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Coloring vertices of a graph

Let G be a graph and C be a set of colors, e.g.,

C = {black, white} C = {a, b} C = {1, 2}

A proper coloring of G by C is to assign a color from C to every
vertex, such that in every edge {v, w}, the vertices v and w have
different colors.
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Coloring vertices of a graph
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Proper 4-coloring Not a proper coloring

G is k-colorable if it has a proper coloring with k colors
(e.g., C = {1, 2, . . . , k}). This is also called a proper k-coloring.

In some applications, we literally draw the graph with the vertices
in different colors. In proofs and algorithms with a variable number
of colors, it’s easier to use numbers 1, . . . , k.

Prof. Tesler Ch. 6: Graph colorings Math 154 / Winter 2020 3 / 54



Color vertices with as few colors a, b, c, . . . as possible

Color the graph above with as few colors as possible.
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Color vertices with as few colors a, b, c, . . . as possible
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The chromatic number , χ(G), of a graph G is the minimum
number of colors needed for a proper coloring of G.

We also say that G is k-chromatic if χ(G) = k.

Note that if G is k-colorable, then χ(G) 6 k.

This graph is 6-colorable (use a different color on each vertex).
We also showed it’s 4-colorable and it’s 3-colorable.
So far, χ(G) 6 3.
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Color vertices with as few colors a, b, c, . . . as possible
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We’ve shown it’s 3-colorable, so χ(G) 6 3.
It has a triangle as a subgraph, which requires 3 colors.
Other vertices may require additional colors, so χ(G) > 3.
Combining these gives χ(G) = 3.

Clique
A clique is a subset X of the vertices s.t. all vertices in X are
adjacent to each other. So the induced subgraph G[X] is a
complete graph, Km.
If G has a clique of size m, its vertices all need different colors, so
χ(G) > m.
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Proper edge coloring
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Proper 5-edge-coloring Not a proper edge coloring

Again, let G be a graph and C be a set of colors.

A proper edge coloring is a function assigning a color from C to
every edge, such that if two edges share any vertices, the edges
must have different colors.

A proper k-edge-coloring is a proper edge coloring with k colors.
A graph is k-edge-colorable if this exists.
This graph is 5-edge-colorable.
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Color edges with as few colors a, b, c, . . . as possible
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Color edges with as few colors a, b, c, . . . as possible
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The minimum number of colors needed for a proper edge coloring
is denoted χ ′(G). This is called the chromatic index or the
edge-chromatic number of G.
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Color edges with as few colors a, b, c, . . . as possible
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We’ve shown it’s 4-edge-colorable, so χ ′(G) 6 4.

There is a vertex of degree 4.
All 4 edges on it must have different colors, so χ ′(G) > 4.

Combining these gives χ ′(G) = 4.

In general, χ ′(G) > ∆(G), since all edges on a max degree vertex
must have different colors.
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Relation of coloring to previous concepts
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Bipartite graphs

A graph is bipartite if and only if it is 2-colorable
A = black vertices and B = white vertices.
Bipartite: All edges have one vertex in A and the other in B.
2-colorable: All edges have 1 black vertex and 1 white vertex.
This graph has χ(G) = 2 and χ ′(G) = 4.
In general, a bipartite graph has χ(G) 6 2
(χ(G) = 1 for only isolated vertices, and 0 for empty graph).

Prof. Tesler Ch. 6: Graph colorings Math 154 / Winter 2020 12 / 54



Independent sets and matchings
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In a proper coloring (vertices), all vertices of
the same color form an independent set
(since there are no edges between them).
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In a proper edge coloring, all edges of the
same color form a matching
(since they don’t share vertices).
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Results for proper edge colorings
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Major results about proper colorings

Proper edge colorings:

König’s Edge Coloring Theorem
For any bipartite graph, χ ′(G) = ∆(G).

Vizing’s Theorem
For any simple graph, χ ′(G) = ∆(G) or ∆(G) + 1.

Proper vertex colorings:

Brooks’ Theorem
All connected graphs have χ(G) 6 ∆(G), except for Kn and odd cycles.
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König’s Edge Coloring Theorem
Don’t confuse with König’s Theorem on maximum matchings, nor with the König-Ore
Formula

König’s Edge Coloring Theorem
For any bipartite graph, χ ′(G) = ∆(G).

Proof (first case: regular graphs):
First, suppose G is k-regular. Then k = ∆(G).

We showed that if G is a k-regular bipartite graph, its edges can
be partitioned into k perfect matchings, M1, . . . , Mk, with every
edge of G in exactly one of the matchings.

