
Math 262a — Topics in Combinatorics — Fall 1999 — Glenn Tesler
Homework 2 answers — October 13, 1999

1. (a) We have
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(b) The series form of the q-binomial theorem is
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Setting α = 0 gives the equality for eq(x).
For Eq(x), replace α by 1/α and x with −αx, and then set α = 0.

(c) For the limits, we have that
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and as q→ 1 the denominator turns into the ordinary k!. The proof for Eq(x) is similar.
The two formulas eq(x) = 1/(x; q)∞ and Eq(x) = (−x; q)∞ imply eq(x)Eq(−x) = 1.
For the trig function identities, we have
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and the other is proved similarly.

2. (a) To find the complete solution to the recurrence equation

f(n+ 3)− 8f(n+ 2) + 21f(n+ 1)− 18f(n) = 3n (n ∈ N) (3)

we first find the homogeneous solution. The left side may be rewritten (E−3)2(E−2)f(n),
so the homogeneous solution is fh(n) = (an+ b)3n + c · 2n for some constants a, b, c.



A particular solution of the form d · 3n won’t work because 3n is included in the homo-
geneous solution; instead we must try d · n2 3n. (This is guaranteed to work, it’s just a
matter of finding d now.) Plugging this into the equation gives

(3n · ((n+ 3)2 · 33 − 8(n+ 2)2 · 32 + 21(n+ 1)2 · 3− 18n2)d = 18d · 3n = 3n

so d = 1/18 and a particular solution is fp(n) = n2 3n/18. The complete solution is
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(b) Plug in the initial conditions:
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Solve the equations to get a = b = c = 0. The solution is then f(n) =
n2 3n

18
.

(c) If n ∈ R, then every “residue class modulo 1” is independent of the others, so the “con-
stants” a, b, c are replaced by any functions a(n), b(n), c(n) that have period 1. They don’t
even have to be continuous functions.

(d) If both sides of the recurrence are multiplied by n−100, then the original equation needn’t
hold at n = 100. Thus, f(103) may be chosen arbitrarily. We will have the solution as
given in (a) for n = 0, 1, . . . , 102, and a solution of the same form for n ≥ 103 with new
constants a′, b′, c′ that will depend upon a, b, c, f(103).

3. Sister Celine’s method. These problems are on the maple printout hw2.mws.


