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Coloring vertices of a graph

@ Let G be a graph and C be a set of colors, e.q.,
C = {black, white} C ={a, b} C ={1,2}

@ A proper coloring of G by C is to assign a color from C to every
vertex, such that in every edge {v, w}, the vertices v and w have
different colors.
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Coloring vertices of a graph

Proper 4-coloring Not a proper coloring

@ G is k-colorable if it has a proper coloring with k colors
(e.g., C ={1,2,...,k}). This is also called a proper k-coloring.

@ In some applications, we literally draw the graph with the vertices
in different colors. In proofs and algorithms with a variable number
of colors, it's easier to use numbers 1, ..., k.
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Color vertices with as few colors a, b, c, . .. as possible

@ Color the graph above with as few colors as possible.
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Color vertices with as few colors a, b, c, . .. as possible

@ The chromatic number, x(G), of a graph G is the minimum
number of colors needed for a proper coloring of G.

@ We also say that G is k-chromatic if x(G) = k.
@ Note that if G is k-colorable, then x(G) < k.

@ This graph is 6-colorable (use a different color on each vertex).
We also showed it's 4-colorable and it's 3-colorable.
So far, x(G) < 3.
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Color vertices with as few colors a, b, c, . .. as possible

b a
@ We’ve shown it's 3-colorable, so x(G) < 3.

@ |t has a triangle as a subgraph, which requires 3 colors.
Other vertices may require additional colors, so x(G) > 3.

@ Combining these gives x(G) = 3.
Clique
@ A clique is a subset X of the vertices s.t. all vertices in X are

adjacent to each other. So the induced subgraph G(X] is a
complete graph, K,,.

@ If G has a cligue of size m, its vertices all need different colors, so
x(G) = m.
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Proper edge coloring

Proper 5-edge-coloring Not a proper edge coloring

@ Again, let G be a graph and C be a set of colors.

@ A proper edge coloring is a function assigning a color from C to
every edge, such that if two edges share any vertices, the edges
must have different colors.

@ A proper k-edge-coloring is a proper edge coloring with k colors.
A graph is k-edge-colorable if this exists.
This graph is 5-edge-colorable.
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Color edges with as few colors a, b, ¢, ... as possible
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Color edges with as few colors a, b, ¢, ... as possible

@ The minimum number of colors needed for a proper edge coloring
is denoted x’(G). This is called the chromatic index or the
edge-chromatic number of G.
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Color edges with as few colors a, b, ¢, ... as possible

@ We've shown it’s 4-edge-colorable, so x'(G) < 4.

@ There is a vertex of degree 4.
All 4 edges on it must have different colors, so x’(G) > 4.

@ Combining these gives x'(G) = 4.

@ In general, x'(G) > A(G), since all edges on a max degree vertex
must have different colors.
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Relation of coloring to previous concepts

Prof. Tesler Ch. 6: Graph colorings Math 154 / Winter 2020 11 /54



Bipartite graphs

A graph is bipartite if and only if it is 2-colorable
@ A =black vertices and B = white vertices.

@ Bipartite: All edges have one vertex in A and the other in B.
@ 2-colorable: All edges have 1 black vertex and 1 white vertex.
@ This graph has x(G) =2 and x'(G) = 4.

@ In general, a bipartite graph has x(G) <2
(x(G) =1 for only isolated vertices, and 0 for empty graph).

Prof. Tesler Ch. 6: Graph colorings Math 154 / Winter 2020 12/54



Independent sets and matchings

@ In a proper coloring (vertices), all vertices of
the same color form an independent set
(since there are no edges between them).

@ |n a proper edge coloring, all edges of the
same color form a matching
(since they don't share vertices).
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Results for proper edge colorings
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Major results about proper colorings

Proper edge colorings:

Konig’'s Edge Coloring Theorem
For any bipartite graph, x'(G) = A(G).

Vizing's Theorem
For any simple graph, x’(G) = A(G) or A(G) + 1.

Proper vertex colorings:

Brooks’ Theorem

All connected graphs have x(G) < A(G), except for K,, and odd cycles.
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Konig's Edge Coloring Theorem

Don’t confuse with Kénig's Theorem on maximum matchings, nor with the Kénig-Ore
Formula

Konig's Edge Coloring Theorem
For any bipartite graph, x'(G) = A(G).

Proof (first case: regular graphs):
@ First, suppose G is k-regular. Then k = A(G).

