Chapter 6 Vertex and edge coloring

Prof. Tesler

Math 154
Winter 2020

Coloring vertices of a graph

- Let G be a graph and C be a set of colors, e.g.,

$$
C=\{\text { black, white }\} \quad C=\{a, b\} \quad C=\{1,2\}
$$

- A proper coloring of G by C is to assign a color from C to every vertex, such that in every edge $\{v, w\}$, the vertices v and w have different colors.

Coloring vertices of a graph

Proper 4-coloring

Not a proper coloring

- G is k-colorable if it has a proper coloring with k colors (e.g., $C=\{1,2, \ldots, k\}$). This is also called a proper k-coloring.
- In some applications, we literally draw the graph with the vertices in different colors. In proofs and algorithms with a variable number of colors, it's easier to use numbers $1, \ldots, k$.

Color vertices with as few colors a, b, c, \ldots as possible

- Color the graph above with as few colors as possible.

Color vertices with as few colors a, b, c, \ldots as possible

- The chromatic number, $\chi(G)$, of a graph G is the minimum number of colors needed for a proper coloring of G.
- We also say that G is k-chromatic if $\chi(G)=k$.
- Note that if G is k-colorable, then $\chi(G) \leqslant k$.
- This graph is 6-colorable (use a different color on each vertex). We also showed it's 4-colorable and it's 3-colorable. So far, $\chi(G) \leqslant 3$.

Color vertices with as few colors a, b, c, \ldots as possible

- We've shown it's 3-colorable, so $\chi(G) \leqslant 3$.
- It has a triangle as a subgraph, which requires 3 colors.

Other vertices may require additional colors, so $\chi(G) \geqslant 3$.

- Combining these gives $\chi(G)=3$.

Clique

- A clique is a subset X of the vertices s.t. all vertices in X are adjacent to each other. So the induced subgraph $G[X]$ is a complete graph, K_{m}.
- If G has a clique of size m, its vertices all need different colors, so $\chi(G) \geqslant m$.

Proper edge coloring

Proper 5-edge-coloring

Not a proper edge coloring

- Again, let G be a graph and C be a set of colors.
- A proper edge coloring is a function assigning a color from C to every edge, such that if two edges share any vertices, the edges must have different colors.
- A proper k-edge-coloring is a proper edge coloring with k colors.

A graph is k-edge-colorable if this exists.
This graph is 5 -edge-colorable.

Color edges with as few colors a, b, c, \ldots as possible

Color edges with as few colors a, b, c, \ldots as possible

- The minimum number of colors needed for a proper edge coloring is denoted $\chi^{\prime}(G)$. This is called the chromatic index or the edge-chromatic number of G.

Color edges with as few colors a, b, c, \ldots as possible

- We've shown it's 4-edge-colorable, so $\chi^{\prime}(G) \leqslant 4$.
- There is a vertex of degree 4. All 4 edges on it must have different colors, so $\chi^{\prime}(G) \geqslant 4$.
- Combining these gives $\chi^{\prime}(G)=4$.
- In general, $\chi^{\prime}(G) \geqslant \Delta(G)$, since all edges on a max degree vertex must have different colors.

Relation of coloring to previous concepts

Bipartite graphs

A graph is bipartite if and only if it is 2-colorable

- $A=$ black vertices and $B=$ white vertices.
- Bipartite: All edges have one vertex in A and the other in B.
- 2-colorable: All edges have 1 black vertex and 1 white vertex.
- This graph has $\chi(G)=2$ and $\chi^{\prime}(G)=4$.
- In general, a bipartite graph has $\chi(G) \leqslant 2$
$(\chi(G)=1$ for only isolated vertices, and 0 for empty graph).

Independent sets and matchings

- In a proper coloring (vertices), all vertices of the same color form an independent set (since there are no edges between them).

- In a proper edge coloring, all edges of the same color form a matching (since they don't share vertices).

Results for proper edge colorings

Major results about proper colorings

Proper edge colorings:

König's Edge Coloring Theorem

For any bipartite graph, $\chi^{\prime}(G)=\Delta(G)$.

Vizing's Theorem

For any simple graph, $\chi^{\prime}(G)=\Delta(G)$ or $\Delta(G)+1$.

Proper vertex colorings:

Brooks' Theorem

All connected graphs have $\chi(G) \leqslant \Delta(G)$, except for K_{n} and odd cycles.