This also holds for bipartite multigraphs!

Assign all edges of Mi the color i. This is a proper edge coloring of
G, since all edges on each vertex are in different matchings.

So χ ′(G) 6 k. We also showed χ ′(G) > ∆(G) = k, so χ ′(G) = k.
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König’s Edge Coloring Theorem
For any bipartite graph, χ ′(G) = ∆(G).

a b c d

1 2 3 4 5B

A

Proof, continued (second case: graphs that aren’t regular):
Now suppose G is not regular (example above).
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König’s Edge Coloring Theorem
For any bipartite graph, χ ′(G) = ∆(G).
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Proof, continued:
Make a clone G ′ of G.
Vertices: G ′ has parts A ′ and B ′. Name the vertices of G ′ after
the vertices of G, but add ′ symbols to make them different.
Edges: The clone of edge {a, b} in G is {a ′, b ′} in G ′.
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König’s Edge Coloring Theorem
For any bipartite graph, χ ′(G) = ∆(G).
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Proof, continued:
For each vertex x ∈ A ∪ B, add ∆(G) − dG(x) parallel edges
between x and x ′ (shown in red).
Now all vertices have degree ∆(G)! (Here, ∆(G) = 3.)
The new graph, H, is ∆(G)-regular.
H is bipartite with parts A ∪ B ′ and A ′ ∪ B.
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König’s Edge Coloring Theorem
For any bipartite graph, χ ′(G) = ∆(G).
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Proof, continued:
Let k = ∆(G). Here, k = 3.
Since H is bipartite and k-regular, it has a proper k-edge-coloring
(shown here in black, red, and blue).
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König’s Edge Coloring Theorem
For any bipartite graph, χ ′(G) = ∆(G).

a b c d
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Proof, continued:
Remove G ′ and the edges that were added between G and G ′.

This gives a proper edge coloring of G with 6 ∆(G) colors, so
χ ′(G) 6 ∆(G).

Since χ ′(G) > ∆(G) as well, we conclude χ ′(G) = ∆(G).
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Vizing’s Theorem

Vizing’s Theorem
For any simple graph, χ ′(G) = ∆(G) or ∆(G) + 1.

Proof outline:

We showed χ ′(G) > ∆(G) for any graph.

We can construct a proper edge coloring with ∆(G) + 1 colors.
It’s rather detailed, so we’ll skip it; see the text book.

Then χ ′(G) 6 ∆(G) + 1.

Combining the two inequalities gives χ ′(G) = ∆(G) or ∆(G) + 1.
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Vizing’s Theorem
For any simple graph, χ ′(G) = ∆(G) or ∆(G) + 1.

The graphs with χ ′(G) = ∆(G) are called class 1
χ ′(G) = ∆(G) + 1 are called class 2.

Determining whether a graph is class 1 or class 2 is NP-complete.

But it turns out “almost all” graphs are class 1!
Recall there are 2(

n
2) simple graphs on vertices {1, . . . , n}.

Erdös and Wilson (1975) proved:

lim
n→∞

(
# class 1 graphs on n vertices
# simple graphs on n vertices

)
= 1
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Vizing’s Theorem — Multigraphs

Consider this multigraph.

All 6 edges touch, so in a proper edge coloring, they must all be
different colors. Thus, χ ′(G) = 6.

∆(G) = 4, so χ ′(G) doesn’t equal ∆(G) or ∆(G) + 1.

Let µ(G) be the maximum edge multiplicity.
For a simple graph, it’s 1, but here, it’s 2.

Vizing’s Theorem for Multigraphs
For any multigraph, χ ′(G) = ∆(G) + d for some 0 6 d 6 µ(G).
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Results for proper vertex colorings

Prof. Tesler Ch. 6: Graph colorings Math 154 / Winter 2020 25 / 54



Proper colorings of certain graphs

Proper coloring of Kn

χ(Kn) = n: All vertices are adjacent, so their colors are all distinct.
∆(Kn) = n − 1.

Proper coloring of a cycle Cn (n > 3)
Any even length cycle has χ(Cn) = 2.
Any odd length cycle has χ(Cn) = 3.
All cycles (whether odd or even) have ∆(Cn) = 2.

Brooks’ Theorem
All connected graphs have χ(G) 6 ∆(G), except Kn and odd length
cycles have χ(G) = ∆(G) + 1.