@ We showed that if G is a k-regular bipartite graph, its edges can
be partitioned into k perfect matchings, My, ..., M;, with every
edge of G in exactly one of the matchings.

e This also holds for bipartite multigraphs!

@ Assign all edges of M; the color i. This is a proper edge coloring of
G, since all edges on each vertex are in different matchings.

@ So x'(G) < k. We also showed x'(G) > A(G) =k, so x'(G) = k.
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Konig's Edge Coloring Theorem

For any bipartite graph, x'(G) = A(G).

Proof, continued (second case: graphs that aren’t regular):
@ Now suppose G is not regular (example above).
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Konig's Edge Coloring Theorem

For any bipartite graph, x'(G) = A(G).

Proof, continued:

@ Make a clone G’ of G.
@ Vertices: G’ has parts A’ and B’. Name the vertices of G’ after
the vertices of G, but add ' symbols to make them different.

@ Edges: The clone of edge {a,b}in Gis{a’,b’'} in G’.
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Konig's Edge Coloring Theorem

For any bipartite graph, x'(G) = A(G).

A’

Proof, continued:
@ For each vertex x € AU B, add A(G) — dg(x) parallel edges
between x and x’ (shown in red).
@ Now all vertices have degree A(G)! (Here, A(G) = 3.)
@ The new graph, H, is A(G)-regular.
@ H is bipartite with parts AU B’ and A’ U B.
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Konig's Edge Coloring Theorem

For any bipartite graph, x'(G) = A(G).

A’

Proof, continued:
@ Let k = A(G). Here, k = 3.
@ Since H is bipartite and k-regular, it has a proper k-edge-coloring
(shown here in black, red, and blue).
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Konig's Edge Coloring Theorem

For any bipartite graph, x'(G) = A(G).

Proof, continued:
@ Remove G’ and the edges that were added between G and G'.

@ This gives a proper edge coloring of G with < A(G) colors, so
x'(G) < A(G).

@ Since x/'(G) > A(G) as well, we conclude x’(G) = A(G).
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Vizing's Theorem

Vizing’'s Theorem
For any simple graph, x'(G) = A(G) or A(G) + 1.

Proof outline:

@ We showed x’'(G) > A(G) for any graph.

@ We can construct a proper edge coloring with A(G) + 1 colors.
It's rather detailed, so we’ll skip it; see the text book.

@ Thenx'(G) < A(G) + 1.

@ Combining the two inequalities gives x'(G) = A(G) or A(G) + 1.
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Vizing's Theorem

For any simple graph, x'(G) = A(G) or A(G) + 1.

@ The graphs with x'(G) = A(G) are called class 1
x'(G) = A(G) +1 are called class 2.

@ Determining whether a graph is class 1 or class 2 is NP-complete.

@ But it turns out “almost all” graphs are class 1!
o Recall there are 2(%) simple graphs on vertices {1, ..., n}.

e Erdos and Wilson (1975) proved:

lim

n—o0o

# class 1 graphs on n vertices\ {
# simple graphs on n vertices /
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Vizing's Theorem — Multigraphs

@ Consider this multigraph.

@ All 6 edges touch, so in a proper edge coloring, they must all be
different colors. Thus, x’(G) = 6.

@ A(G) =4,s0x’(G) doesn’t equal A(G) or A(G) + 1.

@ Let u(G) be the maximum edge multiplicity.
For a simple graph, it's 1, but here, it’s 2.

Vizing’'s Theorem for Multigraphs
For any multigraph, x’(G) = A(G) + d for some 0 < d < u(G).
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Results for proper vertex colorings
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Proper colorings of certain graphs

Proper coloring of K,

@ x(K,) = n: All vertices are adjacent, so their colors are all distinct.
@ AK,) =n—1.

Proper coloring of a cycle C, (n > 3)
@ Any even length cycle has x(C,) = 2.
@ Any odd length cycle has x(C,) = 3.
@ All cycles (whether odd or even) have A(C,) = 2.

Brooks’ Theorem

All connected graphs have x(G) < A(G), except K, and odd length
cycles have x(G) = A(G) + 1.

| \

@ We'll do a zillion special cases, building up to a complete proof.

y
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Brooks’ Theorem

Special case: Small values of A(G)

A(G) = 0 or 1, with G connected
@ A(G) =0 gives an isolated vertex, G = K.
@ A(G) =1 gives just one edge, G = K.
@ Complete graphs are one of the exceptions in Brooks’ Theorem.

v

A(G) = 2, with G connected
Then G is a path or a cycle, and n > 3.
@ If Gis apath, x(G) = A(G) = 2.
@ If G is a even length cycle, x(G) = A(G) = 2.

