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Planar graphs

Definition
@ A planar embedding of a graph is a drawing of the graph in the
plane without edges crossing.

@ A graphis planar if a planar embedding of it exists.

@ Consider two drawings of the graph Kj:
V={1,2,3,4 E={{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}

1 2 1 2
3 4 3 4
Non—planar embedding  Planar embedding )

@ The abstract graph K, is planar because it can be drawn in the
plane without crossing edges.
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How about K57

@ Both of these drawings of K5 have crossing edges.

@ We will develop methods to prove that K5 is not a planar graph,
and to characterize what graphs are planar.
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Euler's Theorem on Planar Graphs
@ Let G be a connected planar graph (drawn w/o crossing edges).

@ Define V = number of vertices

E = number of edges
F = number of faces, including the “infinite” face

@ ThenV—E+ F =2.
@ Note: This notation conflicts with standard graph theory notation
V and E for the sets of vertices and edges. Alternately, use

V(G)| — |E(G)| + |F(G)| = 2. )

Example

face 4 (infinite face)
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Euler's formula for planar graphs

@ V=10
@ £ =15
@ F=17

@V -E+F=10—154+7=2
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@ A spanning tree of a connected graph is a subgraph that’s a tree
reaching all vertices. An example is highlighted in red.

@ Algorithm to get a spanning tree of any connected graph:
Repeatedly pick a cycle and remove an edge, until there aren’t
any cycles.

@ We also had other algorithms (DFS and BFS), but the one we
need now is removing one edge at a time.
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Proof of Euler's formula for planar graphs

A A L]

V-E+F=4-6+4=2  4-5+3=2 4-4+2=2 4-3+1=2
We will do a proof by induction on the number of edges.

Motivation for the proof:

@ Keep removing one edge at a time from the graph while keeping it
connected, until we obtain a spanning tree.

@ When we delete an edge:

e V is unchanged.

@ E goes down by 1.
@ F also goes down by 1 since two faces are joined into one.

e V — E + Fis unchanged.
@ Whenweendatatree, E=V—-landF=1,so0V—E+ F =2.
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Proof of Euler's formula for planar graphs

Let G be a connected graph on n vertices, drawn without crossing
edges. We will induct on the number of edges.

Base case: The smallest possible number of edges in a connected
graph on n vertices is n — 1, in which case the graph is a tree:

V=n
E=n—1
F =1 (no cycles, so the only face is the infinite face)

V—E+F=n—(n—1)+1=2

Prof. Tesler Ch. 7: Planar Graphs Math 154 / Winter 2020 8 /52




Proof of Euler's formula for planar graphs

Induction step:

@ Let G be a connected planar graph on n vertices and k edges,
drawn without edge crossings.

@ The base case was k =n — 1. Now consider k > n.

@ Induction hypothesis: Assume Euler’'s formula holds for
connected graphs with n vertices and k — 1 edges.

@ Remove an edge from any cycle to get a connected subgraph G’.
@ G’ has V' vertices, E’ edges, and F’ faces:
oV =V=n
@ £/ =FE—1=k—1 since we removed one edge.
e F’ = F — 1 since the faces on both sides of the removed edge were
different but have been merged together.
@ Since E' =k — 1, by induction, G’ satisfies V! — E' + F' = 2.
oV —E'+F' =V—(E-1)+(F—-1)=V—-E+F,
soV—-E+ F =2 also.
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Graph on a sphere

http://en.wikipedia.org/wiki/File:Lambert_azimuthal_equal-area_projection_SW.jpg

@ Consider a graph drawn on a sphere.

@ Poke a hole inside a face, stretch it out from the hole, and flatten it
onto the plane. (Demo)

@ The face with the hole becomes the outside or infinite face.
All other faces are distorted but remain finite.

@ If a connected graph can be drawn on a sphere without edges
crossing, it's a planar graph.

@ The values of V, E, F are the same whether it's drawn on a plane
or sphere, so V — E + F = 2 still applies.
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3D polyhedra w/o holes are topologically equivalent to spheres

4

Kl 2
3
Pyramid with a square or rectangular base:

@ Poke a pinhole in the base of the pyramid (left).
Stretch it out and flatten it into a planar embedding (right).
The pyramid base (left) corresponds to the infinite face (right).

@ Euler’s formula (and other formulas we’ll derive for planar
embeddings) apply to polyhedra without holes.

