
Math 188, Winter 2001 March 14, 2001
Prof. Tesler

NP-Completeness:
Transforming 3-SAT to SUM-OF-SUBSETS in polynomial time

Chapter 9.4.2: Consider n boolean variables, x1, . . . , xn. A literal is any xi or ∼xi
A boolean formula in 3-CNF form (conjunctive normal form) is the AND of clauses, where

each clause is the OR of 3 literals. (Conjunction means AND, and disjunction means OR.)
The 3-SAT problem is to determine if a formula in 3-CNF form be satisfied ; that is, can

the boolean variables be set so that the formula is true? For example,

(x1 ∨ x2 ∨∼x4) ∧ (∼x1 ∨ x3 ∨ x4)

can be satisfied by setting x1 = 1, x2 = 1, x3 = 1, x4 = 1 (among many other ways), so the
answer is “yes.” However,

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨∼x3) ∧ (x1 ∨ ∼x2 ∨ x3) ∧ (x1 ∨ ∼x2 ∨∼x3)

∧ (∼x1 ∨ x2 ∨ x3) ∧ (∼x1 ∨ x2 ∨∼x3) ∧ (∼x1 ∨∼x2 ∨ x3) ∧ (∼x1 ∨ ∼x2 ∨∼x3)

cannot be satisfied, because no matter how the variables are set, one of the clauses will be
false and all the others will be true, so the AND will be false.

3-SAT is in NP: if you are told “set the x’s to these values to make the formula true,” you
could plug them into your 3-CNF formula, and if it’s true, you will confirm it in polynomial
time. It’s also in co-NP: if plugging in those values makes it false, you will know in polynomial
time. Currently, there are no examples of decision problems that have been proven to be in
NP but not co-NP, or vice-versa.

Chapter 5.4: The SUM-OF-SUBSETS problem takes n numbers w1, . . . , wn and a
goal W , and asks whether there is a subset of the numbers that adds up to W exactly. It is
a variation of the Knapsack problem, and can be solved by similar tree-search algorithms.

This is in NP and co-NP: if you are told “this specific subset adds up to W ,” you can add
together those numbers in linear time and check whether they do or don’t sum to W .

An input to either problem can be converted to an input giving the same yes/no answer
to the other problem in polynomial time. (Beyond the yes/no answer, knowing the settings
of the x’s in the 3-SAT problem will tell you which w’s to take in the version of the problem
converted to SUM-OF-SUBSETS, and vice-versa.) This implies that if either problem can be
solved in polynomial time, then both can. In fact, both problems are NP-complete: inputs
to all problems in NP can be transformed to inputs to these problems in polynomial time,
so solving either one of these problems in polynomial time would solve all NP problems in
polynomial time. There are over 10000 known NP-complete problems to date.

On the next page there is a demonstration of a conversion of a 3-SAT instance to a
SUM-OF-SUBSETS instance. A conversion in the other direction is also possible.

There are many details in proving this conversion works. Starting with a 3-CNF formula
f , you must show that the inputs to the SUM-OF-SUBSETS problem can be produced in
polynomial time, and that these inputs give the same yes or no answer that 3-SAT returns
for f . Full details are in

Lagoudakis, Michail G., “The 0-1 Knapsack Problem: An Introductory Survey,”
http://citeseer.nj.nec.com/151553.html

1



2

Here is a conversion of a 3-SAT problem instance to a SUM-OF-SUBSETS problem in-
stance. Consider the following input to 3-SAT:

(x1 ∨ x2 ∨ ∼x3)︸ ︷︷ ︸
clause 1

∧ (∼x1 ∨ x3 ∨ x4)︸ ︷︷ ︸
clause 2

(n = 4 variables, m = 2 clauses)

