Chapter 7 Planar graphs

In full: 7.1-7.3
Parts of: 7.4, 7.6-7.8
Skip: 7.5

Prof. Tesler

Math 154
Winter 2020

Planar graphs

Definition

- A planar embedding of a graph is a drawing of the graph in the plane without edges crossing.
- A graph is planar if a planar embedding of it exists.
- Consider two drawings of the graph K_{4} :

$$
V=\{1,2,3,4\} \quad E=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}
$$

Non-planar embedding

Planar embedding

- The abstract graph K_{4} is planar because it can be drawn in the plane without crossing edges.

How about K_{5} ?

- Both of these drawings of K_{5} have crossing edges.
- We will develop methods to prove that K_{5} is not a planar graph, and to characterize what graphs are planar.

Euler's Theorem on Planar Graphs

- Let G be a connected planar graph (drawn w/o crossing edges).
- Define $V=$ number of vertices
$E=$ number of edges
$F=$ number of faces, including the "infinite" face
- Then $V-E+F=2$.
- Note: This notation conflicts with standard graph theory notation V and E for the sets of vertices and edges. Alternately, use

$$
|V(G)|-|E(G)|+|F(G)|=2
$$

Example

$$
\begin{aligned}
& V=4 \\
& E=6 \\
& F=4 \\
& V-E+F=4-6+4=2
\end{aligned}
$$

face 4 (infinite face)

Euler's formula for planar graphs

- $V=10$
- $E=15$
- $F=7$
- $V-E+F=10-15+7=2$

Spanning tree

- A spanning tree of a connected graph is a subgraph that's a tree reaching all vertices. An example is highlighted in red.
- Algorithm to get a spanning tree of any connected graph: Repeatedly pick a cycle and remove an edge, until there aren't any cycles.
- We also had other algorithms (DFS and BFS), but the one we need now is removing one edge at a time.

Proof of Euler's formula for planar graphs

$4-4+2=2$

$4-3+1=2$

We will do a proof by induction on the number of edges.
Motivation for the proof:

- Keep removing one edge at a time from the graph while keeping it connected, until we obtain a spanning tree.
- When we delete an edge:
- V is unchanged.
- E goes down by 1 .
- F also goes down by 1 since two faces are joined into one.
- $V-E+F$ is unchanged.
- When we end at a tree, $E=V-1$ and $F=1$, so $V-E+F=2$.

Proof of Euler's formula for planar graphs

Let G be a connected graph on n vertices, drawn without crossing edges. We will induct on the number of edges.

Base case: The smallest possible number of edges in a connected graph on n vertices is $n-1$, in which case the graph is a tree:

$$
\begin{aligned}
V & =n \\
E & =n-1 \\
F & =1 \text { (no cycles, so the only face is the infinite face) } \\
V-E+F & =n-(n-1)+1=2
\end{aligned}
$$

Proof of Euler's formula for planar graphs

Induction step:

- Let G be a connected planar graph on n vertices and k edges, drawn without edge crossings.
- The base case was $k=n-1$. Now consider $k \geqslant n$.
- Induction hypothesis: Assume Euler's formula holds for connected graphs with n vertices and $k-1$ edges.
- Remove an edge from any cycle to get a connected subgraph G^{\prime}.
- G^{\prime} has V^{\prime} vertices, E^{\prime} edges, and F^{\prime} faces:
- $V^{\prime}=V=n$
- $E^{\prime}=E-1=k-1$ since we removed one edge.
- $F^{\prime}=F-1$ since the faces on both sides of the removed edge were different but have been merged together.
- Since $E^{\prime}=k-1$, by induction, G^{\prime} satisfies $V^{\prime}-E^{\prime}+F^{\prime}=2$.
- $V^{\prime}-E^{\prime}+F^{\prime}=V-(E-1)+(F-1)=V-E+F$,
so $V-E+F=2$ also.

Graph on a sphere

http://en.wikipedia.org/wiki/File:Lambert_azimuthal_equal-area_projection_SW.jpg

- Consider a graph drawn on a sphere.
- Poke a hole inside a face, stretch it out from the hole, and flatten it onto the plane. (Demo)
- The face with the hole becomes the outside or infinite face. All other faces are distorted but remain finite.
- If a connected graph can be drawn on a sphere without edges crossing, it's a planar graph.
- The values of V, E, F are the same whether it's drawn on a plane or sphere, so $V-E+F=2$ still applies.