@ V=35 E=8, F=)5, V—_E+F=5—-8+45=2
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Convex polyhedra

s

Sphere Indented sphere
(convex) (not convex)

@ A shape in 2D or 3D is convex when the line connecting any two
points in it is completely contained in the shape.

@ A sphere is convex. An indented sphere is not (red line above).

@ But we can deform the indented sphere to an ordinary sphere, so
the graphs that can be drawn on their surfaces are the same.

@ Convex polyhedra are a special case of 3D polyhedra w/o holes.

@ The book presents results about graphs on convex polyhedra;
more generally, they also apply to 3D polyhedra without holes.
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Beyond spheres — graphs on solids with holes

@ A forusis a donut shape.
It is not topologically equivalent to a sphere, due to a hole.

@ Consider a graph drawn on a torus without crossing edges.

@ Transforming a sphere to a torus requires cutting, stretching, and
pasting. Edges on the torus through the cut can’t be drawn there
on the sphere. When redrawn on the sphere, they may cross.

@ So, there are graphs that can be drawn on a torus w/o crossing
edges, but which can’t be drawn on a sphere w/o crossing edges.
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Beyond spheres — graphs on solids with holes

@ Anm x n grid on a torus has
V=mn FE=2mn, F=mn
V—FE+F=mn—2mn+mn=20

@ Theorem: Let G be a connected graph drawn on a y-holed torus
without edge crossings, and with all faces homeomorphic to discs.
(y = 0 for sphere, 1 for donut, etc.) Then

V_E+F=2(1-7).

@ Note: The quantity 2(1 —y) is the Euler characteristic. It's usually
denoted x, which conflicts using x(G) for chromatic number.
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More relations on V, E, F In planar graphs
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Face degrees

A6

A7
Al
Bl
6 B2
A2/ B
A B
B4
B3 'AS
A3
Ad

Face degrees
@ Trace around a face, counting each encounter with an edge.

@ Face A has edge encounters Al through A7, giving deg(A) = 7.

@ Face B has edge encounters B1 through B6, including two
encounters with one edge (B5 and B6). So deg(B) = 6.

@ deg(C) =5.
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Face degrees

A6

Al
Al
Bl
6 B2
A A2/B B
B4
B3 AS
A3
Ad
Total degrees

@ The sum of the face degrees is 2E, since each edge is used twice:

S =deg(A) +deg(B) +deg(C)=7+6+5=18
2E =2(9) = 18

@ This is an analogue of the Handshaking Lemma.

@ The sum of the vertex degrees is 2FE for all graphs.
Going clockwise from the upper left corner, we have

3+3+2+2+2+3+2+1=18.
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Empty graph | One edge graph Multigraph
o—0
Face degree 0 Face degree 2 Face degree 2

Face degree 1

@ Faces usually have at least 3 sides, but it is possible to have fewer.

@ In a simple (no loops, no multiedges) connected graph with at
least three vertices, these cases don't arise, so all faces have face
degree at least 3.

@ Thus, the sum of the face degrees is § > 3F, so 2E > 3F.

@ In a bipartite graph, all cycles have even length, so all faces have
even degree. Adding bipartite to the above conditions, each face
has at least 4 sides. Thus, 2E > 4F, which simplifies to E > 2F.
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Inequalities between V E, F

In a connected graph drawn in the plane without crossing edges:
QV-_E+F=2

@ Additionally, if G is simple (no multiedges) and if V > 3, then
(a) 3F < 2E (b)E <3V —6 (c)F <2V —4

Q /fG is simple and bipartite, these bounds improve to
(a)2F < E (b) E <2V —4 (C)F <V -2

@ Part 1 is Euler’s formula. We just showed 2(a) and 3(a).

@ We will prove the other parts, and use them to prove certain
graphs are not planar.
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Inequalities between V E, F

(@) 3F<2E (D)E<3V—6 (C)F<2V—4

Let G be a connected simple graph
with V > 3, drawn in the plane without crossing edges.

(a) So far, we showed V—-—E+ F=2and (a) 3F < 2E.

(b) Thus, F < 2E/3 and
2=V—E+F<V—E+(E/3)=V—E/3
so2 < V—E/3, orE<3V—6,whichis (b).

(c) 3F < 2E also gives E > 3F/2 and
2=V—E+F<V—B3F/2)+F=V—F/2
S02 < V—F/2,0or F <2V —4,which is (c).
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Inequalities between V, E, F for a simple bipartite graph

(a) 2F < E b)E<L2V—4  (C)F<V-2

Let G be a connected simple bipartite graph
with V > 3, drawn in the plane without crossing edges.

