Math 262a - Topics in Combinatorics - Fall 1999 - Glenn Tesler

Homework 3 answers - October 22, 1999

5.1

$$
\begin{aligned}
\Delta k^{\underline{m}} & =(k+1)(k) \cdots(k-m+2)-k(k-1) \cdots(k-m+2)(k-m+1) \\
& =[(k+1)-(k-m+1)] \cdot k(k-1) \cdots(k-m+2) \\
& =m \cdot k(k-1) \cdots(k-m+2)=m \cdot k^{\underline{m-1}}
\end{aligned}
$$

so $\Delta k^{\underline{m+1}}=(m+1) k^{\underline{m}}$, and provided $m \neq-1$, dividing by $m+1$ gives

$$
k^{\underline{m}}=\Delta \frac{k^{\frac{m+1}{n}}}{m+1}=\frac{(k+1)^{\frac{m+1}{n}}-k^{\underline{m}}}{m+1}
$$

Sum this for $k=a, a+1, \ldots, b-1$:

$$
\begin{aligned}
\sum_{k=a}^{b-1} k^{\underline{m}} & =\sum_{k=a}^{b-1} \frac{(k+1)^{\frac{m+1}{}}-k^{\underline{m}}}{m+1} \\
& =\frac{1}{m+1}\left(-a^{\underline{m}}+(a+1)^{\underline{m}}-(a+1)^{\underline{m}}+(a+2)^{\underline{m}}-\cdots-(b-1)^{\underline{m}}+b^{\underline{m}}\right) \\
& =\frac{b^{\underline{m}}-a^{\underline{m}}}{m+1}
\end{aligned}
$$

5.2 We have

$$
u_{k} \Delta v_{k}+v_{k+1} \Delta u_{k}=u_{k} v_{k+1}-u_{k} v_{k}+v_{k+1} u_{k+1}-v_{k+1} u_{k}=-u_{k} v_{k}+v_{k+1} u_{k+1}
$$

and summing for $k=a, \ldots, b-1$ [Note: the book has a typo] gives

$$
\sum_{k=a}^{b-1}\left(u_{k} \Delta v_{k}+v_{k+1} \Delta u_{k}\right)=u_{b} v_{b}-u_{a} v_{a}=\left.u_{k} v_{k}\right|_{k=a} ^{b}
$$

by telescoping. This rearranges into

$$
\sum_{k=a}^{b-1} u_{k} \Delta v_{k}=\left.u_{k} v_{k}\right|_{k=a} ^{b}-\sum_{k=a}^{b-1} v_{k+1} \Delta u_{k}
$$

All antidifferences of $H_{k}=\sum_{j=1}^{k} \frac{1}{j}$ are the same up to additive constant, so we take

$$
\begin{aligned}
s_{n} & =\sum_{k=1}^{n-1} H_{k}=\sum_{k=1}^{n-1} \sum_{j=1}^{k} \frac{1}{j}=\sum_{j=1}^{n-1} \sum_{k=j}^{n-1} \frac{1}{j} \\
& =\sum_{j=1}^{n-1} \frac{n-j}{j}=n \sum_{j=1}^{n-1} \frac{1}{j}-\sum_{j=1}^{n-1} 1=\mathbf{1}-\boldsymbol{n}+\boldsymbol{n} \boldsymbol{H}_{n-\mathbf{1}}
\end{aligned}
$$

Actually, this didn't make use of summation by parts at all ...
5.10 The desired antidifference has the form

$$
s_{k}=C+\sum_{n=0}^{k-1} a_{n}=C+\sum_{n=0}^{k-1}\left(t_{n+m}-t_{n}\right)=C+\left(t_{k-1}+t_{k}+\cdots+t_{k+m-1}\right)-\left(t_{0}+t_{1}+\cdots+t_{m-1}\right)
$$

for some constant C. We are given that t_{k} is hypergeometric in k, and we want s_{k} to be hypergeometric in k as well. The terms $t_{k-1}, \ldots, t_{k+m-1}$ are in the same "rational similarity class" (their quotients are rational functions of k). The terms $C+t_{0}+\cdots+t_{m-1}$ are constant w.r.t. k, and their ratio with t_{k} etc. will in general be hypergeometric but not rational, so the
total sum will not be hypergeometric w.r.t. k unless we eliminate these terms. To do this, set $C=-\left(t_{0}+\cdots+t_{m-1}\right)$, and conclude

