
Math 262a — Topics in Combinatorics — Fall 1999 — Glenn Tesler
Homework 3 answers — October 22, 1999

5.1

∆k
m

= (k+ 1)(k) · · ·(k −m+ 2)− k(k − 1) · · · (k −m+ 2)(k−m+ 1)
= [(k + 1)− (k−m+ 1)] · k(k − 1) · · ·(k −m+ 2)

= m · k(k − 1) · · ·(k −m+ 2) = m · km−1

so ∆k
m+1

= (m+ 1)k
m

, and provided m 6= −1, dividing by m+ 1 gives

k
m

= ∆
k
m+1

m+ 1
=

(k+ 1)
m+1

− km

m+ 1
Sum this for k = a, a+ 1, . . . , b− 1:
b−1∑
k=a

k
m

=
b−1∑
k=a

(k + 1)
m+1

− km

m+ 1

=
1

m+ 1

(
−am + (a+ 1)

m

− (a+ 1)
m

+ (a+ 2)
m

− · · · − (b− 1)
m

+ b
m
)

=
b
m − am

m+ 1
5.2 We have

uk ∆vk + vk+1 ∆uk = ukvk+1 − ukvk + vk+1uk+1 − vk+1uk = −ukvk + vk+1uk+1

and summing for k = a, . . . , b− 1 [Note: the book has a typo] gives
b−1∑
k=a

(uk ∆vk + vk+1 ∆uk) = ubvb − uava = ukvk

∣∣∣b
k=a

by telescoping. This rearranges into
b−1∑
k=a

uk ∆vk = ukvk

∣∣∣b
k=a
−

b−1∑
k=a

vk+1 ∆uk

All antidifferences of Hk =
∑k

j=1
1
j are the same up to additive constant, so we take

sn =
n−1∑
k=1

Hk =
n−1∑
k=1

k∑
j=1

1
j

=
n−1∑
j=1

n−1∑
k=j

1
j

=
n−1∑
j=1

n− j
j

= n
n−1∑
j=1

1
j
−
n−1∑
j=1

1 = 1− n+ nHn�1

Actually, this didn’t make use of summation by parts at all . . .

5.10 The desired antidifference has the form

sk = C +
k−1∑
n=0

an = C +
k−1∑
n=0

(tn+m − tn) = C + (tk−1 + tk + · · ·+ tk+m−1)− (t0 + t1 + · · ·+ tm−1)

for some constant C. We are given that tk is hypergeometric in k, and we want sk to be
hypergeometric in k as well. The terms tk−1, . . . , tk+m−1 are in the same “rational similarity
class” (their quotients are rational functions of k). The terms C+ t0 + · · ·+ tm−1 are constant
w.r.t. k, and their ratio with tk etc. will in general be hypergeometric but not rational, so the
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total sum will not be hypergeometric w.r.t. k unless we eliminate these terms. To do this, set
C = −(t0 + · · ·+ tm−1), and conclude

sk = tk�1 + tk + · · ·+ tk+m�1

is the desired hypergeometric antidifference of ak. (In the event that tk is itself rational, we
may add a constant to sk and it will remain hypergeometric.) Since Gosper’s algorithm is
guaranteed to find this if it exists, or to recognize that it doesn’t exist, we conclude that ak
is Gosper summable.

5.13 In class we showed a(k+1)
a(k) = 1+y(k)

y(k+1) which in Koepf’s notation is ak+1

ak
= 1+Rk

Rk+1
and therefore

in each problem,

ak = aj

k−1∏
n=j

1 +Rn
Rn+1

where aj is a suitable initial value. Then

Rk term ratio ak

(a)
α

α − 1
2α − 1
α

a0 ·
(

2α− 1
α

)k
(b) k

1 + k

k + 1
= 1 a0

(c) k2 1 + k2

(k + 1)2
a0

k−1∏
n=0

1 + n2

(n+ 1)2

(d) 1/k
(k + 1)/k
1/(k+ 1)

=
(k + 1)2

k
a1

k−1∏
n=1

(n+ 1)2

n
= a1

k!2

(k − 1)!
= a1 · k · k!

Note: The denominator at n = 0 is 0, so we start with a1.

(e) (k − 1)/k
(2k− 1)(k+ 1)

k2
a1

k−1∏
n=1

(2n− 1)(n+ 1)
n2

= a1
(2k− 3)!! k!

(k− 1)!2
= a1

(2k − 3)!! k
(k− 1)!

(f) (k + 1)/k
(2k+ 1)(k+ 1)

k(k + 2)
a1 ·

(2k− 1)!!/3 · k!
(k − 1)! (k + 1)!/3

= a1 ·
(2k − 1)!! (2k)!!/2k

(k − 1)! (k + 1)!

= a1 ·
(2k)!/2k

(k − 1)! (k + 1)!
= a1 ·

(
2k
k − 1

) /
2k

where we used the notation (2n)!! = 2·4 · · ·(n−2)n and (2n+1)!! = 1·3·5 · · · · · ·(2n−1)(2n+1)
for integer n.