König's Edge Coloring Theorem

Don't confuse with König's Theorem on maximum matchings, nor with the König-Ore Formula

König's Edge Coloring Theorem

For any bipartite graph, $\chi^{\prime}(G)=\Delta(G)$.

Proof (first case: regular graphs):

- First, suppose G is k-regular. Then $k=\Delta(G)$.
- We showed that if G is a k-regular bipartite graph, its edges can be partitioned into k perfect matchings, M_{1}, \ldots, M_{k}, with every edge of G in exactly one of the matchings.
- This also holds for bipartite multigraphs!
- Assign all edges of M_{i} the color i. This is a proper edge coloring of G, since all edges on each vertex are in different matchings.
- So $\chi^{\prime}(G) \leqslant k$. We also showed $\chi^{\prime}(G) \geqslant \Delta(G)=k$, so $\chi^{\prime}(G)=k$.

König's Edge Coloring Theorem

For any bipartite graph, $\chi^{\prime}(G)=\Delta(G)$.

Proof, continued (second case: graphs that aren't regular):

- Now suppose G is not regular (example above).

König's Edge Coloring Theorem

For any bipartite graph, $\chi^{\prime}(G)=\Delta(G)$.
A

B

Proof, continued:

- Make a clone G^{\prime} of G.
- Vertices: G^{\prime} has parts A^{\prime} and B^{\prime}. Name the vertices of G^{\prime} after the vertices of G, but add ' symbols to make them different.
- Edges: The clone of edge $\{a, b\}$ in G is $\left\{a^{\prime}, b^{\prime}\right\}$ in G^{\prime}.

König's Edge Coloring Theorem

For any bipartite graph, $\chi^{\prime}(G)=\Delta(G)$.

Proof, continued:

- For each vertex $x \in A \cup B$, add $\Delta(G)-d_{G}(x)$ parallel edges between x and x^{\prime} (shown in red).
- Now all vertices have degree $\Delta(G)$! (Here, $\Delta(G)=3$.)
- The new graph, H, is $\Delta(G)$-regular.
- H is bipartite with parts $A \cup B^{\prime}$ and $A^{\prime} \cup B$.

König's Edge Coloring Theorem

For any bipartite graph, $\chi^{\prime}(G)=\Delta(G)$.

Proof, continued:

- Let $k=\Delta(G)$. Here, $k=3$.
- Since H is bipartite and k-regular, it has a proper k-edge-coloring (shown here in black, red, and blue).

König's Edge Coloring Theorem

For any bipartite graph, $\chi^{\prime}(G)=\Delta(G)$.

Proof, continued:

- Remove G^{\prime} and the edges that were added between G and G^{\prime}.
- This gives a proper edge coloring of G with $\leqslant \Delta(G)$ colors, so $\chi^{\prime}(G) \leqslant \Delta(G)$.
- Since $\chi^{\prime}(G) \geqslant \Delta(G)$ as well, we conclude $\chi^{\prime}(G)=\Delta(G)$.

Vizing's Theorem

Vizing's Theorem

For any simple graph, $\chi^{\prime}(G)=\Delta(G)$ or $\Delta(G)+1$.

Proof outline:

- We showed $\chi^{\prime}(G) \geqslant \Delta(G)$ for any graph.
- We can construct a proper edge coloring with $\Delta(G)+1$ colors. It's rather detailed, so we'll skip it; see the text book.
- Then $\chi^{\prime}(G) \leqslant \Delta(G)+1$.
- Combining the two inequalities gives $\chi^{\prime}(G)=\Delta(G)$ or $\Delta(G)+1$.

Vizing's Theorem

 For any simple graph, $\chi^{\prime}(G)=\Delta(G)$ or $\Delta(G)+1$.- The graphs with $\chi^{\prime}(G)=\Delta(G)$ $\chi^{\prime}(G)=\Delta(G)+1 \quad$ are called class 2.
- Determining whether a graph is class 1 or class 2 is NP-complete.
- But it turns out "almost all" graphs are class 1 !
- Recall there are $2^{\binom{n}{2}}$ simple graphs on vertices $\{1, \ldots, n\}$.
- Erdös and Wilson (1975) proved:

$$
\lim _{n \rightarrow \infty}\left(\frac{\# \text { class } 1 \text { graphs on } n \text { vertices }}{\# \text { simple graphs on } n \text { vertices }}\right)=1
$$

Vizing's Theorem — Multigraphs

- Consider this multigraph.
- All 6 edges touch, so in a proper edge coloring, they must all be different colors. Thus, $\chi^{\prime}(G)=6$.
- $\Delta(G)=4$, so $\chi^{\prime}(G)$ doesn't equal $\Delta(G)$ or $\Delta(G)+1$.
- Let $\mu(G)$ be the maximum edge multiplicity.