$$
s_{k}=t_{k-1}+t_{k}+\cdots+t_{k+m-1}
$$

is the desired hypergeometric antidifference of a_{k}. (In the event that t_{k} is itself rational, we may add a constant to s_{k} and it will remain hypergeometric.) Since Gosper's algorithm is guaranteed to find this if it exists, or to recognize that it doesn't exist, we conclude that a_{k} is Gosper summable.
5.13 In class we showed $\frac{a(k+1)}{a(k)}=\frac{1+y(k)}{y(k+1)}$ which in Koepf's notation is $\frac{a_{k+1}}{a_{k}}=\frac{1+R_{k}}{R_{k+1}}$ and therefore in each problem,

$$
a_{k}=a_{j} \prod_{n=j}^{k-1} \frac{1+R_{n}}{R_{n+1}}
$$

where a_{j} is a suitable initial value. Then

	R_{k}	term ratio	a_{k}
(a)	$\frac{\alpha}{\alpha-1}$	$\underline{2 \alpha-1}$	$a_{0} \cdot\left(\frac{2 \alpha-1}{\alpha}\right)^{k}$
(b)	k	$\frac{1+k}{k+1}=1$	a_{0}
(c)	k^{2}	$\frac{1+k^{2}}{(k+1)^{2}}$	$a_{0} \prod_{n=0}^{k-1} \frac{1+n^{2}}{(n+1)^{2}}$
(d)	$1 / k$	$\frac{(k+1) / k}{1 /(k+1)}=\frac{(k+1)^{2}}{k}$	$a_{1} \prod_{n=1}^{k-1} \frac{(n+1)^{2}}{n}=a_{1} \frac{k!^{2}}{(k-1)!}=a_{1} \cdot k \cdot k!$ Note: The denominator at $n=0$ is 0 , so we start with a_{1}.
(e)	$(k-1) / k$	$\frac{(2 k-1)(k+1)}{k^{2}}$	$a_{1} \prod_{n=1}^{k-1} \frac{(2 n-1)(n+1)}{n^{2}}=a_{1} \frac{(2 k-3)!!~ k!}{(k-1)!^{2}}=a_{1} \frac{(2 k-3)!!k}{(k-1)!}$
(f)	$(k+1) / k$	$\frac{(2 k+1)(k+1)}{k(k+2)}$	$\begin{aligned} & a_{1} \cdot \frac{(2 k-1)!!/ 3 \cdot k!}{(k-1)!(k+1)!/ 3}=a_{1} \cdot \frac{(2 k-1)!!(2 k)!!/ 2^{k}}{(k-1)!(k+1)!} \\ & \quad=a_{1} \cdot \frac{(2 k)!/ 2^{k}}{(k-1)!(k+1)!}=a_{1} \cdot\binom{2 k}{k-1} / 2^{k} \end{aligned}$

where we used the notation $(2 n)!!=2 \cdot 4 \cdots(n-2) n$ and $(2 n+1)!!=1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)(2 n+1)$ for integer n.
5.20 In Example 5.3, page 71 of Koepf, the term ratio for $a(k)=\binom{n}{k}$ is computed:

$$
\frac{a(k+1)}{a(k)}=\frac{n-k}{k+1} .
$$

Since n is a symbol rather than a specific number, the numerator and denominator do not have roots differing by an integer, so Gosper's algorithm finds " p, q, r " quickly and terminates. If n represents a specific integer, however, the algorithm proceeds differently.

Initially we choose $p(k)=1, q(k)=n-k+1=-(k-(n+1)), r(k)=k$. Consider $g_{j}(k):=\operatorname{gcd}(q(k), r(k+j))=\operatorname{gcd}(k-(n+1), k+j)$. This is $k+j \neq 1$ when $j=-(n+1)$; for j to be a nonnegative integer requires $n=-1,-2,-3, \ldots$. Write this as $n=-N, j=N-1$, $g_{j}(k)=k+N-1$ with N positive. The algorithm computes a different p, q, r, as follows:

$$
\begin{aligned}
p^{\prime}(k) & =p(k) \cdot g_{j}(k) g_{j}(k-1) \cdots g_{j}(k-j+1)=(k+N-1)(k+N-2) \ldots(k+1) \\
q^{\prime}(k) & =q(k) / g_{j}(k)=-1 \\
r^{\prime}(k) & =r(k) / g_{j}(k-j)=1
\end{aligned}
$$

and these new q, r are relatively prime at all shifts so this is final.
The next step is to find a polynomial $f(k)$ satisfying $q(k+1) f(k)-r(k) f(k-1)=p(k)$, which becomes

$$
\begin{equation*}
-f(k)-f(k-1)=(k+N-1)(k+N-2) \ldots(k+1) \tag{1}
\end{equation*}
$$

This is a constant coefficient recursion with a polynomial inhomogeneity, so we expect that $f(k)$ should be a polynomial of degree $N-1$. However, we will do this as in Gosper's algorithm. Since q and r have different leading terms, we are in "Case 1." The degree bound for $f(k)$ is then $D=\operatorname{deg}(p)-\max \{\operatorname{deg}(q), \operatorname{deg}(r)\}=(N-1)-0=N \mathbf{N} \mathbf{1}=\boldsymbol{- n}-\mathbf{1}$. So we set $f(k)$ to a generic polynomial of this degree:

$$
f(k)=\sum_{i=0}^{N-1} c_{i} k^{i}
$$

and plug that into (1), collect in powers of k, set the coefficients of the powers of k on both sides equal, and solve for the c 's.