(a) For this case, we showed V —E+ F =2 and (a) 2F < E.

(b) Thus, F < E/2 and
2=V—E+F<V—-E+(E/2)=V—E/2
S02 < V—E/2,0or E<2V —4,which is (b).

(c) 2F < E also gives
2=V—-E+FLV-2F+F=V—-F
s02 < V—F,or F<V—2,whichis (c).
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Generalization: V, E, F inequalities when all cycle lengths > ¢

Let G be a connected graph
with V > 3, drawn in the plane without crossing edges.
Suppose all cycles have length > g, with g > 3.

(a) Sum of face degrees: S=2EandS>g-F, sol|F < §E .

(b) Thus, 2=V —E+F <V—E+§E
V—(1-2)E=V—£2E

so |E < é(V—Z) .

(c) F < %E also gives E > £F and
2=V—E+F<LV—-S8F+F=V—(5§—-1)F

SO (E—1F<(V=2)s0o|F<2(V=-2)|.
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Characterizing planar graphs
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K5 and K3 3 are not planar

K5 Is not planar
@ V=5
@ E=(3)=10
@ Thisviolates E <3V —-6since3V—-6=15—6=9and 10 £ 9.

K53 Is not planar
@ V=6

@ F=3-3=9
@ This is bipartite, so if it has a planar embedding, E < 2V — 4.
@ However, 2V —4 =2(6) —4 =8, and 9 £ 8.
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Homeomorphisms (a.k.a. edge equivalency)

@ Suppose that we can turn graph G into graph H by repeatedly
applying these two operations:

e Subdividing: Split an edge AB into two edges AV and VB by
adding a vertex V somewhere in the middle (not incident with any
other edge).

e Smoothing: Let V be a vertex of degree 2.

Replace two edges AV and VB by one edge AB and delete vertex V.

@ Then G and H are homeomorphic (a.k.a. edge equivalent).
@ The left graph is homeomorphic to K5 (on the right):

@ Smooth out every black vertex (left graph) to get K5 (right graph).
e Repeatedly subdivide edges of K5 (right) to get the left graph.
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Characterizing planar graphs

Theorem (Kuratowski’s Theorem)
G Is planar iff it does not have a subgraph homeomorphic to Ks or K3 3.

@ Necessity: If G is planar, so is every subgraph. But if G has a
subgraph homeomorphic to K5 or K3 3, the subgraph is not planar.

@ Sufficiency: The proof is too advanced, but it’'s in the book.

@ The graph shown above has a subgraph (shown in red)
homeomorphic to K5, and thus, it is not a planar graph.
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Dual graphs
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Dual graph

(a) Graph G (b) Constructing dual graph ~ (c) Dual graph H

@ Start with a planar embedding of a graph G (shown in black).

@ Draw a red vertex inside each face, including the “infinite face.”
@ For every edge e of G:

@ Let g, b be the red vertices in the faces on the two sides of e.
e Draw ared edge {a, b} crossing e.

@ Remove the original graph G to obtain the red graph H.

@ H is the dual graph of this drawing of G.
(Also called plane dual or combinatorial dual.)

@ The dual graph depends on how G is drawn.
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Dual graph

(a) Graph G (b) Constructing dual graph  (c) Dual graph H

@ If G is connected, then G is also a dual graph of H — just switch
the roles of the colors!
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Dual graph

G H
Vi8 6
E |12 12
F| 6 8

(a) Graph G (b) Constructing dual graph ~ (c) Dual graph H
@ G and H have the same number of edges:
e Each edge of G crosses exactly one edge of H and vice-versa.

@ # faces of G = # vertices of H and
# faces of H = # vertices of G:

e Bijections: vertices of either graph <« faces of the other.

@ The fact that the sum of face degrees is 2E becomes the
Handshaking Lemma applied to the dual graph!

Prof. Tesler Ch. 7: Planar Graphs Math 154 / Winter 2020 30/52




Coloring maps
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Coloring maps

Alaska
Hawaii
. m s e

http://en.wikipedia.org/wiki/File:Map_of USA_with_state names_2.svg

@ Color states so that neighboring states have different colors.
This map uses 4 colors for the states.
@ Assume each state is a contiguous region.
e Michigan isn't.
e lIts parts all have to be the same color, which could increase the #
colors required. Artificially fill in Lake Michigan to make it contiguous.

