
Math 262a — Topics in Combinatorics — Fall 1999 — Glenn Tesler
Homework 1 answers — October 6, 1999

Some of these problems are also on a maple worksheet, available on euclid:
cd ~gptesler/homepage/math262/KOEPF/worksheetsV.4
xmaple hw1.mws &

1. Koepf 2.11(b) The sum starts at k = 1 instead of k = 0. Shift it so the k = 0 term is
nonzero:

ln(1 + x) =
∞∑
k=0

(−1)k

k + 1
xk+1

Now the initial term is t0 = x, and the term ratio is

r(k) =
(−1)k+1 xk+2

k + 2

/
(−1)k xk+1

k + 1
xk+1 =

k + 1
k + 2

(−x) =
(k + 1)(k+ 1)
(k + 2)(k+ 1)

(−x)

so

ln(1 + x) = x · 2F1

[
1, 1
2

∣∣∣∣ − x]

Koepf 2.11(f) The initial term is t0 = x, and the term ratio is

r(k) =
(−1)k+1 x2k+3

2k + 3

/
(−1)k x2k+1

2k + 1
= −2k + 1

2k + 3
x2 =

(k + 1/2)(k+ 1)
(k + 3/2)(k+ 1)

(−x2)

so

arctan(x) = x · 2F1

[
1/2, 1
3/2

∣∣∣∣ − x2

]
Note that tk 6= 0 for integer k < 0. The bound k = 0 is unnatural; this manifests itself in our
having to multiply by k+1

k+1 and then include a 1 as an upper parameter.

Koepf 2.9(d) The first binomial coefficient is 0 unless 0 ≤ k ≤ n, and the second is 0
unless n ≤ 2k, so the summation range is actually dn/2e ≤ k ≤ n.

The general term is tk =
n! (2k)!

k! (n− k)! n! (2k− n)!
=

(2k)!
k! (n− k)! (2k− n)!

so the term ratio is

r(k) =
(2k + 2)!

(2k)!
k!

(k + 1)!
(n− k)!

(n− k − 1)!
(2k − n)!

(2k+ 2− n)!

=
(2k + 2)(2k+ 1)(n− k)

(2k+ 2− n)(2k + 1− n)(k + 1)
= − (k + 1/2)(k− n)

(k + 1− n/2)(k+ (1− n)/2)
Answer for non-integer n. This is what is produced by the software on the worksheet.

The 0th term is t0 =
(
n
0

)(
0
n

)
=
(

0
n

)
since

(
n
0

)
= n!

n! 0! = 1 for all n ∈ C, but
(

0
n

)
varies:(

0
n

)
=

0!
n! (−n)!

=
1

Γ(n+ 1) Γ(1− n)
=

1
nΓ(n) Γ(1− n)

=
sin(π n)
π n

using the reflection formula for Γ (Koepf, p. 6, (1.9)). Then the sum is(
0
n

)
3F2

[ −n, 1/2, 1
(1− n)/2, 1− n/2

∣∣∣∣ − 1
]

for n ∈ C \N .

Of course, we’re mainly interested in positive integer n, so this won’t do. It’s wrong for
positive integers n because we multiply by

(
0
n

)
= 0, and then one of the denominator factors

in the hypergeometric series will divide by 0 to compensate.
1



2

Non-negative integer n, Method I. The initial term evaluates to t0 = 0, so we must shift
the sum. (We could have done this in advance, but this will show how to do it algorithmically.)
There are two cases: n even and n odd. When n is even, we should shift the sum down by
n/2, and when it’s odd, by (n+ 1)/2. Algorithmically, step 4 of Koepf page 21 says to let m
be the smallest integer β and then shift by 1−m. When n is even, m = 1− n/2 and we shift
by n/2 (i.e., the new sum index k′ satisfies k = k′ + n/2), and when n is odd, m = (1− n)/2
and we shift by (n+ 1)/2. (In both cases, we have shifted by dn/2e as we expect).

even n: Set k = k′ + n/2. The sum is
n/2∑
k′=0

(
n

k′ + n/2

)(
2k′ + n

n

)
and the upper bound is natural, so we can replace it by

∑∞
k′=0. The term ratio re in terms of

the original ratio is

re(k′) = r(k′ + n/2) = −(k′ + (n+ 1)/2)(k′− n/2)
(k′ + 1)(k′ + 1/2)

(notice the shift caused a k′ + 1 denominator factor). The initial term is
( n
n/2

)(n
n

)
=
( n
n/2

)
, so

the sum is (
n

n/2

)
2F1

[
n+1

2
,−n

2

1/2

∣∣∣∣ − 1

]
for even n ∈ N .

odd n: Set k = k′ + (n+ 1)/2. The sum is
(n+1)/2∑
k′=0

(
n

k′ + (n+ 1)/2

)(
2k′ + n+ 1

n

)
and the upper bound is natural, so we can replace it by

∑∞
k′=0. The term ratio ro is

ro(k′) = r(k′ + (n+ 1)/2) = −(k′ + n/2 + 1)(k′ + (1− n)/2)
(k′ + 3/2)(k′+ 1)

and the initial term is
(

n
(n+1)/2

)(
n+1
n

)
= n

(
n

(n+1)/2

)
, so the sum is

n

(
n

(n+ 1)/2

)
2F1

[
1 + n

2
, 1�n

2

3/2

∣∣∣∣ − 1

]
for odd n ∈ N .

