Math 262a - Topics in Combinatorics - Fall 1999 - Glenn Tesler Homework 5 - November 5, 1999

1. Koepf \# 6.7(e). Prove it by the WZ method and also derive the companion identity, determining proper bounds for the parameters.
2. Koepf \# 8.5(a,b), 8.7 [identity p. 128 (5.21)]; 11.7.
3. Use Sister Celine's algorithm as shown in class to compute $g(x)=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}$ :
(a) Let $F(x, k)=\frac{x^{2 k+1}}{(2 k+1)!}$. Find a mixed recurrence/differential equation of the form

$$
\sum_{(i, j) \in S} a_{i j}(x) D_{x}{ }^{i} E_{k}{ }^{j} F(x, k)=0
$$

where $D_{x}=\frac{\partial}{\partial x}, E_{k}$ is the shift operator in $k, a_{i j}(x)$ are functions of $x$, and $S$ is a suitable finite set.
(b) Sum the equation found in part (a) over $k$ to get a differential equation for $g(x)$.
(c) Solve the differential equation, making use of suitable initial conditions.
4. Koepf \# 12.1.