We’ll do a zillion special cases, building up to a complete proof.
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Brooks’ Theorem
Special case: Small values of ∆(G)

∆(G) = 0 or 1, with G connected
∆(G) = 0 gives an isolated vertex, G = K1.
∆(G) = 1 gives just one edge, G = K2.
Complete graphs are one of the exceptions in Brooks’ Theorem.

∆(G) = 2, with G connected
Then G is a path or a cycle, and n > 3.

If G is a path, χ(G) = ∆(G) = 2.
If G is a even length cycle, χ(G) = ∆(G) = 2.
If G is an odd length cycle, χ(G) = 3 but ∆(G) = 2.
This is the other exception in Brooks’ Theorem.

For the rest of the cases, assume ∆(G) > 3.
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Brooks’ Theorem

Lemma
Every graph has a proper coloring with ∆(G) + 1 colors.
Thus, χ(G) 6 ∆(G) + 1.

Notation: Max degree ∆ = ∆(G)
Vertices v1, . . . , vn (ordered arbitrarily)
Colors 1, 2, . . . ,∆+ 1

Assign a color to vi as follows (going in order i = 1, 2, . . . , n):
vi has at most ∆ neighbors among v1, . . . , vi−1.
At most ∆ different colors are used by those neighbors.
With ∆+ 1 colors, at least one color different from those is available.
Assign the smallest available color to vi.

We’ll do several special cases where carefully choosing the vertex
order reduces the number of colors needed.
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Brooks’ Theorem
Special case: Vertex of smaller degree than maximum

Lemma
If connected graph G has a vertex v with d(v)<∆(G), then χ(G)6∆(G).

Again let ∆ = ∆(G). We will color the vertices with ∆ colors.

Do a breadth first search starting at v.
The vertices in order of discovery are v1, . . . , vn, with v1 = v.

Color vertices in reverse order, vn, . . . , v2, as follows:
Each vi (i , 1) has at least one neighbor vj with j < i, and

at most ∆− 1 neighbors with j > i.
So at most ∆− 1 colors have been assigned so far to its neighbors.
At least one of the ∆ colors is available to assign to vi.

Finally, color v1 = v.
Since d(v) < ∆, at least ∆− d(v) > 1 colors are available.
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Brooks’ Theorem
Special case: G has a cut vertex

Lemma
If G is connected and has a cut vertex, then χ(G) 6 ∆(G).

Proof:

Let v be a cut vertex.
G − {v} has r > 2 components. Let G1, . . . , Gr be those
components but with v and its edges to vertices of Gi included.

v
v

G1 G2G
v

We’ll show each Gi can be colored with 6 ∆(G) colors.
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Brooks’ Theorem
Special case: G has a cut vertex — proof continued

Lemma
If G is connected and has a cut vertex, then χ(G) 6 ∆(G).

Proof, continued: In Gi,

All vertices still have degree 6 ∆(G).

Additionally, dGi(v) 6 ∆(G) − (r − 1) 6 ∆(G) − 1.
So if ∆(Gi) = ∆(G), then Gi can be ∆(G)-colored.

If ∆(Gi) < ∆(G), it can be colored with ∆(Gi) + 1 6 ∆(G) colors.

Recall previous lemmas
If conn. graph G has vertex v with d(v) < ∆(G), then χ(G) 6 ∆(G).
Every graph has χ(G) 6 ∆(G) + 1.
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Brooks’ Theorem
Special case: G has a cut vertex — proof continued

Lemma
If G is connected and has a cut vertex, then χ(G) 6 ∆(G).

Proof, continued:
Rename colors in G1, . . . , Gr so v has the same color in all of them.
Combine proper colorings of G1, . . . , Gr to get a proper coloring of
G with ∆(G) colors.

v
2GG

v

G

v

v

Recolor

1
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Brooks’ Theorem
Special case: G has a vertex cut of size 2

Lemma
If G is connected, has ∆(G) > 3, and has a vertex cut {u, v} with
uv < E(G), then χ(G) 6 ∆(G).

Proof:

Now G − {u, v} has two or more components.

Split G into G1 (one component) and G2 (all others), each including
u, v and the edges to the other vertices of that component.

In each of G1 &G2, both u&v have degrees between 1 and ∆(G)− 1.

u1 G2

v

uG

v

u

v

G
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Brooks’ Theorem
Special case: G has a vertex cut of size 2 — proof continued

Lemma
If G is connected, has ∆(G) > 3, and has a vertex cut {u, v} with
uv < E(G), then χ(G) 6 ∆(G).

Proof, continued:
Case 1: In both G1 and G2, either u or v has degree 6 ∆(G) − 2.