Method II. There were two cases for the lower bound of the sum, but the upper bound was
always n; so make a new sum

∑
uk′ where uk′ = tn−k′ :

bn/2c∑
k′=0

(
n

n− k′

)(
2(n− k′)

n

)
instead. This sum can be taken as

∑∞
k′=0. The new term ratio r̃ in terms of the original is

r̃(k′) = uk′+1/u
′
k = tn−k′−1/tn−k′ = 1/r(n− k′ − 1), so

r̃(k′) = −(n− k′ − 1 + (1− n)/2)(n− k′ − 1 + 1− n/2)
(n− k′ − 1− n)(n− k′ − 1 + 1/2)

= −(k′ + (1− n)/2)(k′ − n/2)
(k′ + 1/2− n)(k′ + 1)

The new initial term is u0 =
(2n
n

)
. So the whole sum is(

2n

n

)
2F1

[
1�n

2
,−n

2
1
2
− n

∣∣∣∣ − 1

]
for n ∈ N.
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2. Koepf 2.3

F (x) = pFq

[
α1, . . . , αp
β1, . . . , βq

∣∣∣∣x] =
∞∑
k=0

(α1)k · · · (αp)k
(β1)k · · · (βq)k k!

xk

Now θxk = x · kxk−1 = kxk, so (θ + c)xk = (k + c)xk. Thus every term of the sum is an
eigenvector of θ + c for any constant c. The left side of (2.23) is

θ(θ+ β1 − 1) · · · (θ+ βq − 1)F (x) =
∞∑
k=0

k · (β1 + k − 1) · · · (βq + k − 1)
(α1)k · · · (αp)k

(β1)k · · · (βq)k k!
xk

=
∞∑
k=1

(α1)k · · · (αp)k
(β1)k−1 · · · (βq)k−1 (k − 1)!

xk

and the right side of (2.23) is

x(θ+ β1 − 1) · · · (θ+ βq − 1)F (x) =
∞∑
k=0

(α1 + k) · · · (αp + k)
(α1)k · · · (αp)k

(β1)k · · · (βq)k k!
xk+1

=
∞∑
k=0

(α1)k+1 · · · (αp)k+1

(β1)k · · · (βq)k k!
xk+1 .

Just shift k by 1 to make them agree.

Koepf 2.4 Let n denote α1, and let α2, . . . , αp, β1, . . . , βq be given. We have

Fn(x) = pFq

[
n, α2, . . . , αp
β1, . . . , βq

∣∣∣∣x] and θFn(x) =
∞∑
k=0

(n)k (α2)k · · · (αp)k
(β1)k · · · (βq)k k!

k xk

while

n(Fn+1(x)− Fn(x)) = n
∞∑
k=0

((n+ 1)k − (n)k)
(α2)k · · · (αp)k

(β1)k · · · (βq)k k!
xk

Now (n+ 1)k = (n + 1)(n+ 2) · · ·(n + k) = (n + k)(n+ 1)k−1 and (n)k = n · (n + 1)k−1, so
(n+1)k− (n)k = k · (n+1)k−1. Combine this with the additional factor of n to get the result.

The proof for other α’s is the same, and the proof for n = βi is similar.

Koepf 2.5 Let’s get a recursion for α1. We may expand the left side of (2.23) as
q+1∑
r=1

er−1(β1 − 1, . . . , βq − 1)θr Fn(x) (*)

where ek is the elementary symmetric function. The right side may be expanded similarly.
Let E be the shift operator En. Then we make replacements

θ1 Fn = n(E − 1)Fn

θ2 Fn = n(θFn+1 − θFn) = n
(

(n+ 1)(Fn+2 − Fn+1)− n(Fn+1 − Fn)
)

= n
(

(n+ 1)Fn+2 − (2n+ 1)Fn+1 + nFn
)

=
(
n(n+ 1)E2− (2n+ 1)E + n

)
Fn

and so forth into (*). The resulting equation will have order q + 1 on the left side and order
p on the right side; combining all the terms onto one side will give an equation of order
max(p, q + 1). If p = q + 1 it might seem that the highest order terms could cancel, but on
the left we have θq+1 and on the right, xθp, so the leading coefficients don’t cancel.
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The denominator formulas are obtained similarly. We use E−1 instead of E, but the same
orders will be obtained.