3D polyhedra w/o holes are topologically equivalent to spheres

Pyramid with a square or rectangular base:

- Poke a pinhole in the base of the pyramid (left).

Stretch it out and flatten it into a planar embedding (right). The pyramid base (left) corresponds to the infinite face (right).

- Euler's formula (and other formulas we'll derive for planar embeddings) apply to polyhedra without holes.
- $V=5, \quad E=8, \quad F=5$,

$$
V-E+F=5-8+5=2
$$

Convex polyhedra

Sphere (convex)

Indented sphere (not convex)

- A shape in 2D or 3D is convex when the line connecting any two points in it is completely contained in the shape.
- A sphere is convex. An indented sphere is not (red line above).
- But we can deform the indented sphere to an ordinary sphere, so the graphs that can be drawn on their surfaces are the same.
- Convex polyhedra are a special case of 3D polyhedra w/o holes.
- The book presents results about graphs on convex polyhedra; more generally, they also apply to 3D polyhedra without holes.

Beyond spheres - graphs on solids with holes

- A torus is a donut shape.

It is not topologically equivalent to a sphere, due to a hole.

- Consider a graph drawn on a torus without crossing edges.
- Transforming a sphere to a torus requires cutting, stretching, and pasting. Edges on the torus through the cut can't be drawn there on the sphere. When redrawn on the sphere, they may cross.
- So, there are graphs that can be drawn on a torus w/o crossing edges, but which can't be drawn on a sphere w/o crossing edges.

Beyond spheres - graphs on solids with holes

- An $m \times n$ grid on a torus has

$$
\begin{gathered}
V=m n, \quad E=2 m n, \quad F=m n \\
V-E+F=m n-2 m n+m n=0
\end{gathered}
$$

- Theorem: Let G be a connected graph drawn on a γ-holed torus without edge crossings, and with all faces homeomorphic to discs. ($\gamma=0$ for sphere, 1 for donut, etc.) Then

$$
V-E+F=2(1-\gamma)
$$

- Note: The quantity $2(1-\gamma)$ is the Euler characteristic. It's usually denoted χ, which conflicts using $\chi(G)$ for chromatic number.

More relations on V, E, F in planar graphs

Face degrees

Face degrees

- Trace around a face, counting each encounter with an edge.
- Face A has edge encounters $A 1$ through $A 7$, giving $\operatorname{deg}(A)=7$.
- Face B has edge encounters $B 1$ through $B 6$, including two encounters with one edge ($B 5$ and $B 6$). So $\operatorname{deg}(B)=6$.
- $\operatorname{deg}(C)=5$.

Face degrees

Total degrees

- The sum of the face degrees is $2 E$, since each edge is used twice:

$$
\begin{gathered}
S=\operatorname{deg}(A)+\operatorname{deg}(B)+\operatorname{deg}(C)=7+6+5=18 \\
2 E=2(9)=18
\end{gathered}
$$

- This is an analogue of the Handshaking Lemma.
- The sum of the vertex degrees is $2 E$ for all graphs. Going clockwise from the upper left corner, we have

$$
3+3+2+2+2+3+2+1=18
$$

Face degrees

Empty graph	One edge graph
Face degree 0	Face degree 2

Multigraph

- Faces usually have at least 3 sides, but it is possible to have fewer.
- In a simple (no loops, no multiedges) connected graph with at least three vertices, these cases don't arise, so all faces have face degree at least 3 .
- Thus, the sum of the face degrees is $S \geqslant 3 F$, so $2 E \geqslant 3 F$.
- In a bipartite graph, all cycles have even length, so all faces have even degree. Adding bipartite to the above conditions, each face has at least 4 sides. Thus, $2 E \geqslant 4 F$, which simplifies to $E \geqslant 2 F$.