For a simple graph, it's 1 , but here, it's 2 .

Vizing's Theorem for Multigraphs

For any multigraph, $\chi^{\prime}(G)=\Delta(G)+d$ for some $0 \leqslant d \leqslant \mu(G)$.

Results for proper vertex colorings

Proper colorings of certain graphs

Proper coloring of K_{n}

- $\chi\left(K_{n}\right)=n$: All vertices are adjacent, so their colors are all distinct.
- $\Delta\left(K_{n}\right)=n-1$.

Proper coloring of a cycle $C_{n}(n \geqslant 3)$

- Any even length cycle has $\chi\left(C_{n}\right)=2$.
- Any odd length cycle has $\chi\left(C_{n}\right)=3$.
- All cycles (whether odd or even) have $\Delta\left(C_{n}\right)=2$.

Brooks' Theorem

All connected graphs have $\chi(G) \leqslant \Delta(G)$, except K_{n} and odd length cycles have $\chi(G)=\Delta(G)+1$.

- We'll do a zillion special cases, building up to a complete proof.

Brooks' Theorem

Special case: Small values of $\Delta(G)$
$\Delta(G)=0$ or 1 , with G connected

- $\Delta(G)=0$ gives an isolated vertex, $G=K_{1}$.
- $\Delta(G)=1$ gives just one edge, $G=K_{2}$.
- Complete graphs are one of the exceptions in Brooks' Theorem.

$\Delta(G)=2$, with G connected

Then G is a path or a cycle, and $n \geqslant 3$.

- If G is a path, $\chi(G)=\Delta(G)=2$.
- If G is a even length cycle, $\chi(G)=\Delta(G)=2$.
- If G is an odd length cycle, $\chi(G)=3$ but $\Delta(G)=2$.

This is the other exception in Brooks' Theorem.

For the rest of the cases, assume $\Delta(G) \geqslant 3$.

Brooks' Theorem

Lemma

Every graph has a proper coloring with $\Delta(G)+1$ colors.
Thus, $\chi(G) \leqslant \Delta(G)+1$.

- Notation: Max degree $\Delta=\Delta(G)$

Vertices $\quad v_{1}, \ldots, v_{n}$ (ordered arbitrarily)
Colors $\quad 1,2, \ldots, \Delta+1$

- Assign a color to v_{i} as follows (going in order $i=1,2, \ldots, n$):
- v_{i} has at most Δ neighbors among v_{1}, \ldots, v_{i-1}.
- At most Δ different colors are used by those neighbors.
- With $\Delta+1$ colors, at least one color different from those is available.
- Assign the smallest available color to v_{i}.
- We'll do several special cases where carefully choosing the vertex order reduces the number of colors needed.

Brooks' Theorem

Special case: Vertex of smaller degree than maximum

Lemma

If connected graph G has a vertex v with $d(v)<\Delta(G)$, then $\chi(G) \leqslant \Delta(G)$.

- Again let $\Delta=\Delta(G)$. We will color the vertices with Δ colors.
- Do a breadth first search starting at v.

The vertices in order of discovery are v_{1}, \ldots, v_{n}, with $v_{1}=v$.

- Color vertices in reverse order, v_{n}, \ldots, v_{2}, as follows:
- Each $v_{i}(i \neq 1)$ has at least one neighbor v_{j} with $j<i$, and at most $\Delta-1$ neighbors with $j>i$.
- So at most $\Delta-1$ colors have been assigned so far to its neighbors.
- At least one of the Δ colors is available to assign to v_{i}.
- Finally, color $v_{1}=v$.

Since $d(v)<\Delta$, at least $\Delta-d(v) \geqslant 1$ colors are available.

Brooks' Theorem

Special case: G has a cut vertex

Lemma

If G is connected and has a cut vertex, then $\chi(G) \leqslant \Delta(G)$.

Proof:

- Let v be a cut vertex.
- $G-\{v\}$ has $r \geqslant 2$ components. Let G_{1}, \ldots, G_{r} be those components but with v and its edges to vertices of G_{i} included.