Another way to do this, not pertinent to Gosper's algorithm in general but pertinent to solving recursions, is to rewrite (1) as follows:

$$
\begin{aligned}
f(k+1)+f(k)=(E+1) f(k)=(\Delta+2) f(k)=2 & (1+\Delta / 2) f(k) \\
& =-(k+2)(k+3) \cdots(k+N)=(k+N)^{\frac{N-1}{2}}
\end{aligned}
$$

so that a particular solution is given by

$$
f(k)=-\frac{1}{2} \frac{1}{1+\Delta / 2}(k+2)_{N-1}=-\frac{1}{2} \sum_{r=0}^{\infty} \frac{\Delta^{r}}{(-2)^{r}}(k+N)^{\frac{N-1}{}}
$$

Since Δ decreases the degree of a nonzero polynomial by 1 , the sum terminates at $r=N-1$. By suitably modifying problem 5.1,

$$
\Delta^{r}(k+a)^{\underline{b}}=b(b-1) \cdots(b-r+1)(k+a)^{\frac{b-r}{}}=b^{\underline{r}}(k+a)^{\frac{b-r}{}}
$$

so

$$
f(k)=-\frac{1}{2} \sum_{r=0}^{N-1} \frac{(N-1)^{\frac{r}{}}(k+N)^{\frac{N-1-r}{}}}{(-2)^{r}}
$$

Finally,

$$
s(k)=\frac{r(k) f(k-1)}{p(k)} a(k)=\frac{f(k-1)}{(k+1)_{N-1}}\binom{-N}{k} .
$$

5.21 We are given $a(k)=\frac{1}{k^{2}} \in \mathbb{Q}(k)$. If it has a hypergeometric antidifference $s(k)$, then $s(k)$ is a rational multiple of $a(k)$ by Gosper's algorithm, and hence $s(k)$ is rational too; $s(k) \in \mathbb{Q}(k)$. The most general antidifference of $a(k)$ is then $s(k)+C$. For an arbitrary application of Gosper's algorithm, $s(k)+C$ would not be hypergeometric unless $C=0$, but since $s(k)$ is rational, so is $s(k)+C$, so Gosper's algorithm can return many possible functions, all differing by a constant.

By polynomial division, an arbitrary rational function $s(k) \in \mathbb{Q}(k)$ can be written $\gamma(k)+$ $A \alpha(k) / \beta(k)$ for polynomials $\gamma(k), \alpha(k), \beta(k) \in \mathbb{Q}(k) ; A \in \mathbb{Q}$; and α, β monic with $\operatorname{deg}(\alpha)<$ $\operatorname{deg}(\beta)$. Since we know $s(k)$ approaches a limit as $k \rightarrow \infty$, the polynomial $\gamma(k)$ is just a
constant C : $s(k)=C+A \alpha(k) / \beta(k)$. All other possible antidifferences of $a(k)$ are obtained just by modifying C.

Then

$$
\sum_{k=1}^{n-1} a(k)=s(n)-s(1)=(C-C)+A\left(\frac{\alpha(n)}{\beta(n)}-\frac{\alpha(1)}{\beta(1)}\right)
$$

Since $\operatorname{deg}(\alpha)<\operatorname{deg}(\beta), \lim _{n \rightarrow \infty} \frac{\alpha(n)}{\beta(n)}=0$ so this gives

$$
\sum_{k=1}^{\infty} a(k)=-A \frac{\alpha(1)}{\beta(1)} \in \mathbb{Q}
$$

But here, the sum is known to be the irrational number $\pi^{2} / 6$. There's a contradiction; the assumption that a hypergeometric term antidifference $s(k)$ exists is false.
5.25

$$
s(k)=C+\sum_{n=0}^{k-1} q^{j n}=C+\frac{1-q^{k j}}{1-q^{j}} .
$$

For any fixed value $j=1,2,3, \ldots$ and any constant C (constant w.r.t. k; so $C \in \mathbb{Q}(q))$, this expression is a polynomial (over $\mathbb{Q}(q))$ in q^{k} of degree j, so it's q-hypergeometric. Gosper's algorithm is shown on the worksheet.