G1 and G2 can each be ∆-colored with different colors for u & v.
For example, say in G1: d(u) 6 ∆(G) − 2

By previous cases, we can color G1 with ∆ colors.
If u and v have the same color in G1 on on our first try, then u and its
neighbors in G1 use at most (∆− 2) + 1 = ∆− 1 colors, so there’s
still a color remaining (out of ∆ colors) to change u’s color.

Rename colors in G1 and G2 so that u and v match in each.
Combine the ∆-colorings of G1 and G2 into a ∆-coloring of G.
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Brooks’ Theorem
Special case: G has a vertex cut of size 2 — proof continued
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1. Initial colorings:

2. Make u,v different in each part

3. Permute colors to match u’s & v’s

G

4. Combine

1 G2
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Brooks’ Theorem
Special case: G has a vertex cut of size 2 — proof continued

Lemma
If G is connected, has ∆(G) > 3, and has a vertex cut {u, v} with
uv < E(G), then χ(G) 6 ∆(G).

Proof, continued:
Case 2: In G1 or G2, both u and v have degree > ∆(G) − 2.

Assume it’s G1 (G2 works similarly). Then
dG1(u) = dG1(v) = ∆(G) − 1 dG2(u) = dG2(v) = 1

So in G2, both u and v are in one edge each: ua and vb.
Note it can’t be uv since we assumed uv is not an edge.

{a, v} is also a vertex cut, and gives Case 1.
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Brooks’ Theorem

Brooks’ Theorem
All connected graphs have χ(G) 6 ∆(G), except for Kn and odd cycles.

Proof: If any special case applies, we’re done. But if none apply, then:
∆ > 3.
It’s not a complete graph or odd cycle.
There are no cut vertices.
There are no vertex cuts {u, v} with uv not an edge.
There is no vertex with d(v) < ∆(G); thus, G is ∆-regular.

This is the “case” we’re in: ALL of the above at once.
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Brooks’ Theorem
All connected graphs have χ(G) 6 ∆(G), except for Kn and odd cycles.

Proof of Brooks’ Theorem, continued:

Let x be any vertex in G.

x must have neighbors y, z where xy and xz are edges but yz isn’t:

If all of x’s neighbors are adjacent to each other, then x and its
neighbors form a clique of size ∆+ 1.

This accounts for ∆ neighbors of each of those vertices.
G is ∆-regular, so that’s all of their neighbors, making this clique a
connected component of G.

G is connected, so that’s the whole graph.

Thus, G = K∆+1, contradicting that it’s not a complete graph.
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Brooks’ Theorem
All connected graphs have χ(G) 6 ∆(G), except for Kn and odd cycles.

Proof of Brooks’ Theorem, continued:

We have vertices x, y, z where xy and xz are edges but yz isn’t.

G − {y, z} is connected (since that’s the case we’re in).
Do BFS in G − {y, z} starting at x.
List vertices in order of discovery v1, . . . , vn−2, with v1 = x.
Then set vn−1 = y and vn = z.

Color the vertices in reverse order vn, vn−1, . . . , v1:
vn = z and vn−1 = y both get color 1.

Each vi (for i = n − 2, . . . , 2) has 6 ∆− 1 neighbors already colored
(vj with j > i), so at least one of the ∆ colors is available for each.

When we reach v1, all ∆ of its neighbors were already colored.
But y and z both got color 1!
So at most ∆− 1 colors were used on v1’s neighbors.
So at least one of the ∆ colors is available for v1.
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Degenerate graphs

A graph is k-degenerate if all subgraphs have min. degree 6 k.

This graph has minimum degree δ(G) = 2, but subgraphs � have
higher minimum degree, so it’s not 2-degenerate.

All subgraphs have min degree 6 ∆(G) = 5, so it’s 5-degenerate.

What’s the smallest k for which it’s k-degenerate? 3

The degeneracy (or degeneracy number ) of a graph is the
smallest k for which it’s k-degenerate. Here, it’s 3.

Theorem: If G is k-degenerate, then χ(G) 6 k + 1.
This is often an improvement over χ(G) 6 ∆(G).
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Degenerate graphs

1
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Vertex v1 v2 v3 v4 v5 v6 v7

di 2 3 2 3 2 1 0

Repeatedly choose a vertex of minimum degree (in the remaining
graph) and remove it, getting a sequence of vertices v1, . . . , vn.

Let di be the degree of vi just before it’s removed
(so it’s the degree in G − {v1, . . . , vi−1} = G[vi, . . . , vn]).

Every edge is accounted for in exactly one di (whichever of it’s
vertices is removed first), so

∑
i di = |E(G)| (here it equals 13).