5.20 In Example 5.3, page 71 of Koepf, the term ratio for a(k) =
(
n
k

)
is computed:

a(k + 1)
a(k)

=
n− k
k + 1

.

Since n is a symbol rather than a specific number, the numerator and denominator do not
have roots differing by an integer, so Gosper’s algorithm finds “p, q, r” quickly and terminates.
If n represents a specific integer, however, the algorithm proceeds differently.

Initially we choose p(k) = 1, q(k) = n − k + 1 = −(k − (n + 1)), r(k) = k. Consider
gj(k) := gcd(q(k), r(k+ j)) = gcd(k− (n+ 1), k+ j). This is k+ j 6= 1 when j = −(n+ 1); for
j to be a nonnegative integer requires n = −1,−2,−3, . . . . Write this as n = −N , j = N − 1,
gj(k) = k +N − 1 with N positive. The algorithm computes a different p, q, r, as follows:
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p′(k) = p(k) · gj(k)gj(k − 1) · · ·gj(k − j + 1) = (k +N − 1)(k+N − 2)...(k+ 1)
q′(k) = q(k)/gj(k) = −1
r′(k) = r(k)/gj(k − j) = 1

and these new q, r are relatively prime at all shifts so this is final.
The next step is to find a polynomial f(k) satisfying q(k + 1)f(k)− r(k)f(k − 1) = p(k),

which becomes

−f(k)− f(k − 1) = (k +N − 1)(k+N − 2)...(k+ 1) (1)

This is a constant coefficient recursion with a polynomial inhomogeneity, so we expect that
f(k) should be a polynomial of degree N−1. However, we will do this as in Gosper’s algorithm.
Since q and r have different leading terms, we are in “Case 1.” The degree bound for f(k)
is then D = deg(p)−max {deg(q), deg(r)} = (N − 1)− 0 = N − 1 = −n− 1 . So we set
f(k) to a generic polynomial of this degree:

f(k) =
N−1∑
i=0

ci k
i

and plug that into (1), collect in powers of k, set the coefficients of the powers of k on both
sides equal, and solve for the c’s.

Another way to do this, not pertinent to Gosper’s algorithm in general but pertinent to
solving recursions, is to rewrite (1) as follows:

f(k + 1) + f(k) = (E + 1)f(k) = (∆ + 2)f(k) = 2(1 + ∆/2)f(k)

= −(k + 2)(k + 3) · · · (k +N ) = (k +N )
N−1

so that a particular solution is given by

f(k) = −1
2

1
1 + ∆/2

(k + 2)N−1 = −1
2

∞∑
r=0

∆r

(−2)r
(k +N )

N−1

Since ∆ decreases the degree of a nonzero polynomial by 1, the sum terminates at r = N − 1.
By suitably modifying problem 5.1,

∆r(k + a)
b

= b(b− 1) · · · (b− r + 1)(k+ a)
b−r

= b
r
(k + a)

b−r

so

f(k) = −1
2

N−1∑
r=0

(N − 1)
r

(k +N )
N−1−r

(−2)r
.

Finally,

s(k) =
r(k)f(k − 1)

p(k)
a(k) =

f(k − 1)
(k+ 1)N−1

(
−N
k

)
.

5.21 We are given a(k) = 1
k2 ∈ Q(k). If it has a hypergeometric antidifference s(k), then s(k) is a

rational multiple of a(k) by Gosper’s algorithm, and hence s(k) is rational too; s(k) ∈ Q(k).
The most general antidifference of a(k) is then s(k) + C. For an arbitrary application of
Gosper’s algorithm, s(k) + C would not be hypergeometric unless C = 0, but since s(k) is
rational, so is s(k)+C, so Gosper’s algorithm can return many possible functions, all differing
by a constant.

By polynomial division, an arbitrary rational function s(k) ∈ Q(k) can be written γ(k) +
Aα(k)/β(k) for polynomials γ(k), α(k), β(k) ∈ Q(k); A ∈ Q; and α, β monic with deg(α) <
deg(β). Since we know s(k) approaches a limit as k → ∞, the polynomial γ(k) is just a
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constant C: s(k) = C + Aα(k)/β(k). All other possible antidifferences of a(k) are obtained
just by modifying C.

Then
n−1∑
k=1

a(k) = s(n)− s(1) = (C − C) + A

(
α(n)
β(n)

− α(1)
β(1)

)
Since deg(α) < deg(β), limn→∞

α(n)
β(n) = 0 so this gives
∞∑
k=1

a(k) = −Aα(1)
β(1)

∈ Q

But here, the sum is known to be the irrational number π2/6. There’s a contradiction; the
assumption that a hypergeometric term antidifference s(k) exists is false.

5.25

s(k) = C +
k−1∑
n=0

qjn = C +
1− qkj
1− qj .

For any fixed value j = 1, 2, 3, . . . and any constant C (constant w.r.t. k; so C ∈ Q(q)), this
expression is a polynomial (over Q(q)) in qk of degree j, so it’s q-hypergeometric. Gosper’s
algorithm is shown on the worksheet.