- We'll show each G_{i} can be colored with $\leqslant \Delta(G)$ colors.

Brooks' Theorem

Special case: G has a cut vertex — proof continued

Lemma

If G is connected and has a cut vertex, then $\chi(G) \leqslant \Delta(G)$.

Proof, continued: In G_{i},

- All vertices still have degree $\leqslant \Delta(G)$.
- Additionally, $d_{G_{i}}(v) \leqslant \Delta(G)-(r-1) \leqslant \Delta(G)-1$.

So if $\Delta\left(G_{i}\right)=\Delta(G)$, then G_{i} can be $\Delta(G)$-colored.

- If $\Delta\left(G_{i}\right)<\Delta(G)$, it can be colored with $\Delta\left(G_{i}\right)+1 \leqslant \Delta(G)$ colors.

Recall previous lemmas

- If conn. graph G has vertex v with $d(v)<\Delta(G)$, then $\chi(G) \leqslant \Delta(G)$.
- Every graph has $\chi(G) \leqslant \Delta(G)+1$.

Brooks' Theorem

Special case: G has a cut vertex - proof continued

Lemma

If G is connected and has a cut vertex, then $\chi(G) \leqslant \Delta(G)$.

Proof, continued:

- Rename colors in G_{1}, \ldots, G_{r} so v has the same color in all of them.
- Combine proper colorings of G_{1}, \ldots, G_{r} to get a proper coloring of G with $\Delta(G)$ colors.

Brooks' Theorem

Special case: G has a vertex cut of size 2

Lemma

If G is connected, has $\Delta(G) \geqslant 3$, and has a vertex cut $\{u, v\}$ with $u v \notin E(G)$, then $\chi(G) \leqslant \Delta(G)$.

Proof:

- Now $G-\{u, v\}$ has two or more components.
- Split G into G_{1} (one component) and G_{2} (all others), each including u, v and the edges to the other vertices of that component.
- In each of $G_{1} \& G_{2}$, both $u \& v$ have degrees between 1 and $\Delta(G)-1$.

Brooks' Theorem

Special case: G has a vertex cut of size 2 - proof continued

Lemma

If G is connected, has $\Delta(G) \geqslant 3$, and has a vertex cut $\{u, v\}$ with $u v \notin E(G)$, then $\chi(G) \leqslant \Delta(G)$.

Proof, continued:

Case 1: In both G_{1} and G_{2}, either u or v has degree $\leqslant \Delta(G)-2$.

- G_{1} and G_{2} can each be Δ-colored with different colors for $u \& v$.
- For example, say in $G_{1}: \quad d(u) \leqslant \Delta(G)-2$
- By previous cases, we can color G_{1} with Δ colors.
- If u and v have the same color in G_{1} on on our first try, then u and its neighbors in G_{1} use at most $(\Delta-2)+1=\Delta-1$ colors, so there's still a color remaining (out of Δ colors) to change u 's color.
- Rename colors in G_{1} and G_{2} so that u and v match in each.
- Combine the Δ-colorings of G_{1} and G_{2} into a Δ-coloring of G.

Brooks' Theorem

Special case: G has a vertex cut of size 2 - proof continued

1. Initial colorings:

2. Make u,v different in each part

3. Permute colors to match u's \& v's

4. Combine

Brooks' Theorem

Special case: G has a vertex cut of size 2 - proof continued

Lemma

If G is connected, has $\Delta(G) \geqslant 3$, and has a vertex cut $\{u, v\}$ with $u v \notin E(G)$, then $\chi(G) \leqslant \Delta(G)$.

Proof, continued:

Case 2: $\ln G_{1}$ or G_{2}, both u and v have degree $>\Delta(G)-2$.

- Assume it's G_{1} (G_{2} works similarly). Then

$$
d_{G_{1}}(u)=d_{G_{1}}(v)=\Delta(G)-1 \quad d_{G_{2}}(u)=d_{G_{2}}(v)=1
$$

- So in G_{2}, both u and v are in one edge each: $u a$ and $v b$. Note it can't be $u v$ since we assumed $u v$ is not an edge.
- $\{a, v\}$ is also a vertex cut, and gives Case 1 .

Brooks' Theorem

Brooks' Theorem

All connected graphs have $\chi(G) \leqslant \Delta(G)$, except for K_{n} and odd cycles.

