Chapter 9 Introduction to Extremal Graph Theory

Prof. Tesler

Math 154
Winter 2020

Avoiding a subgraph

- Let F and G be graphs.
- G is called F-free if there's no subgraph isomorphic to F.
- An example is above.

Avoiding a subgraph

- Is the graph on the right F-free?

Avoiding a subgraph

- No. There are subgraphs isomorphic to F, even though they're drawn differently than F.

Extremal Number

Question

Given a graph F (to avoid), and a positive integer n,
what's the largest \# of edges an F-free graph on n vertices can have?

- This number is denoted ex (n, F).
- This number is called the extremal number or Turán number of F.
- An F-free graph with n vertices and ex (n, F) edges is called an extremal graph.

Extremal Number for $K_{1,2}$

- Let $F=P_{2}=K_{1,2} . \quad$ (A two edge path and $K_{1,2}$ are the same.)
- For this F, being F-free means no vertex can be in $\geqslant 2$ edges.
- So, an F-free graph G must consist of vertex-disjoint edges (a matching) and/or isolated vertices.

Extremal Number for $K_{1,2}$

Extremal F-free graphs

- For each positive integer n, what is the extremal number and the extremal graph(s) for $F=P_{2}=K_{1,2}$?
- The extremal graph is a matching with $\lfloor n / 2\rfloor$ edges, plus an isolated vertex if n is odd. So ex $\left(n, K_{1,2}\right)=\lfloor n / 2\rfloor$.
- The book also studies ex $\left(n, K_{r, s}\right)$ and ex $\left(n, P_{k}\right)$, but to-date, these only have partial solutions.

Avoiding 2 disjoint edges

Avoiding 2 disjoint edges

- Now we consider avoiding a matching of size two (two disjoint edges).

Avoiding 2 disjoint edges: $n=1,2,3$

Extremal graphs

- Let F be a matching of size two (two disjoint edges).
- For $n=1,2,3$, we can put in all possible edges, giving extremal graph K_{n} and ex $(n, F)=\binom{n}{2}$.

ex (n, F) for small n

For any graph F (not just the example above), if $n<|V(F)|$ then the extremal graph is K_{n} and ex $(n, F)=\binom{n}{2}$.

- This is because any graph with fewer than $|V(F)|$ vertices can't have F as a subgraph.

Avoiding 2 disjoint edges: $n=4$

Extremal graphs for $\mathrm{n}=\mathbf{4}$

- For $n=4$, there are two F-free graphs with 3 edges.

Either one implies ex $(4, F) \geqslant 3$.

- Easy to check: all graphs with 4 vertices and $\geqslant 4$ edges have F as a subgraph.
- So these are both extremal graphs, and ex $(4, F)=3$.
- These graphs aren't isomorphic, so there may be more than one extremal graph. It does not have to be unique!

Avoiding 2 disjoint edges: $n=5$

Extremal graph
$n=5$

$K_{1,4} \operatorname{ex}(5, F)=4$

Avoiding 2 disjoint edges: $n \geqslant 4$

Theorem

Let F be two disjoint edges as shown above.

- If $n \geqslant 4$, then $\operatorname{ex}(n, F)=n-1$.
- If $n \geqslant 5$, the unique extremal F-free graph is $K_{1, n-1}$.

Avoiding 2 disjoint edges: $n \geqslant 4$

Proving: If $n \geqslant 4$, then $\operatorname{ex}(n, F)=n-1$

Proof:

- $K_{1, n-1}$ is F-free and has $n-1$ edges, so ex $(n, F) \geqslant n-1$.

Avoiding 2 disjoint edges: $n \geqslant 4$

Proving: If $n \geqslant 4$, then $\operatorname{ex}(n, F)=n-1$

Cycle

Proof, continued:

- Assume by way of contradiction that there is an F-free graph G on n vertices with $\geqslant n$ edges.
- Then G must have a cycle, C.
- If C has $\geqslant 4$ edges, then it contains two vertex-disjoint edges, so it's not F-free. So C must be a 3-cycle.

Avoiding 2 disjoint edges: $n \geqslant 4$

Proving: If $n \geqslant 4$, then $\operatorname{ex}(n, F)=n-1$

$$
3-\text { cycle }+ \text { an edge }
$$

Proof, continued:

- We assumed that there is an F-free graph on n vertices with $\geqslant n$ edges, and showed there must be a 3-cycle C.
- Since C has 3 edges while G has $\geqslant 4$ edges, G has at least one more edge, e, not in C.
- Edge e is vertex disjoint with at least one edge of C, so G contains F, a contradiction.
- Thus, ex $(n, F) \leqslant n-1$. We already showed \geqslant, so ex $(n, F)=n-1$.

Avoiding 2 disjoint edges: $n \geqslant 4$

Theorem

Let F be two disjoint edges as shown above.

