Chapter 10.1 Trees

Prof. Tesler

Math 184A
Winter 2017

Trees

Stick figure tree

Tree in graph theory

Not a tree (has cycle) (not connected)

- A tree is an undirected connected graph with no cycles.
- It keeps branching out like an actual tree, but it is not required to draw it branching out from bottom to top.
- Genealogical trees, evolutionary trees, decision trees, various data structures in Computer Science

Theorem:

A tree has exactly one path between any pair of vertices

Proof:

- Let x, y be any two distinct vertices.
- There is a path between them since the graph is connected.
- Suppose there are two unequal paths between them (red/blue).

- Superimposing the paths and removing their common edges (dashed) results in one or more cycles (solid).
- But a tree has no cycles!

Thus, there cannot be two paths between x and y.

Leaves

- Leaf
 - Internal vertex

- A vertex of degree 1 is called a leaf. This tree has 8 leaves (including the bottom vertex).
- Sometimes, vertices of degree 0 are also counted as leaves.
- A vertex with degree $\geqslant 2$ is an internal vertex. This tree has 4 internal vertices.

Theorem:

Every tree with at least two vertices has at least two leaves.

Proof:

- Pick any vertex, x.
- Generate a path starting at x :
- Since there are at least two vertices and the graph is connected, x has at least one edge. Follow any edge on x to a new vertex, v_{2}.
- If v_{2} has any edge not yet on this path, pick one and follow it to a new vertex, ν_{3}.
- Continue until we are at a vertex z with no unused edge.

Theorem:

Every tree with at least two vertices has at least two leaves.

Proof (continued):

- There are no cycles in a tree, so z cannot be a vertex already encountered on this walk.
- We entered z on an edge, so $d(z) \geqslant 1$.
- We had to stop there, so $d(z)=1$, and thus, z is a leaf.

Theorem:

Every tree with at least two vertices has at least two leaves.

Proof (continued):

- Now start over and form a path based at z in the same manner; the vertex the path stops at is a second leaf, z^{\prime} !

Theorem:

All trees on $n \geqslant 1$ vertices have exactly $n-1$ edges

Proof by induction:

Base case: $n=1$

- The only such tree is an isolated vertex.
- This is $n=1$ vertex and no edges. Indeed, $n-1=0$.

Theorem:

Proof by induction (continued):

Induction step: $n \geqslant 2$. Assume the theorem holds for $n-1$ vertices.

- Let G be a tree on n vertices.
- Pick any leaf, v.
- Let $e=\{v, w\}$ be its unique edge.

- Remove v and e to form graph H :
- H is connected (the only paths in G with e went to/from v).
- H has no cycles (they would be cycles in G, which has none).
- So H is a tree with $n-1$ vertices.
- By the induction hypothesis, H has $n-2$ edges.
- Then G has $(n-2)+1=n-1$ edges.

Lemma:

Removing an edge from a cycle keeps connectivity

Removing an edge from a cycle does not affect which vertices are in a connected component:

- Consider a cycle (red) and edge $(e=\{u, v\})$ in the cycle.
- Left graph: Suppose a path (yellow) from x to y goes through e.
- Right graph:
- Delete e. This disrupts the yellow path.
- But the cycle provides an alternate route between u and v !
- Reroute the path to substitute e (and possibly adjoining edges) by going around the cycle the other way.

Spanning trees

- A spanning tree of an undirected graph is a subgraph that's a tree and includes all vertices.
- A graph G has a spanning tree iff it is connected:
- If G has a spanning tree, it's connected: any two vertices have a path between them in the spanning tree and hence in G.
- If G is connected, we will construct a spanning tree, below.
- Let G be a connected graph on n vertices.
- If there are any cycles, pick one and remove any edge.

Repeat until we arrive at a subgraph T with no cycles.

- T is still connected, and has no cycles, so it's a tree! It reaches all vertices, so it's a spanning tree.

Converse theorem:

If a connected graph on n vertices has $n-1$ edges, it's a tree

Proof:

- Let G be a connected graph on n vertices and $n-1$ edges.
- G contains a spanning tree, T.
- G and T have the same vertices.
- T has $n-1$ edges, which is a subset of the $n-1$ edges of G. So G and T have the same edges.
- G and T have the same vertices and edges, so $G=T$. Thus, G is a tree.

Forest

- A forest is an undirected graph with no cycles.
- Each connected component is a tree.

Theorem

A forest with n vertices and k trees has $n-k$ edges.

Proof

- The $i^{\text {th }}$ tree has n_{i} vertices and $n_{i}-1$ edges, for $i=1, \ldots, k$.
- Let n be the total number of vertices, $n=\sum_{i=1}^{k} n_{i}$.
- The total number of edges is $\sum_{i=1}^{k}\left(n_{i}-1\right)=\left(\sum_{i=1}^{k} n_{i}\right)-k=n-k$

Rooted trees

- Choose a vertex r and call it the root. Here, $r=5$ (pink).
- Follow all edges in the direction away from the root.
- For edge $u \rightarrow v$, vertex u is the parent of v and v is the child of u.
- Children with the same parent are siblings.
- 5 is the parent of 4 and 6 .

4 and 6 are children of 5, and are siblings of each other.

- 4 is the parent of 1,2 , and 3 .

1 , 2 , and 3 are children of 4 , and are siblings.

Rooted tree examples

Rooted trees are usually drawn in a specific direction, e.g., bottom to top, top to bottom, left to right, or center to outside.

Evolutionary trees

Primates

http://en.wikipedia.org/wiki/File:PrimateTree2.jpg

> Root at bottom Edges go bottom to top

Tree of Life

http://en.wikipedia.org/wiki/ File:Collapsed_tree_labels_simplified.png

Root at center Edges go out from center