Proof: If any special case applies, we're done. But if none apply, then:

- $\Delta \geqslant 3$.
- It's not a complete graph or odd cycle.
- There are no cut vertices.
- There are no vertex cuts $\{u, v\}$ with $u v$ not an edge.
- There is no vertex with $d(v)<\Delta(G)$; thus, G is Δ-regular.

This is the "case" we're in: ALL of the above at once.

Brooks' Theorem

All connected graphs have $\chi(G) \leqslant \Delta(G)$, except for K_{n} and odd cycles.

Proof of Brooks' Theorem, continued:

- Let x be any vertex in G.
- x must have neighbors y, z where $x y$ and $x z$ are edges but $y z$ isn't:
- If all of x 's neighbors are adjacent to each other, then x and its neighbors form a clique of size $\Delta+1$.
- This accounts for Δ neighbors of each of those vertices. G is Δ-regular, so that's all of their neighbors, making this clique a connected component of G.
- G is connected, so that's the whole graph.
- Thus, $G=K_{\Delta+1}$, contradicting that it's not a complete graph.

Brooks' Theorem

All connected graphs have $\chi(G) \leqslant \Delta(G)$, except for K_{n} and odd cycles.

Proof of Brooks' Theorem, continued:

- We have vertices x, y, z where $x y$ and $x z$ are edges but $y z$ isn't.
- $G-\{y, z\}$ is connected (since that's the case we're in).
- Do BFS in $G-\{y, z\}$ starting at x.
- List vertices in order of discovery v_{1}, \ldots, v_{n-2}, with $v_{1}=x$.
- Then set $v_{n-1}=y$ and $v_{n}=z$.
- Color the vertices in reverse order $v_{n}, v_{n-1}, \ldots, v_{1}$:
- $v_{n}=z$ and $v_{n-1}=y$ both get color 1 .
- Each v_{i} (for $i=n-2, \ldots, 2$) has $\leqslant \Delta-1$ neighbors already colored (v_{j} with $j>i$), so at least one of the Δ colors is available for each.
- When we reach v_{1}, all Δ of its neighbors were already colored. But y and z both got color 1! So at most $\Delta-1$ colors were used on v_{1} 's neighbors. So at least one of the Δ colors is available for v_{1}.

Degenerate graphs

- A graph is k-degenerate if all subgraphs have min. degree $\leqslant k$.
- This graph has minimum degree $\delta(G)=2$, but subgraphs \boxtimes have higher minimum degree, so it's not 2-degenerate.
- All subgraphs have min degree $\leqslant \Delta(G)=5$, so it's 5 -degenerate.
- What's the smallest k for which it's k-degenerate? 3
- The degeneracy (or degeneracy number) of a graph is the smallest k for which it's k-degenerate. Here, it's 3 .
- Theorem: If G is k-degenerate, then $\chi(G) \leqslant k+1$. This is often an improvement over $\chi(G) \leqslant \Delta(G)$.

Degenerate graphs

\section*{$\begin{array}{llllllll}\text { Vertex } & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7}\end{array}$
 | d_{i} | 2 | 3 | 2 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

- Repeatedly choose a vertex of minimum degree (in the remaining graph) and remove it, getting a sequence of vertices v_{1}, \ldots, v_{n}.
- Let d_{i} be the degree of v_{i} just before it's removed (so it's the degree in $G-\left\{v_{1}, \ldots, v_{i-1}\right\}=G\left[v_{i}, \ldots, v_{n}\right]$).
- Every edge is accounted for in exactly one d_{i} (whichever of it's vertices is removed first), so $\sum_{i} d_{i}=|E(G)|$ (here it equals 13).
- If G is k-degenerate, then every v_{i} has $\leqslant k$ neighbors in v_{i+1}, \ldots, v_{n} (since v_{i} has degree $\leqslant k$ in every subgraph, including $G\left[v_{i}, \ldots, v_{n}\right]$).

Degenerate graphs

Computing degeneracy number

$\begin{array}{rccccccc}\text { Vertex } & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} \\ \boldsymbol{d}_{\boldsymbol{i}} & 2 & 3 & 2 & 3 & 2 & 1 & 0\end{array}$

- Sometimes we'll use that a graph is k-degenerate for a particular value of k, even if it's not the smallest number possible.
- But you can also compute the degeneracy number by this algorithm! It's

$$
\max \left\{d_{i}: i=1, \ldots, n\right\}
$$

Degenerate graphs

Theorem: Every k-degenerate graph has $\chi(G) \leqslant k+1$.