Inequalities between V, E, F

Theorem

In a connected graph drawn in the plane without crossing edges:
(1) $V-E+F=2$
(2) Additionally, if G is simple (no multiedges) and if $V \geqslant 3$, then
(a) $3 F \leqslant 2 E$
(b) $E \leqslant 3 V-6$
(c) $F \leqslant 2 V-4$
(3) If G is simple and bipartite, these bounds improve to
(a) $2 F \leqslant E$
(b) $E \leqslant 2 V-4$
(c) $F \leqslant V-2$

- Part 1 is Euler's formula. We just showed 2(a) and 3(a).
- We will prove the other parts, and use them to prove certain graphs are not planar.

Inequalities between V, E, F

(a) $3 F \leqslant 2 E$
(b) $E \leqslant 3 V-6$
(c) $F \leqslant 2 V-4$

Let G be a connected simple graph with $V \geqslant 3$, drawn in the plane without crossing edges.
(a) So far, we showed $\quad V-E+F=2$ and (a) $3 F \leqslant 2 E$.
(b) Thus, $F \leqslant 2 E / 3$ and

$$
2=V-E+F \leqslant V-E+(2 E / 3)=V-E / 3
$$

so $2 \leqslant V-E / 3$, or $E \leqslant 3 V-6$, which is (b).
(c) $3 F \leqslant 2 E$ also gives $E \geqslant 3 F / 2$ and

$$
2=V-E+F \leqslant V-(3 F / 2)+F=V-F / 2
$$

so $2 \leqslant V-F / 2$, or $F \leqslant 2 V-4$, which is (c).

Inequalities between V, E, F for a simple bipartite graph
(a) $2 F \leqslant E$
(b) $E \leqslant 2 V-4$
(c) $F \leqslant V-2$

Let G be a connected simple bipartite graph with $V \geqslant 3$, drawn in the plane without crossing edges.
(a) For this case, we showed $V-E+F=2$ and (a) $2 F \leqslant E$.
(b) Thus, $F \leqslant E / 2$ and

$$
2=V-E+F \leqslant V-E+(E / 2)=V-E / 2
$$

so $2 \leqslant V-E / 2$, or $E \leqslant 2 V-4$, which is (b).
(c) $2 F \leqslant E$ also gives

$$
2=V-E+F \leqslant V-2 F+F=V-F
$$

so $2 \leqslant V-F$, or $F \leqslant V-2$, which is (c).

Generalization: V, E, F inequalities when all cycle lengths $\geqslant g$

Let G be a connected graph
with $V \geqslant 3$, drawn in the plane without crossing edges.
Suppose all cycles have length $\geqslant g$, with $g \geqslant 3$.
(a) Sum of face degrees: $S=2 E$ and $S \geqslant g \cdot F, \quad$ so $\boldsymbol{F} \leq \frac{\mathbf{2}}{\boldsymbol{g}} \boldsymbol{E}$.
(b) Thus, $2=V-E+F \leqslant V-E+\frac{2}{g} E$

$$
=V-\left(1-\frac{2}{g}\right) E=V-\frac{g-2}{g} E
$$

$$
\text { so } E \leq \frac{g}{g-2}(V-2)
$$

(c) $F \leqslant \frac{2}{g} E$ also gives $E \geqslant \frac{g}{2} F$ and

$$
\begin{aligned}
& 2=V-E+F \leqslant V-\frac{g}{2} F+F=V-\left(\frac{g}{2}-1\right) F \\
& \text { so }\left(\frac{g}{2}-1\right) F \leqslant(V-2) \text { so } \boldsymbol{F} \leq \frac{\mathbf{2}}{g-2}(\boldsymbol{V}-\mathbf{2}) .
\end{aligned}
$$

Characterizing planar graphs

K_{5} and $K_{3,3}$ are not planar

K_{5} is not planar

- $V=5$
- $E=\binom{5}{2}=10$
- This violates $E \leqslant 3 V-6$ since $3 V-6=15-6=9$ and $10 \nless 9$.
$K_{3,3}$ is not planar
- $V=6$
- $E=3 \cdot 3=9$
- This is bipartite, so if it has a planar embedding, $E \leqslant 2 V-4$.
- However, $2 V-4=2(6)-4=8$, and $9 \nless 8$.