@ If G is an odd length cycle, x(G) = 3 but A(G) = 2.
This is the other exception in Brooks’ Theorem.

For the rest of the cases, assume A(G) > 3. ]
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Brooks’ Theorem

Every graph has a proper coloring with A(G) + 1 colors.
Thus, x(G) < A(G) + 1.

@ Notation: Max degree A = A(G)
Vertices vi,..., Vv, (Ordered arbitrarily)
Colors 1,2,...,A+1

@ Assign a color to v; as follows (going inorderi =1,2,...,n):

@ v; has at most A neighbors among vy, ...,v;_i.

e At most A different colors are used by those neighbors.

e With A + 1 colors, at least one color different from those is available.
@ Assign the smallest available color to v;.

@ We’'ll do several special cases where carefully choosing the vertex
order reduces the number of colors needed.
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Brooks’ Theorem

Special case: Vertex of smaller degree than maximum

If connected graph G has a vertex v with d(v) < A(G), then x(G) < A(G).

@ Again let A = A(G). We will color the vertices with A colors.

@ Do a breadth first search starting at v.
The vertices in order of discovery are vy, ..., v,, With v = v.

@ Color vertices in reverse order, v, ..., v>, as follows:

e Eachv; (i # 1) has at least one neighbor v; with j < i, and
at most A — 1 neighbors with j > i.

@ So at most A — 1 colors have been assigned so far to its neighbors.
@ At least one of the A colors is available to assign to v;.

@ Finally, color vi = v.
Since d(v) < A, atleast A —d(v) > 1 colors are available.
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Brooks’ Theorem

Special case: G has a cut vertex

If G is connected and has a cut vertex, then x(G) < A(G).

Proof:
@ Let v be a cut vertex.
@ G —{v}has r > 2 components. Let Gy,..., G, be those
components but with v and its edges to vertices of G; included.
G G, G,

@ We'll show each G; can be colored with < A(G) colors.
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Brooks’ Theorem

Special case: G has a cut vertex — proof continued

If G is connected and has a cut vertex, then x(G) < A(G).

Proof, continued: In G;,
@ All vertices still have degree < A(G).

@ Additionally, dg.(v) < A(G) — (r—1) < A(G) — 1.
So if A(G;) = A(G), then G; can be A(G)-colored.

@ If A(G;) < A(G), it can be colored with A(G;) + 1 < A(G) colors.

Recall previous lemmas

@ If conn. graph G has vertex v with d(v) < A(G), then x(G) < A(G).
@ Every graph has x(G) < A(G) + 1.
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Brooks’ Theorem

Special case: G has a cut vertex — proof continued

If G is connected and has a cut vertex, then x(G) < A(G).

Proof, continued:

@ Rename colors in Gy, ..., G, so v has the same color in all of them.
@ Combine proper colorings of Gy, ..., G, to get a proper coloring of
G with A(G) colors.
G] G2 G
V
V Jv
V
Recolor
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Brooks’ Theorem

Special case: G has a vertex cut of size 2

If G is connected, has A(G) > 3, and has a vertex cut{u, v} with
uv € E(G), then x(G) < A(G).

Proof:
@ Now G —{u, v} has two or more components.

@ Split G into G; (one component) and G, (all others), each including
u, v and the edges to the other vertices of that component.

@ In each of G| &G;, both u&v have degrees between 1 and A(G) — 1.

XH IX 1§
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Brooks’ Theorem

Special case: G has a vertex cut of size 2 — proof continued

If G is connected, has A(G) > 3, and has a vertex cut{u, v} with
uv ¢ E(G), thenx(G) < A(G).

Proof, continued:
Case 1: In both G| and G,, either u or v has degree < A(G) — 2.
@ G; and G, can each be A-colored with different colors for u & v.
@ Forexample, say in Gi:  d(u) < A(G) —2
@ By previous cases, we can color G; with A colors.
e If u and v have the same color in G; on on our first try, then u and its

neighbors in G, use at most (A—2)+ 1 = A —1 colors, so there’s
still a color remaining (out of A colors) to change u’s color.