- If $n \geqslant 4$, then $\operatorname{ex}(n, F)=n-1$.
- If $n \geqslant 5$, the unique extremal F-free graph is $K_{1, n-1}$.

Avoiding 2 disjoint edges: $n \geqslant 4$
 Proving that if $n \geqslant 5$, the unique extremal F-free graph is $K_{1, n-1}$.

- All edges of G are in one component:
- If G has edges in two or more components, it's not F-free.
- However, it can have multiple components, where all edges are in one component, and the other components are isolated vertices.
- If G has exactly one vertex of degree $\geqslant 2$, then G is $K_{1, n-1-m}$ plus m isolated vertices.
- For this case, $G=K_{1, n-1}$ has the most edges.
- If G has two or more vertices of degree $\geqslant 2$:
- G can't have a path of length $\geqslant 3$ or a cycle of length $\geqslant 4$, since it's F-free.
- So G must be a triangle plus $n-3$ isolated vertices.

Avoiding 2 disjoint edges: $n \geqslant 4$

Proving that if $n \geqslant 5$, the unique extremal F-free graph is $K_{1, n-1}$.

Extremal graphs for $\mathbf{n}=\mathbf{4}$

- We've narrowed down the candidates for extremal graphs to
(a) $K_{1, n-1}$
(b) A triangle plus $n-3$ isolated vertices.
- For $n=4$, these are tied at 3 edges, so ex $(4, F)=3$ and there are two extremal graphs, as we showed before.
- But for $n \geqslant 5$, the unique solution is $K_{1, n-1}$.

Triangle-free graphs and Mantel's Theorem

Avoiding triangles

- Next we consider avoiding triangles $\left(F=K_{3}\right)$.
- Instead of literally saying " F-free", you can plug in what F is: "triangle-free."

Avoiding triangles

- This graph is triangle-free, so ex $(5, F) \geqslant 4$.
- You can't add more edges without making a triangle, so it's a maximal triangle-free graph.
- Can you make a graph on 5 vertices with more edges?

Avoiding triangles

- A pentagon is triangle-free, so ex $(5, F) \geqslant 5$.
- You can't add more edges without making a triangle, so it's also a maximal triangle-free graph.
- Can you make a graph on 5 vertices with more edges?

Avoiding triangles

- $K_{2,3}$ shows $\operatorname{ex}(5, F) \geqslant 6$.
- This turns out to be the extremal graph! So ex $(5, F)=6$.

Maximal vs. Maximum

- A maximal F-free graph means there is no F-free graph H extending G (by adding edges to G, keeping it at n vertices).
- A maximum F-free graph means the size (in edges) is maximum.
- $K_{1,4}$ and a pentagon are not subgraphs of $K_{2,3}$.

They are maximal but not maximum.

- The distinction between maximal and maximum arises in problems concerning partially ordered sets.
- For real numbers, \leqslant is a total order: for any real numbers x, y, either $x=y, x<y$, or $y<x$.
- For sets, \subseteq is a partial order: sometimes neither set is contained in the other. E.g., $\{1,3\}$ and $\{2,3\}$ are not comparable.
- Subgraph is a partial order.

Mantel's Theorem

Mantel's Theorem (1907)

Let $n \geqslant 2$ and G be an n-vertex triangle-free graph. Then
(a) $|E(G)| \leqslant\left\lfloor n^{2} / 4\right\rfloor$.
(b) $|E(G)|=\left\lfloor n^{2} / 4\right\rfloor$ iff $G=K_{k, n-k}$ for $k=\lfloor n / 2\rfloor$.
(c) $\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor$.

That is, the unique extremal graph is $K_{k, n-k}$, and it has $\left\lfloor n^{2} / 4\right\rfloor$ edges.

Mantel's Theorem

- Consider the complete bipartite graph $K_{\ell, n-\ell}$ with $\ell=1, \ldots, n-1$.
- It's triangle free, and adding any edge would form a triangle (since it would be between two vertices in the same part, both connected to each vertex in the other part).
- It has $\ell(n-\ell)$ edges. This is maximum at $\ell=\lfloor n / 2\rfloor$ (or $\lceil n / 2\rceil$, but that's equivalent; for example, $K_{2,3}$ and $K_{3,2}$ are isomorphic).
- The max value is $k(n-k)=\left\lfloor n^{2} / 4\right\rfloor$ (where $k=\lfloor n / 2\rfloor$):
- For even $n, \quad k(n-k)=\frac{n}{2} \cdot \frac{n}{2}=\frac{n^{2}}{4} \quad$ is an integer.
- For odd $n, \quad k(n-k)=\frac{n-1}{2} \cdot \frac{n+1}{2}=\frac{n^{2}-1}{4}=\left\lfloor n^{2} / 4\right\rfloor$.
- Further odd/even verifications are listed at the end / left to you.
- Thus, ex $\left(n, K_{3}\right) \geqslant\left\lfloor n^{2} / 4\right\rfloor$.