@ Also assume the states form a contiguous region.
e Alaska and Hawaii are isolated, and just added on separately.
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A proper coloring of the faces of a planar graph

<> a proper coloring of the vertices of its dual graph

S

Coloring faces of G Coloring vertices of H

@ The regions/states/countries of the map are faces of a graph, G.
@ Place a vertex inside each region and form the dual graph, H.

@ A proper coloring of the vertices of H gives a proper coloring of
the faces of G (aside from a technicality on the next slide).
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A proper coloring of the faces of a planar graph
<> a proper coloring of the vertices of its dual graph

Coloring faces of G Coloring vertices of H

@ Technicality: A vertex of degree 1 in G gives an edge sticking out
iInto a face, resulting in a loop in H. (See dashed edges).

@ A graph with a loop can’t have a proper coloring!
@ The edge sticking out in G doesn’t separate faces of G.

@ Delete vertices of degree 1 in G, and loops in H, to get an
equivalent problem in terms of coloring the faces of G.
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Coloring planar graphs
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Possible degrees in a planar graph
Every simple planar graph has a vertex with degree at most 5. \

Proof:
@ If the graph isn't connected, just restrict to one component of it.

@ The sum of vertex degrees in any graph equals 2E.

@ Assume by way of contradiction that all vertices have degree > 6.
Then the sum of vertex degrees is 2E > 6V.

@ SO2E >6V,s0E > 3V.

@ This contradicts E < 3V — 6 in any planar graph, so some vertex
has degree < 5.
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Possible degrees in a planar graph
Every simple planar graph is 5-degenerate. \

Proof:

@ Recall that a graph is k-degenerate when all subgraphs have
minimum degree < k.

@ Every subgraph of a simple planar graph is also simple and
planar, and thus has minimum degree < 5.

@ So every simple planar graph is 5-degenerate.
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Easy: Six Color Theorem

Every simple planar graph is 6-colorable. \

Proof:
@ We showed that any k-degenerate graph is (k + 1)-colorable.
@ Every simple planar graph is 5-degenerate, and thus, 6-colorable.
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Moderate difficulty: Five Color Theorem

Every simple planar graph is 5-colorable. \

Proof:
@ We will induct on |V(G)|.

@ Base case: If |[V(G)| < 5, just assign all vertices different colors.
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Five Color Theorem

Every simple planar graph is 5-colorable.

Proof, continued — Induction step:
@ Assume the theorem holds for all graphs with fewer vertices.

@ If G has a vertex v of degree < 4, then G — {v} is 5-colorable by
induction.

@ When we add v back in, since it has < 4 neighbors, at least one of
the 5 colors is available, so we can complete the 5-coloring.

@ So, we will have to consider 6(G) > 5. Since all simple planar
graphs have §(G) < 5, this gives §(G) = 5.
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Five Color Theorem

Every simple planar graph is 5-colorable.

Proof, continued — Induction step:
@ Assume the theorem holds for all graphs with fewer vertices, and
assume 6(G) = 5.
@ Let v be a vertex of degree 5.

@ If all neighbors of v are adjacent to each other, they form a Ks.
But then the graph isn’t planar — a contradiction.
So there are neighbors a and b of v with ab ¢ E(G).
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Five Color Theorem

Every simple planar graph is 5-colorable.

(figure from Verstraete textbook)

Proof, continued — Induction step:
@ Recall: d(v) =5, and a, b are neighbors of v with ab ¢ E(G)

@ Let H= G/{a,b,v} (graph contraction).
Vertices a, b, v are contracted to a new vertex w.

@ H is still planar:
e Slide a and v together along edge av. Same for b and v.

e Merge a, b, v into one vertex w.
e Remove edges av, bv, and reduce any multiedges just created.
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Five Color Theorem

Every simple planar graph is 5-colorable.

(figure from Verstraete textbook)

Proof, continued — Induction step:
@ By induction, H has a 5-coloring cy : V(H) — {1,...,5}.

@ Extend to a 5-coloring ¢ of G:

e For all vertices u except a, b, v, set cg(u) = cy(u).

@ Setcgla) = cg(b) = cy(w). This is fine since ab isn’t an edge in G.

@ The 5 neighbors of v in G use at most 4 colors (since a and b use
the same color). So there is a color available to assign to cs(v).
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Extremely difficult: Four Color Theorem

Theorem (Four Color Theorem)
Every simple planar graph is 4-colorable.