This table can be produced in polynomial time:
clause 2 clause 1

∼x1 ∨ x3 ∨ x4 x1 ∨ x2 ∨ ∼x3 x4 x3 x2 x1 “w”’s
1 1 u1 = 010001

1 1 u′1 = 100001 X
1 1 u2 = 010010 X

1 u′2 = 000010
1 1 u3 = 100100 X

1 1 u′3 = 010100
1 1 u4 = 101000

1 u′4 = 001000 X
1 d1 = 010000 X
1 e1 = 010000 X

1 d2 = 100000 X
1 e2 = 100000
3 3 1 1 1 1 W = 331111

The format of the table is
clauses boolean variables

cm · · · c1 xn · · · x1

Region I.
When a clause has xi,
put a 1 under it at row
ui.

When a clause has ∼xi,
put a 1 under it at row
u′i.

Region II.
1 under variable xi on
rows ui and u′i

u1

u′1
u2

u′2
...
un

u′n

Region III.
1 under clause j
on rows dj and ej

Region IV.
all blank

d1
e1
· · ·
dm
em

Region V. all 3’s Region VI. all 1’s W

Interpretation of this example: Form a number in each row by filling in the blanks
with 0’s. The checked off numbers add up to W :

u′1 + u2 + u3 + u′4 + d1 + e1 + d2 = 331111 = W.

Checking off ui indicates we should set xi = 1, and checking off u′i indicates we should set
xi = 0. We checked off u′1, u2, u3, u′4, so set (x1, x2, x3, x4) = (0, 1, 1, 0) to satisfy the original
formula in 3-SAT.

Adding u′1 + u2 + u3 + u′4 gives 211111. The first two digits mean there are 2 true literals
in clause 2 and 1 true literal in clause 1 (out of 3 true literals possible per clause). The last 4
digits mean we selected ui or u′i but not both, for each i. To compensate for one false literal
in clause 2, we check off d2, and to compensate for two false literals in clause 1, we check off
d1 and e1.

Explanation in general: A subset of the rows (excluding rowW ) is indicated by checking
them off. If it adds up to W , this is what it means, digit-by-digit:

In each right-hand column (labeled by variables xi), the selected rows must add up to
1, forcing either ui or u′i to be selected, but not both. If ui is selected, set xi = 1; if u′i is
selected, set xi = 0.

In each left-hand column (labeled by clauses cj), the rules are designed so that if the
selected rows add up to 3, the clause is true, and if they don’t add up to 3, it’s false. When
they do add up to 3, up to two of the 1’s can come from Region III, so one to three of
the 1’s must come from Region I (corresponding to the clause being true when between one
and three of its literals are true). If all the literals in this clause are false, the x’s are not
a solution to 3-SAT; further, the most this column sum could be is 2, so we also have not
solved the SUM-OF-SUBSETS problem.

Note that we do not have to worry about carries. Even if we added ALL of the numbers
above row W together, we would get 5 · · · 52 · · · 2, so as long as we work in base 10 (or any
other base above 5), there will never be any carries for any subset.



3

Timing: It takes 3m steps to fill in the nonzero entries of Region I, 2n steps for Region
II, 2m for Region III, 0 for Region IV, m for Region V, and n for Region VI. The table has
dimensions (2m+2n+1)×(m+n), so it takes another (2m+2n+1)(m+n) steps to convert
this all into the numbers that will be input to SUM-OF-SUBSETS. Let L be the length of
the input (the 3-CNF formula). Since m,n ≤ L, the total time is O(L2), so translating a
problem instance of 3-SAT to one of SUM-OF-SUBSETS takes polynomial time.

Here’s a more precise relation ofm,n, L: there are 2n literals (x1, . . . , xn and∼x1, . . . ,∼xn),
so it takes dlg(2n)e bits to represent a literal. Each clause has 3 literals, so the input size
is about L = 3m · dlg(2n)e bits. For every variable to appear in at least one clause requires
m ≥ n/3. The most clauses we can make from 2n literals is

(
2n
3

)
, so

(
2n
3

)
≥ m ≥ n/3.