@ Rename colors in G; and G, so that « and v match in each.
@ Combine the A-colorings of G| and G, into a A-coloring of G.
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Brooks’ Theorem

Special case: G has a vertex cut of size 2 — proof continued

1. Initial colorings: 3. Permute colors to match u’s & v’s
G] u GI u u G2
2 1 2 2 | 2
3 3 2 . 3
1 2 2 1 2 2 2
Vv Vv v 3
2. Make u,v different in each part 4. Combine

GI u I/tGZ

u 3
2 1 3 2 2 ! 2
1 2 2 2 1 v 3 2
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Brooks’ Theorem

Special case: G has a vertex cut of size 2 — proof continued

If G is connected, has A(G) > 3, and has a vertex cut{u, v} with
uv ¢ E(G), thenx(G) < A(G).

Proof, continued:
Case 2: In G, or G,, both u and v have degree > A(G) — 2.

@ Assume it's G| (G, works similarly). Then
dG1 (u) — dGl (V) — A(G) T l dGz(u) — dGz(v) — 1

@ So in Gy, both u and v are in one edge each: ua and vb.
Note it can’t be uv since we assumed uv is not an edge.

@ {a,v}Iis also a vertex cut, and gives Case 1.
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Brooks’ Theorem

Brooks’ Theorem

All connected graphs have x(G) < A(G), except for K,, and odd cycles.

Proof: If any special case applies, we're done. But if none apply, then:
@ A>3
@ It's not a complete graph or odd cycle.
@ There are no cut vertices.
@ There are no vertex cuts {u, v} with uv not an edge.
@ There is no vertex with d(v) < A(G); thus, G is A-regular.
This is the “case” we’re in: ALL of the above at once.
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Brooks’ Theorem

All connected graphs have x(G) < A(G), except for K, and odd cycles.

Proof of Brooks’ Theorem, continued:

@ Let x be any vertex in G.

@ x must have neighbors y, z where xy and xz are edges but yz isn'’t:

e If all of x’s neighbors are adjacent to each other, then x and its
neighbors form a clique of size A + 1.

e This accounts for A neighbors of each of those vertices.
G is A-regular, so that’s all of their neighbors, making this clique a
connected component of G.

@ G is connected, so that’s the whole graph.

e Thus, G = K1, contradicting that it's not a complete graph.
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Brooks’ Theorem

All connected graphs have x(G) < A(G), except for K, and odd cycles.
Proof of Brooks’ Theorem, continued:

@ We have vertices x, y, z where xy and xz are edges but yz isn't.

@ G —{y,z}is connected (since that's the case we're in).

e Do BFS in G —{y, z} starting at x.
e List vertices in order of discovery vy, ...,v, o, with vi = x.
@ Thensetv,_ 1 =yandv, =z

@ Color the vertices in reverse order v,,, v,—1,..., V1.
@ v, =zandv,_; = yboth get color 1.

e Eachv; (fori=n—2,...,2) has < A — 1 neighbors already colored
(v; with j > i), so at least one of the A colors is available for each.

e When we reach vy, all A of its neighbors were already colored.
But y and z both got color 1!
So at most A — 1 colors were used on v;’s neighbors.
So at least one of the A colors is available for v;.
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Degenerate graphs

@ A graph is k-degenerate if all subgraphs have min. degree < k.

@ This graph has minimum degree 6(G) = 2, but subgraphs ® have
higher minimum degree, so it's not 2-degenerate.

@ All subgraphs have min degree < A(G) =5, so it's 5-degenerate.

@ What's the smallest k for which it's k-degenerate? | 3

@ The degeneracy (or degeneracy number) of a graph is the
smallest k£ for which it's k-degenerate. Here, it’s 3.

@ Theorem: If G is k-degenerate, then x(G) < k + 1.
This is often an improvement over x(G) < A(G).

Prof. Tesler Ch. 6: Graph colorings Math 154 / Winter 2020 40/ 54



Degenerate graphs

4 6 2
§ Vertex vy vo v3 vq4 vs vg V7
! d 2 3 2 3 2 10
L o L

@ Repeatedly choose a vertex of minimum degree (in the remaining
graph) and remove it, getting a sequence of vertices vy, ..., v,.

@ Let d; be the degree of v; just before it's removed
(so it's the degree in G —{vi,...,vi_1} = Glvi, ..., v,l).

@ Every edge is accounted for in exactly one d; (whichever of it's
vertices is removed first), so ) _.d; = |E(G)| (here it equals 13).