3. ex Let D = d
dx , so θ = xD. 2.3 gives θ F (x) = xF (x), so xDF (x) = xF (x), and

DF (x) = F (x) unless x = 0. Thus, (D − 1)F (x) = 0 ; the x = 0 case is included by
analyticity.

sinx Let G(x) = sinx = x 0F1

[
−

3/2

∣∣ − x2

4

]
. Now, consider z = Axr and θ = z d

dz (here

z = (−1
4)x2). By the chain rule,

θ = z
d

dz
=

z

dz/dx

d

dx
=

Axr

rAxr−1

d

dx
=
x

r

d

dx

which here is θ = x
2

d
dx . Then by Koepf #2.3, F (x) = G(x)/x satisfies

θ(θ + 3/2− 1)F = z F (x).

Put it all in terms of x.

(x/2)D(xD/2 + 1/2)F = −x
2

4
F so xD(xD+ 1) F = −x2 F

The left side is tedious to simplify, but straightforward. Move all x’s left and D’s right, using
the rules Dx = xD + 1 and more generally, Df = fD + f ′, where x and f are multiplication
operators. Later we may use software for dealing with noncommutative operators, but this
isn’t described in the textbooks we’re now using. Here’s the brute force way.

We have the operator

xDxD + xD = x(xD+ 1)D+ xD = x2D2 + xD + xD = x2D2 + 2xD

giving (x2D2 + 2xD + x2)F = 0. We actually want an equation for G where F = x−1G, so
(x2D2 + 2xD + x2)x−1 G = 0. As operators,

Dx−1 = x−1D − 1
x2

D2x−1 = Dx−1D −D 1
x2

= (x−1D − 1
x2

)D − 1
x2
D +

2
x3

=
1
x
D2 − 2

x2
D +

2
x3

Then as operators,([
x2D2

]
+ [2xD] +

[
x2
])
x−1 =

[
xD2 − 2D +

2
x

]
+
[
2D − 2

x

]
+ [x] = xD2 + x

so (xD2 + x)G(x) = x(D2 + 1)G(x) = 0. So when x 6= 0 we have (D2 + 1)G(x) = 0 , and
by analyticity this holds at x = 0 too.

4. Koepf 2.21

(a) (aqn; q)∞ =
∞∏
j=n

(1−aqj) and (a; q)∞ =
∞∏
j=0

(1−aqj), so
(a; q)∞

(aqn; q)∞
=

n−1∏
j=0

(1−aqj) = (a; q)n.

(b)
(q
√
a; q)n

(
√
a; q)n

=
1−
√
a · qn

1−√a . The same holds with
√
a→ −

√
a. Multiplying gives

(q
√
a; q)n (−q

√
a; q)n

(
√
a; q)n (−

√
a; q)n

=
(1−

√
a · qn)(1 +

√
a · qn)

(1−
√
a)(1 +

√
a)

=
1− a q2n

1− a .
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(c)

(a; q)n (−a; q)n =
n−1∏
j=0

(1− aqj)(1 + aqj) =
n−1∏
j=0

(1− a2(q2)j) = (a2; q2)n

(d)

(a; q)n =
n−1∏
j=0

(1− aqj) =
n−1∏
j=0

(−aqj)(1− 1
aqj

)

=

n−1∏
j=0

(−aqj)

 n−1∏
j=0

(1− qj

aqn−1
) = (−a)n q

Pn−1
j=0 j(q1−n/a; q)n

= (q1−n/a; q)n(−a)nq(
n
2)

Koepf 3.15(b) The initial term is t0 = 1. The term ratio is

R(k) =

[
n
k+1

]2
q
xk+1[n

k

]2
q
xk

=
(

(q; q)n
(q; q)n

(q; q)k
(q; q)k+1

(q; q)n−k
(q; q)n−k−1

)2 xk+1

xk
=
(

1− qn−k
1− qk+1

)2

x

Let Q = qk and express this as a rational function of Q in the proper form.
Since there is a 1− qk+1 denominator factor already, we don’t have to introduce one.

R(k) =
(

1− qn/Q
1− qQ

)2

x =
(

1− q−nQ
1− qQ · −q

n

Q

)2

x =
(1− aQ)(1− aQ)
(1− qQ)(1− qQ)

· (q2nx) · (−Q)−2

where a = q−n. It looks like it may be a 2φ1, but we have the power (−Q)−2. It is an rφs
with 1 + s− r = −2, so s = 1 is O.K., but we should increase r to 4 by adding more 0
parameters in the numerator:

R(k) =
(1− aQ)(1− aQ)(1− 0Q)(1− 0Q)

(1− qQ)(1− qQ)
(q2nx)(−Q)−2

So the sum is

1 · 4φ1

[
q−n, q−n, 0, 0

1

∣∣∣∣ q, q2nx

]