Mantel's Theorem

- We showed $K_{k, n-k}$ is triangle-free and has the most edges among bipartite graphs.
- Could there be a different triangle-free graph with more edges? We'll prove not.

Mantel's Theorem

Claim

For $n \geqslant 2$, if G is a triangle-free n vertex graph with at least $\left\lfloor n^{2} / 4\right\rfloor$ edges, then $G=K_{k, n-k}$, where $k=\lfloor n / 2\rfloor$.

Proof (base case):

- We will induct on n.
- Base case: For $n=2$, since $n<|V(F)|=3$, the extremal graph is K_{2}, which is equivalent to $K_{1,1}$:

$$
K_{2}=K_{1,1}=\bullet
$$

Mantel's Theorem

Claim: If G is a triangle-free graph with $\geqslant\left\lfloor n^{2} / 4\right\rfloor$ edges, then $G=K_{k, n-k} \quad(k=\lfloor n / 2\rfloor)$.

Proof (induction step):

- For $n \geqslant 3$, assume the claim holds for smaller n.
- Let H be a subgraph of G with all n vertices and $\left\lfloor n^{2} / 4\right\rfloor$ edges.
- We'll prove $H=K_{k, n-k}$.
- Since adding any edge to H would give a triangle, and H is a subgraph of G, we must have $G=H=K_{k, n-k}$.

Mantel's Theorem

Claim: If G is a triangle-free graph with $\geqslant\left\lfloor n^{2} / 4\right\rfloor$ edges, then $G=K_{k, n-k} \quad(k=\lfloor n / 2\rfloor)$.

Proof (induction step), continued:

- Let H be a subgraph of G with all n vertices and $\left\lfloor n^{2} / 4\right\rfloor$ edges. We'll prove $H=K_{k, n-k}$.
- By the Handshaking Lemma, the sum of degrees in H is

$$
\sum_{v \in H} d_{H}(v)=2|E(H)|=2\left\lfloor n^{2} / 4\right\rfloor
$$

- Thus, the average degree in H is

$$
\frac{\text { sum of degrees }}{\# \text { vertices }}=\frac{2\left\lfloor n^{2} / 4\right\rfloor}{n} .
$$

Mantel's Theorem

Claim: If G is a triangle-free graph with $\geqslant\left\lfloor n^{2} / 4\right\rfloor$ edges, then $G=K_{k, n-k} \quad(k=\lfloor n / 2\rfloor)$.

Proof (induction step), continued:

- Let H be a subgraph of G with all n vertices and $\left\lfloor n^{2} / 4\right\rfloor$ edges.
- We've shown the average degree in H is $\frac{2\left\lfloor n^{2} / 4\right\rfloor}{n}$.
- Let v be a vertex in H of minimum degree, $d_{H}(v)=\delta_{H}(v)$.
- The min degree is \leqslant the average degree, and is an integer, so

$$
\delta_{H}(v) \leqslant \underbrace{\left\lfloor\frac{2\left\lfloor n^{2} / 4\right\rfloor}{n}\right\rfloor=\lfloor n / 2\rfloor}_{\text {prove this on your own }}=k
$$

Mantel's Theorem

Claim: If G is a triangle-free graph with $\geqslant\left\lfloor n^{2} / 4\right\rfloor$ edges, then $G=K_{k, n-k} \quad(k=\lfloor n / 2\rfloor)$.
Proof (induction step), continued:

- Let H be a subgraph of G with all n vertices and $\left\lfloor n^{2} / 4\right\rfloor$ edges.
- Let v be a vertex in H of minimum degree: $d_{H}(v)=\delta(H) \leqslant k$.
- Let $H^{\prime}=H-\{v\}$. This is a subgraph of H on $n-1$ vertices.

It's triangle-free and the number of edges is:

$$
\left|E\left(H^{\prime}\right)\right|=|E(H)|-\delta_{H}(v) \geqslant\left\lfloor\frac{n^{2}}{4}\right\rfloor-k=\underbrace{\left\lfloor\frac{n^{2}}{4}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor}_{\text {prove this on your own }}
$$

- Since the claim holds for $n-1$ vertices, $H^{\prime}=K_{\ell, n-1-\ell}$ where

$$
\ell=\left\lfloor\frac{n-1}{2}\right\rfloor= \begin{cases}k & \text { if } n \text { odd; } \\ k-1 & \text { if } n \text { even. }\end{cases}
$$

and $n-1-\ell=k$.

Mantel's Theorem

Claim: If G is a triangle-free graph with $\geqslant\left\lfloor n^{2} / 4\right\rfloor$ edges, then $G=K_{k, n-k} \quad(k=\lfloor n / 2\rfloor)$.