@ If G is k-degenerate, then every v; has < k neighbors in v, 1, ..., v,
(since v; has degree < k in every subgraph, including Glv;, ..., v,]).
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Degenerate graphs

Computing degeneracy number

4 6 2
) Vertex vi v v3 va v5 vg V7
! d 2 3 2 3 2 1 0
% L %

@ Sometimes we’ll use that a graph is k-degenerate for a particular
value of k, even if it's not the smallest number possible.

@ But you can also compute the degeneracy number by this
algorithm! It’s

max{d; : i=1,...,n}.
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Degenerate graphs

Theorem: Every k-degenerate graph has x(G) < k+ 1.

% i b d
V] a
O
\/5\/7\/3 C a C

Proof: We'll show G can be colored with £ + 1 colors.

@ Form the order vy, ..., v, just described.

@ Color vertices in reverse order v,, ..., vy:

e When considering v;, at most k of its neighbors (among v;,1,...,v,)
have been colored, so at least one color remains out of k + 1 colors.

@ Assign the smallest available color to v;.

e This gives a proper (k + 1)-coloring of G.
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Complexity of chromatic number

While we have bounds on x(G) and can compute it in special cases,
computing it for an arbitrary graph is NP-hard.
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Scheduling Problem
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Scheduling Problem

a.k.a. Timetable Problem or Storage Problem

Student Classes

a 1,2,4
b 2,3,5
C 3,4
d 1,5

@ Students want to take certain classes, shown in the table above.

@ How can we schedule the classes in so that students can take all
the classes on their wishlist without any conflicts?

@ We could schedule them at 5 different times. How about fewer?
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Scheduling Problem

Student Classes
a 1,2,4
b 2,3,5
C 3,4
d 1,5

Make an interference graph:
@ Vertices: One vertex for each class.

@ Edges: Add edge uv if classes u and v interfere (a student wants
to take both of them).

@ Any proper coloring of the graph gives a schedule w/o anyone
having a conflict (colors correspond to time slots).

@ Find a solution with a minimum number of colors (to minimize the
number of time slots).
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Scheduling Problem

1x
Student Classes
a 1,2,4
b 235 o7 2y
C 3,4
d 1,5
47 3x

@ Above is a proper coloring with the minimum number of colors
(denoted x, y, z).

@ 9am (color x): Classes 1 and 3
@ 10am (color y): Class 2
@ 11am (color z): Classes 4 and 5
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Scheduling Problem:

Register allocation in compilers
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Register allocation in compilers

@ A compiler translates a high level programming language (C, C++,
... ) to assembly language for a particular CPU instruction set
architecture (like x86, AMD, etc.).

@ C/C++ instruction n++ compiled for an x86_64 processor:

addl  $1, %eax # add 1 to register %eax

movl -20(%rbp), Y%eeax # copy n from RAM to register Y%eax
movl %eax, -20(%rbp) # copy result back to n in RAM J

@ A C/C++ program may have 1000s of variables, stored in memory
(RAM), and you choose their names.

@ A CPU has a very small number of registers: special variables
stored in the CPU with fixed names.
e x86_64 CPUs (on many laptops in the last decade) have 8 general
purpose registers in 32-bit mode / 16 in 64-bit mode.

@ C/C++ variables are copied from RAM to a CPU register for
arithmetic, comparisons, ... and back to RAM if needed.
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Register allocation in compilers

Code

w=..

X =..
FOO(x)
y=..
BAR(w,y)
Z=..
BAZ(y,z)

@ The code above has four variables, w, x, y, z.
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Register allocation in compilers

Code Variable duration
FOO(X) ‘ I
BAR(w,y>
BAZ(y.2) |
_4

@ Determine duration of each variable’s use.
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Register allocation in compilers

Code Variable duration Interference graph
w X
o———o
FOO(X) ‘ I
BAR(W y) ;—(z)
BAZ(y Z) I
y

@ Make an interference graph with vertices = variables, and an edge
between variables in use at the same time.

@ Find a proper coloring of the graph (ideally with a min # colors).
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Register allocation in compilers

Code Variable duration Interference graph Registers
w X
o———o RI = ...

R2=..
—o0 BAR(R1,R2)
y zZ _

Rl=..
BAZ(R2,R1)

BAR(W y)

R2 = ...
FOO(X) ‘ | FOO(R2)
I .

BAZ(y Z)

@ Assign variables to registers based on the coloring; here, R1
(white) and R2 (black).

@ R1 and R2 represent different variables at different times.
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