Math 262a - Topics in Combinatorics - Fall 1999 - Glenn Tesler

Homework 2 answers - October 13, 1999

1. (a) We have

$$
{ }_{r} \phi_{s}\left[\left.\begin{array}{c}
\alpha_{1}, \ldots, \alpha_{r} \tag{1}\\
\beta_{1}, \ldots, \beta_{s}
\end{array} \right\rvert\, q, \frac{x}{\alpha_{r}}\right]=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}, \ldots, \alpha_{r-1} ; q\right)_{k} x^{k}}{\left(\beta_{1}, \ldots, \beta_{s}, q ; q\right)_{k}} \frac{\left(\alpha_{r} ; q\right)_{k}}{\alpha_{r}{ }^{k}}\left((-1)^{k} q^{\binom{k}{2}}\right)^{1+s-r}
$$

The second fraction on the right is

$$
\frac{\left(\alpha_{r} ; q\right)_{k}}{\alpha_{r}{ }^{k}}=\prod_{j=0}^{k-1} \frac{1-\alpha_{r} q^{j-1}}{\alpha_{r}}=\prod_{j=0}^{k-1}\left(\frac{1}{\alpha_{r}}-q^{j-1}\right)
$$

and as $\alpha_{r} \rightarrow \infty$, this tends to

$$
\prod_{j=0}^{k-1}\left(-q^{j-1}\right)=(-1)^{k} q^{\binom{k}{2}}
$$

The limit as $\alpha_{r} \rightarrow \infty$ of (1) is then

$$
\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}, \ldots, \alpha_{r-1} ; q\right)_{k} x^{k}}{\left(\beta_{1}, \ldots, \beta_{s}, q ; q\right)_{k}}(-1)^{k} q^{\binom{k}{2}}\left((-1)^{k} q^{\binom{k}{2}}\right)^{1+s-r}={ }_{r-1} \phi_{s}\left[\left.\begin{array}{c}
\alpha_{1}, \ldots, \alpha_{r-1} \\
\beta_{1}, \ldots, \beta_{s}
\end{array} \right\rvert\, q, x\right] .
$$

(b) The series form of the q-binomial theorem is

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(\alpha ; q)_{k}}{(q ; q)_{k}} x^{k}=\frac{(\alpha x ; q)_{\infty}}{(x ; q)_{\infty}} \tag{2}
\end{equation*}
$$

Setting $\alpha=0$ gives the equality for $e_{q}(x)$.
For $E_{q}(x)$, replace α by $1 / \alpha$ and x with $-\alpha x$, and then set $\alpha=0$.
(c) For the limits, we have that

$$
e_{q}(x(1-q))=\sum_{k=0}^{\infty} \frac{(x(1-q))^{k}}{(q ; q)_{k}}=\sum_{k=0}^{\infty} \frac{x^{k}}{[k]_{q}!}
$$

and as $q \rightarrow 1$ the denominator turns into the ordinary $k!$. The proof for $E_{q}(x)$ is similar.
The two formulas $e_{q}(x)=1 /(x ; q)_{\infty}$ and $E_{q}(x)=(-x ; q)_{\infty}$ imply $e_{q}(x) E_{q}(-x)=1$.
For the trig function identities, we have

$$
\begin{aligned}
& \sin _{q}(x) \operatorname{Sin}_{q}(x)+\cos _{q}(x) \operatorname{Cos}_{q}(x)= \\
& \frac{1}{4}\left(-e_{q}(i x) E_{q}(i x)+e_{q}(i x) E_{q}(-i x)+e_{q}(-i x) E_{q}(i x)-e_{q}(-i x) E_{q}(-i x)\right. \\
& \left.\quad+e_{q}(i x) E_{q}(i x)+e_{q}(i x) E_{q}(-i x)+e_{q}(-i x) E_{q}(i x)+e_{q}(-i x) E_{q}(-i x)\right) \\
& \quad=\frac{1}{2}\left(e_{q}(i x) E_{q}(-i x)+e_{q}(-i x) E_{q}(i x)\right)=\frac{1}{2}(1+1)=1
\end{aligned}
$$

and the other is proved similarly.
2. (a) To find the complete solution to the recurrence equation

$$
\begin{equation*}
f(n+3)-8 f(n+2)+21 f(n+1)-18 f(n)=3^{n} \quad(n \in \mathbb{N}) \tag{3}
\end{equation*}
$$

we first find the homogeneous solution. The left side may be rewritten $(E-3)^{2}(E-2) f(n)$, so the homogeneous solution is $f_{h}(n)=(a n+b) 3^{n}+c \cdot 2^{n}$ for some constants a, b, c.

A particular solution of the form $d \cdot 3^{n}$ won't work because 3^{n} is included in the homogeneous solution; instead we must try $d \cdot n^{2} 3^{n}$. (This is guaranteed to work, it's just a matter of finding d now.) Plugging this into the equation gives

$$
\left(3^{n} \cdot\left((n+3)^{2} \cdot 3^{3}-8(n+2)^{2} \cdot 3^{2}+21(n+1)^{2} \cdot 3-18 n^{2}\right) d=18 d \cdot 3^{n}=3^{n}\right.
$$

so $d=1 / 18$ and a particular solution is $f_{p}(n)=n^{2} 3^{n} / 18$. The complete solution is

$$
f(n)=\left(\frac{n^{2}}{18}+a n+b\right) 3^{n}+c \cdot 2^{n} \quad \text { for some constants } a, b, c
$$

(b) Plug in the initial conditions:

$$
\begin{aligned}
& 0=f(0)=b+c \\
& \frac{1}{6}=f(1)=\left(\frac{1}{18}+a+b\right) \cdot 3+2 c \\
& 2=f(2)=\left(\frac{4}{18}+2 a+b\right) \cdot 9+4 c
\end{aligned}
$$

Solve the equations to get $a=b=c=0$. The solution is then $f(n)=\frac{n^{2} 3^{n}}{18}$.
(c) If $n \in \mathbb{R}$, then every "residue class modulo 1 " is independent of the others, so the "constants" a, b, c are replaced by any functions $a(n), b(n), c(n)$ that have period 1 . They don't even have to be continuous functions.
(d) If both sides of the recurrence are multiplied by $n-100$, then the original equation needn't hold at $n=100$. Thus, $f(103)$ may be chosen arbitrarily. We will have the solution as given in (a) for $n=0,1, \ldots, 102$, and a solution of the same form for $n \geq 103$ with new constants $a^{\prime}, b^{\prime}, c^{\prime}$ that will depend upon $a, b, c, f(103)$.
3. Sister Celine's method. These problems are on the maple printout hw2.mws.