@ Map makers have believed this for centuries empirically, but it
wasn’t proven mathematicallly.

@ This was the first major theorem to be proved using a computer
program (Kenneth Appel and Wolfgang Haken, 1976).

@ The original proof had 1936 cases! Their program determined the
cases and showed they are all 4-colorable.

@ The proof was controversial because

e It was the first proof that was impractical for any human to verify.
e There could be bugs in the software, hardware, compiler, O/S, etc.

@ Over the years, people have found errors in the proof, but they
have been fixed, and the result still stands. The number of cases
has been cut down to 633.
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Classifying regular polyhedra
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Classifying regular polyhedra

Tetrahedron Cube Octahedron

@ A polyhedronis a 3D solid whose surface consists of polygons.
As a graph, no loops and no multiple edges.

@ All faces have > 3 edges and all vertices are in > 3 edges.

@ To be 3D, there must be > 4 vertices, > 4 faces, and > 6 edges.

@ A reqgular polyhedron has these symmetries:

e All faces are regular £-gons for the same { > 3.

e All vertices have the same degree (r > 3).

e All edges have the same length.

e All pairs of adjacent faces have the same angle between them.
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Classifying regular polyhedra

@ Suppose all vertices have the same degree r > 3
and all faces are {-gons (same { > 3 for all faces).

@ The sum of vertex degreesisr-V =2E,so V =2E/r.
@ The sum of face degreesis { - F = 2E, so F = 2E/X.
@ PlugtheseintoV—-E+ F =2:

2FE 2FE 2 2
= _E+Z =2 E-(——1+—>:2 E =
r { r {

+2-1

~ N
=i N

@ We have to find all integers r, £ > 3 for which V, E, F are positive
iIntegers, and then check if polyhedra with those parameters exist.
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Classifying regular polyhedra

@ Suppose all vertices have the same degree r > 3
and all faces are £-gons (same { > 3 for all faces).

@ Compute (V,E,F) using E = %g_l V = 27E F = 2715:
4

r

@ E.g.,r=3and { =4 gives

2 2
E = = — =12

2 2

st+i—1 1/6
V=2(12)/3=8
F=2(12)/4=6

@ What shape is it?
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Classifying regular polyhedra

What range of vertex degree (r) and face degree ({) are permitted?

First method

@ We have r > 3.
Since some vertex has degree < 5, all do, so ris 3, 4, or 5.

@ Vertices and faces are swapped in the dual graph, so ¢ is 3,4, or 5.)

Second method: Analyze formula E = 2/( + =—1)

@ E is a positive integer, so its denominator must be positive:
2+2-1>0
@ We have r, { > 3.

@ If both r, £ > 4, the denominator of E is <
invalid. So r and/or £ is 3.

@ If r =3, then the denominator of £ is e 2 4 s — 1=
To be positive requires £ < 5.

@ Similarly, if £ = 3 then r < 5.

+2 —1=0, which is

NI

Il\.)
|9

W=

Prof. Tesler Ch. 7: Planar Graphs Math 154 / Winter 2020 49 /52



Classifying regular polyhedra

@ Suppose all vertices have the same degree r € {3,4, 5}
and all faces are {-gons (same { € {3,4, 5} for all faces).

e Compute (V,E,F)usingE = 53—,V =2 F = 2%
r Xl

(V,E,F) (=73 (=4 (=5
r=273 (4,6,4) (8,12,6) (20, 30, 12)
r==4 (6,12, 8) Divisionby 0  (—10,—20, —8)
r=5 |(12,30,20) (—8,—20,—10) (—4,—10,—4)

@ If V,E, F are not all positive integers, it can’t work (shown in pink).

@ We found five possible values of (V, E, F) with graph theory.
Use geometry to actually find the shapes (if they exist).
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Classifying regular polyhedra

Shape Tetrahedron Cube Octahedron Dodecahedron Icosahedron
r = vertex degree 3 3 4 3 S
{ = face degree 3 4 3 5 3
V = # vertices 4 8 6 20 12
E = # edges 6 12 12 30 30
F = # faces 4 6 8 12 20

@ These are known as the Platonic solids.

@ The cube and octahedron are dual graphs.
The dodecahedron and icosahedron are dual graphs.
The tetrahedron is its own dual.
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Octahedron and cube are dual

@ Can draw either one inside the other.
Place a dual vertex at the center of each face.

@ |In 3D, this construction shrinks the dual, vs. in 2D, it did not.
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