If G is k-degenerate, then every vi has 6 k neighbors in vi+1, . . . , vn

(since vi has degree 6 k in every subgraph, including G[vi, . . . , vn]).
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Degenerate graphs
Computing degeneracy number
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di 2 3 2 3 2 1 0

Sometimes we’ll use that a graph is k-degenerate for a particular
value of k, even if it’s not the smallest number possible.

But you can also compute the degeneracy number by this
algorithm! It’s

max { di : i = 1, . . . , n } .
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Degenerate graphs
Theorem: Every k-degenerate graph has χ(G) 6 k + 1.
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bd d
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Proof: We’ll show G can be colored with k + 1 colors.

Form the order v1, . . . , vn just described.

Color vertices in reverse order vn, . . . , v1:
When considering vi, at most k of its neighbors (among vi+1, . . . , vn)
have been colored, so at least one color remains out of k + 1 colors.
Assign the smallest available color to vi.
This gives a proper (k + 1)-coloring of G.
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Complexity of chromatic number

While we have bounds on χ(G) and can compute it in special cases,
computing it for an arbitrary graph is NP-hard.
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Scheduling Problem
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Scheduling Problem
a.k.a. Timetable Problem or Storage Problem

Student Classes
a 1,2,4
b 2,3,5
c 3,4
d 1,5

Students want to take certain classes, shown in the table above.

How can we schedule the classes in so that students can take all
the classes on their wishlist without any conflicts?

We could schedule them at 5 different times. How about fewer?
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Scheduling Problem

Student Classes
a 1,2,4
b 2,3,5
c 3,4
d 1,5

5

1

2

34

Make an interference graph:
Vertices: One vertex for each class.
Edges: Add edge uv if classes u and v interfere (a student wants
to take both of them).
Any proper coloring of the graph gives a schedule w/o anyone
having a conflict (colors correspond to time slots).
Find a solution with a minimum number of colors (to minimize the
number of time slots).

Prof. Tesler Ch. 6: Graph colorings Math 154 / Winter 2020 47 / 54



Scheduling Problem

Student Classes
a 1,2,4
b 2,3,5
c 3,4
d 1,5

5z

1x

3x4z

2y

Above is a proper coloring with the minimum number of colors
(denoted x, y, z).
9am (color x): Classes 1 and 3
10am (color y): Class 2
11am (color z): Classes 4 and 5
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Scheduling Problem:

Register allocation in compilers
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Register allocation in compilers
A compiler translates a high level programming language (C, C++,
. . . ) to assembly language for a particular CPU instruction set
architecture (like x86, AMD, etc.).

C/C++ instruction n++ compiled for an x86_64 processor:

movl -20(%rbp), %eax # copy n from RAM to register %eax
addl $1, %eax # add 1 to register %eax
movl %eax, -20(%rbp) # copy result back to n in RAM

A C/C++ program may have 1000s of variables, stored in memory
(RAM), and you choose their names.

A CPU has a very small number of registers: special variables
stored in the CPU with fixed names.

x86_64 CPUs (on many laptops in the last decade) have 8 general
purpose registers in 32-bit mode / 16 in 64-bit mode.

C/C++ variables are copied from RAM to a CPU register for
arithmetic, comparisons, . . . and back to RAM if needed.
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Register allocation in compilers

Code

w = ...
x = ...
FOO(x)
y = ...
BAR(w,y)
z = ...
BAZ(y,z)

The code above has four variables, w, x, y, z.
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Register allocation in compilers

Code

w x y z

Variable duration

w = ...
x = ...
FOO(x)
y = ...
BAR(w,y)
z = ...
BAZ(y,z)

Determine duration of each variable’s use.
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Register allocation in compilers

Code

BAZ(y,z)

w x y z

Variable duration

w x

y z

Interference graph

w = ...
x = ...
FOO(x)
y = ...
BAR(w,y)
z = ...

Make an interference graph with vertices = variables, and an edge
between variables in use at the same time.
Find a proper coloring of the graph (ideally with a min # colors).
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Register allocation in compilers

Code Registers

w x y z

Variable duration

w x

y z

Interference graph

w = ...
x = ...
FOO(x)
y = ...
BAR(w,y)
z = ...
BAZ(y,z)

R1 = ...
R2 = ...
FOO(R2)
R2 = ...
BAR(R1,R2)
R1 = ...
BAZ(R2,R1)

Assign variables to registers based on the coloring; here, R1
(white) and R2 (black).
R1 and R2 represent different variables at different times.
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