Homeomorphisms (a.k.a. edge equivalency)

- Suppose that we can turn graph G into graph H by repeatedly applying these two operations:
- Subdividing: Split an edge AB into two edges AV and VB by adding a vertex V somewhere in the middle (not incident with any other edge).
- Smoothing: Let V be a vertex of degree 2.

Replace two edges AV and VB by one edge AB and delete vertex V.

- Then G and H are homeomorphic (a.k.a. edge equivalent).
- The left graph is homeomorphic to K_{5} (on the right):
- Smooth out every black vertex (left graph) to get K_{5} (right graph).
- Repeatedly subdivide edges of K_{5} (right) to get the left graph.

Characterizing planar graphs

Theorem (Kuratowski's Theorem)

G is planar iff it does not have a subgraph homeomorphic to K_{5} or $K_{3,3}$.

- Necessity: If G is planar, so is every subgraph. But if G has a subgraph homeomorphic to K_{5} or $K_{3,3}$, the subgraph is not planar.
- Sufficiency: The proof is too advanced, but it's in the book.
- The graph shown above has a subgraph (shown in red) homeomorphic to K_{5}, and thus, it is not a planar graph.

Dual graphs

Dual graph

(a) Graph G

(b) Constructing dual graph

(c) Dual graph H

- Start with a planar embedding of a graph G (shown in black).
- Draw a red vertex inside each face, including the "infinite face."
- For every edge e of G :
- Let a, b be the red vertices in the faces on the two sides of e.
- Draw a red edge $\{a, b\}$ crossing e.
- Remove the original graph G to obtain the red graph H.
- H is the dual graph of this drawing of G.
(Also called plane dual or combinatorial dual.)
- The dual graph depends on how G is drawn.

Dual graph

- If G is connected, then G is also a dual graph of H - just switch the roles of the colors!

Dual graph

(a) Graph G

(c) Dual graph H

- G and H have the same number of edges:
- Each edge of G crosses exactly one edge of H and vice-versa.
- \# faces of $G=$ \# vertices of H and \# faces of $H=$ \# vertices of G :
- Bijections: vertices of either graph \leftrightarrow faces of the other.
- The fact that the sum of face degrees is $2 E$ becomes the Handshaking Lemma applied to the dual graph!

Coloring maps

Coloring maps

- Color states so that neighboring states have different colors. This map uses 4 colors for the states.
- Assume each state is a contiguous region.
- Michigan isn't.
- Its parts all have to be the same color, which could increase the \# colors required. Artificially fill in Lake Michigan to make it contiguous.
- Also assume the states form a contiguous region.
- Alaska and Hawaii are isolated, and just added on separately.

A proper coloring of the faces of a planar graph

\leftrightarrow a proper coloring of the vertices of its dual graph

Coloring faces of G

Coloring vertices of H

- The regions/states/countries of the map are faces of a graph, G.
- Place a vertex inside each region and form the dual graph, H.
- A proper coloring of the vertices of H gives a proper coloring of the faces of G (aside from a technicality on the next slide).

A proper coloring of the faces of a planar graph

 \leftrightarrow a proper coloring of the vertices of its dual graph

Coloring faces of G

Coloring vertices of H

- Technicality: A vertex of degree 1 in G gives an edge sticking out into a face, resulting in a loop in H. (See dashed edges).
- A graph with a loop can't have a proper coloring!
- The edge sticking out in G doesn't separate faces of G.
- Delete vertices of degree 1 in G, and loops in H, to get an equivalent problem in terms of coloring the faces of G.

Coloring planar graphs

Possible degrees in a planar graph

Theorem

Every simple planar graph has a vertex with degree at most 5.

Proof:

- If the graph isn't connected, just restrict to one component of it.
- The sum of vertex degrees in any graph equals $2 E$.
- Assume by way of contradiction that all vertices have degree $\geqslant 6$. Then the sum of vertex degrees is $2 E \geqslant 6 V$.
- So $2 E \geqslant 6 V$, so $E \geqslant 3 V$.
- This contradicts $E \leqslant 3 V-6$ in any planar graph, so some vertex has degree $\leqslant 5$.

Possible degrees in a planar graph

Theorem

Every simple planar graph is 5-degenerate.