Proof: We'll show G can be colored with $k+1$ colors.

- Form the order v_{1}, \ldots, v_{n} just described.
- Color vertices in reverse order v_{n}, \ldots, v_{1} :
- When considering v_{i}, at most k of its neighbors (among v_{i+1}, \ldots, v_{n}) have been colored, so at least one color remains out of $k+1$ colors.
- Assign the smallest available color to v_{i}.
- This gives a proper $(k+1)$-coloring of G.

Complexity of chromatic number

While we have bounds on $\chi(G)$ and can compute it in special cases, computing it for an arbitrary graph is NP-hard.

Scheduling Problem

Scheduling Problem

a.k.a. Timetable Problem or Storage Problem

Student Classes

a	$1,2,4$
b	$2,3,5$
c	3,4
d	1,5

- Students want to take certain classes, shown in the table above.
- How can we schedule the classes in so that students can take all the classes on their wishlist without any conflicts?
- We could schedule them at 5 different times. How about fewer?

Scheduling Problem

Student Classes

a	$1,2,4$
b	$2,3,5$
c	3,4
d	1,5

Make an interference graph:

- Vertices: One vertex for each class.
- Edges: Add edge $u v$ if classes u and v interfere (a student wants to take both of them).
- Any proper coloring of the graph gives a schedule w/o anyone having a conflict (colors correspond to time slots).
- Find a solution with a minimum number of colors (to minimize the number of time slots).

Scheduling Problem

Student	Classes
a	$1,2,4$
b	$2,3,5$
c	3,4
d	1,5

- Above is a proper coloring with the minimum number of colors (denoted x, y, z).
- 9am (color x): Classes 1 and 3
- 10am (color y): Class 2
- 11am (color z): Classes 4 and 5

Scheduling Problem:

Register allocation in compilers

Register allocation in compilers

- A compiler translates a high level programming language ($\mathrm{C}, \mathrm{C}++$, ...) to assembly language for a particular CPU instruction set architecture (like x86, AMD, etc.).
- C/C++ instruction n++ compiled for an x86_64 processor:

$$
\begin{array}{lll}
\text { movl } & -20(\% r b p), \text { \%eax } & \text { \# copy } n \text { from RAM to register \%eax } \\
\text { addl } & \$ 1, \text { \%eax } & \text { \# add } 1 \text { to register \%eax } \\
\text { movl } & \text { \%eax, -20(\%rbp) } & \text { \# copy result back to } \mathrm{n} \text { in RAM }
\end{array}
$$

- A C/C++ program may have 1000 s of variables, stored in memory (RAM), and you choose their names.
- A CPU has a very small number of registers: special variables stored in the CPU with fixed names.
- x86_64 CPUs (on many laptops in the last decade) have 8 general purpose registers in 32-bit mode / 16 in 64-bit mode.
- C/C++ variables are copied from RAM to a CPU register for arithmetic, comparisons, ... and back to RAM if needed.

Register allocation in compilers

Code

$$
\begin{aligned}
& \mathrm{w}=\ldots \\
& \mathrm{x}=\ldots \\
& \mathrm{FOO}(\mathrm{x}) \\
& \mathrm{y}=\ldots \\
& \text { BAR }(\mathrm{w}, \mathrm{y}) \\
& \mathrm{z}=\ldots \\
& \text { BAZ }(\mathrm{y}, \mathrm{z})
\end{aligned}
$$

- The code above has four variables, w, x, y, z.

Register allocation in compilers

Code	Variable duration	
	w x y	Z
$\mathrm{w}=\ldots$	T	
$\mathrm{x}=\ldots$	-	
$\mathrm{FOO}(\mathrm{x})$		
$y=\ldots$		
BAR(w,y)		
$\begin{aligned} & \mathrm{z}=\ldots \\ & \text { BAZ }(\mathrm{y}, \mathrm{z}) \end{aligned}$		

- Determine duration of each variable's use.

Register allocation in compilers

- Make an interference graph with vertices = variables, and an edge between variables in use at the same time.
- Find a proper coloring of the graph (ideally with a min \# colors).

Register allocation in compilers

- Assign variables to registers based on the coloring; here, R1 (white) and R2 (black).
- R1 and R2 represent different variables at different times.

