this, solve for the
ck’s, and give the final value of f(n).

From our perspective, we are solving a recurrence by getting another recurrence for the
coefficients, which may seem circular. But see the two references from last week’s home-
work for a fuller description of the series method; one use of this is to use just the first
few terms of this series to determine the asymptotics of the solutions.