Proof:

- Recall that a graph is k-degenerate when all subgraphs have minimum degree $\leqslant k$.
- Every subgraph of a simple planar graph is also simple and planar, and thus has minimum degree $\leqslant 5$.
- So every simple planar graph is 5-degenerate.

Easy: Six Color Theorem

Theorem

Every simple planar graph is 6-colorable.

Proof:

- We showed that any k-degenerate graph is $(k+1)$-colorable.
- Every simple planar graph is 5-degenerate, and thus, 6-colorable.

Moderate difficulty: Five Color Theorem

Theorem

Every simple planar graph is 5-colorable.

Proof:

- We will induct on $|V(G)|$.
- Base case: If $|V(G)| \leqslant 5$, just assign all vertices different colors.

Five Color Theorem

Every simple planar graph is 5-colorable.

Proof, continued - Induction step:

- Assume the theorem holds for all graphs with fewer vertices.
- If G has a vertex v of degree $\leqslant 4$, then $G-\{v\}$ is 5 -colorable by induction.
- When we add v back in, since it has $\leqslant 4$ neighbors, at least one of the 5 colors is available, so we can complete the 5 -coloring.
- So, we will have to consider $\delta(G) \geqslant 5$. Since all simple planar graphs have $\delta(G) \leqslant 5$, this gives $\delta(G)=5$.

Five Color Theorem

Proof, continued - Induction step:

- Assume the theorem holds for all graphs with fewer vertices, and assume $\delta(G)=5$.
- Let v be a vertex of degree 5 .
- If all neighbors of v are adjacent to each other, they form a K_{5}. But then the graph isn't planar - a contradiction. So there are neighbors a and b of v with $a b \notin E(G)$.

Five Color Theorem

Every simple planar graph is 5-colorable.

(figure from Verstraete textbook)

Proof, continued - Induction step:

- Recall: $d(v)=5$, and a, b are neighbors of v with $a b \notin E(G)$
- Let $H=G /\{a, b, v\}$ (graph contraction).

Vertices a, b, v are contracted to a new vertex w.

- H is still planar:
- Slide a and v together along edge $a v$. Same for b and v.
- Merge a, b, v into one vertex w.
- Remove edges $a v, b v$, and reduce any multiedges just created.

Five Color Theorem

Every simple planar graph is 5-colorable.

Proof, continued - Induction step:

- By induction, H has a 5-coloring $c_{H}: V(H) \rightarrow\{1, \ldots, 5\}$.
- Extend to a 5-coloring c_{G} of G :
- For all vertices u except a, b, v, set $c_{G}(u)=c_{H}(u)$.
- Set $c_{G}(a)=c_{G}(b)=c_{H}(w)$. This is fine since $a b$ isn't an edge in G.
- The 5 neighbors of v in G use at most 4 colors (since a and b use the same color). So there is a color available to assign to $c_{G}(v)$.

Extremely difficult: Four Color Theorem

Theorem (Four Color Theorem)

Every simple planar graph is 4-colorable.

- Map makers have believed this for centuries empirically, but it wasn't proven mathematically.
- This was the first major theorem to be proved using a computer program (Kenneth Appel and Wolfgang Haken, 1976).
- The original proof had 1936 cases! Their program determined the cases and showed they are all 4-colorable.
- The proof was controversial because
- It was the first proof that was impractical for any human to verify.
- There could be bugs in the software, hardware, compiler, O/S, etc.
- Over the years, people have found errors in the proof, but they have been fixed, and the result still stands. The number of cases has been cut down to 633 .

Classifying regular polyhedra

Classifying regular polyhedra

Tetrahedron

Cube

Octahedron

- A polyhedron is a 3D solid whose surface consists of polygons. As a graph, no loops and no multiple edges.
- All faces have $\geqslant 3$ edges and all vertices are in $\geqslant 3$ edges.
- To be 3D, there must be $\geqslant 4$ vertices, $\geqslant 4$ faces, and $\geqslant 6$ edges.
- A regular polyhedron has these symmetries:
- All faces are regular ℓ-gons for the same $\ell \geqslant 3$.
- All vertices have the same degree ($r \geqslant 3$).
- All edges have the same length.
- All pairs of adjacent faces have the same angle between them.

Classifying regular polyhedra

- Suppose all vertices have the same degree $r \geqslant 3$ and all faces are ℓ-gons (same $\ell \geqslant 3$ for all faces).
- The sum of vertex degrees is $r \cdot V=2 E$, so $V=2 E / r$.
- The sum of face degrees is $\ell \cdot F=2 E$, so $F=2 E / \ell$.
- Plug these into $V-E+F=2$:

$$
\frac{2 E}{r}-E+\frac{2 E}{\ell}=2 \quad E \cdot\left(\frac{2}{r}-1+\frac{2}{\ell}\right)=2 \quad E=\frac{2}{\frac{2}{r}+\frac{2}{\ell}-1}
$$

- We have to find all integers $r, \ell \geqslant 3$ for which V, E, F are positive integers, and then check if polyhedra with those parameters exist.

Classifying regular polyhedra

- Suppose all vertices have the same degree $r \geqslant 3$ and all faces are ℓ-gons (same $\ell \geqslant 3$ for all faces).
- Compute (V, E, F) using $E=\frac{2}{\frac{2}{r}+\frac{2}{\ell}-1}, V=\frac{2 E}{r}, F=\frac{2 E}{\ell}$:
- E.g., $r=3$ and $\ell=4$ gives

$$
\begin{aligned}
& E=\frac{2}{\frac{2}{3}+\frac{2}{4}-1}=\frac{2}{1 / 6}=12 \\
& V=2(12) / 3=8 \\
& F=2(12) / 4=6
\end{aligned}
$$

- What shape is it?

Classifying regular polyhedra

What range of vertex degree (r) and face degree (ℓ) are permitted?

First method

- We have $r \geqslant 3$.

Since some vertex has degree $\leqslant 5$, all do, so r is 3,4 , or 5 .

- Vertices and faces are swapped in the dual graph, so ℓ is 3,4 , or 5 .

Second method: Analyze formula $E=2 /\left(\frac{2}{r}+\frac{2}{\ell}-1\right)$

- E is a positive integer, so its denominator must be positive:

$$
\frac{2}{r}+\frac{2}{l}-1>0
$$

- We have $r, \ell \geqslant 3$.
- If both $r, \ell \geqslant 4$, the denominator of E is $\leqslant \frac{2}{4}+\frac{2}{4}-1=0$, which is invalid. So r and/or ℓ is 3 .
- If $r=3$, then the denominator of E is $\frac{2}{3}+\frac{2}{\ell}-1=\frac{2}{\ell}-\frac{1}{3}$.

To be positive requires $\ell \leqslant 5$.

- Similarly, if $\ell=3$ then $r \leqslant 5$.

Classifying regular polyhedra

- Suppose all vertices have the same degree $r \in\{3,4,5\}$ and all faces are ℓ-gons (same $\ell \in\{3,4,5\}$ for all faces).
- Compute (V, E, F) using $E=\frac{2}{\frac{2}{r}+\frac{2}{\ell}-1}, V=\frac{2 E}{r}, F=\frac{2 E}{\ell}$:

(V, E, F)	$\ell=3$	$\ell=4$	$\ell=5$
$r=3$	$(4,6,4)$	$(8,12,6)$	$(20,30,12)$
$r=4$	$(6,12,8)$	Division by 0	$(-10,-20,-8)$
$r=5$	$(12,30,20)$	$(-8,-20,-10)$	$(-4,-10,-4)$

- If V, E, F are not all positive integers, it can't work (shown in pink).
- We found five possible values of (V, E, F) with graph theory. Use geometry to actually find the shapes (if they exist).

Classifying regular polyhedra

Shape	Tetrahedron	cube	Octahedron	Dodecahedron	Icosahedron
$r=$ vertex degree	3	3	4	3	5
$l=$ face degree	3	4	3	5	3
$V=$ \# vertices	4	8	6	20	12
$E=$ \# edges	6	12	12	30	30
$F=$ \# faces	4	6	8	12	20

- These are known as the Platonic solids.
- The cube and octahedron are dual graphs.

The dodecahedron and icosahedron are dual graphs. The tetrahedron is its own dual.

Octahedron and cube are dual

- Can draw either one inside the other. Place a dual vertex at the center of each face.
- In 3D, this construction shrinks the dual, vs. in 2D, it did not.