Proof (induction step), continued:

- Let H be a subgraph of G with all n vertices and $\left\lfloor n^{2} / 4\right\rfloor$ edges; v be a vertex in H of minimum degree: $d_{H}(v)=\delta(H) \leqslant k$; $H^{\prime}=H-\{v\}=K_{\ell, n-1-\ell}$, where $\ell=\left\lfloor\frac{n-1}{2}\right\rfloor$.
- We have $\left|E\left(H^{\prime}\right)\right|=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$, so $d_{H}(v)=\left\lfloor\frac{n^{2}}{4}\right\rfloor-\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor=k$.
- Add v back in to H^{\prime} to get H.
- H^{\prime} is bipartite with two parts, A^{\prime} and B^{\prime}, of sizes ℓ and $n-1-\ell$.
- If v has neighbors in both parts, there would be a triangle.

So all neighbors of v are in A^{\prime}, or all are in B^{\prime}.

- Putting v back in gives $H=K_{k, n-k}$ (have to check n even/odd).
- Adding any more edges to H would form a triangle, but G is triangle-free, so $G=H=K_{k, n-k}$.

Mantel's Theorem

Odd/even n details - These are all straightforward to verify

Quantity	\boldsymbol{n} even	\boldsymbol{n} odd
$k=\lfloor n / 2\rfloor$	$\frac{n}{2}$	$\frac{n-1}{2}$
$\left\lfloor\left\lfloor\frac{2\left\lfloor n^{2} / 4\right\rfloor}{n}\right\rfloor\right.$	$\frac{n}{2}=k$	$\frac{n-1}{2}=k$
$\ell=\left\lfloor\frac{n-1}{2}\right\rfloor$	$\frac{n}{2}-1=k-1$	$\frac{n-1}{2}=k$
$n-1-\ell$	$\frac{n}{2}=k$	$\frac{n-1}{2}=k$
$d_{H}(v)=\left\lfloor\frac{n^{2}}{4}\right\rfloor-\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$	$\frac{n-1}{2}=k$	

Complete multipartite graph

Complete multipartite graph

The complete multipartite graph $K_{q_{1}, q_{2}, \ldots, q_{m}}$ has:

- Vertices split into disjoint parts V_{1}, \ldots, V_{m} with $\left|V_{i}\right|=q_{i}$ Total vertices: $n=q_{1}+\cdots+q_{m}$
- Edges between all pairs of vertices in different parts:

$$
E=\left\{\{x, y\}: x \in V_{i}, y \in V_{j} \text { where } i \neq j \text { are between } 1 \text { and } m\right\}
$$

Complete multipartite graph

- $K_{q_{1}, q_{2}, \ldots, q_{m}}$ is m-colorable, so it cannot contain K_{m+1}.
- This example has 3-parts, so it's 3-colorable, so it can't contain K_{4}.

Complete multipartite graph

- The number of edges in $K_{q_{1}, q_{2}, \ldots, q_{m}}$ is

$$
\sum_{1 \leqslant i<j \leqslant m} q_{i} q_{j}
$$

- For $K_{2,3,4}: 2 \cdot 3+2 \cdot 4+3 \cdot 4=6+8+12=26$

Complete multipartite graph

- For n vertices and m parts, the \# edges is maximized when all parts are as close as possible; so all parts are $\lfloor n / m\rfloor$ or $\lceil n / m\rceil$.
- The graph with these parameters is called the Turán graph.
- The graph is denoted by $T_{m}(n)$.
- The number of edges is denoted $t_{m}(n)$. It's roughly $\frac{1}{2}\left(1-\frac{1}{m}\right) n^{2}$.
- E.g., for 7 vertices and 3 parts:
- The Turán graph is $T_{3}(7)=K_{2,2,3}$.
- It has $t_{3}(7)=2 \cdot 2+2 \cdot 3+2 \cdot 3=16$ edges.

Turán's Theorem: Avoiding cliques of a certain size

Turán's Theorem (1941)

Let $n \geqslant 1$ and G be an n-vertex graph with no K_{m+1}.
Then $|E(G)| \leqslant t_{m}(n)$, with equality iff $G=T_{m}(n)$.

- Mantel's Theorem is the $m=2$ case of this.
- The proof is similar to Mantel's Theorem, but the graph has m parts instead of two, and the formulas are a bit messier. See the proof in the book.
- Turán's Theorem is considered the start of the field of extremal graph theory.

Ramsey Numbers

Monochromatic triangles

K_{5}

K_{6}

- Assign every edge of K_{n} a color: red or blue. Note: This is not proper edge colorings; this is a different topic. Edges that share a vertex are allowed to be the same color for this application.
- A monochromatic triangle is a 3-cycle where all the edges are the same color (all red or all blue).
- Do you see any monochromatic triangles in either example above?

Monochromatic triangles

- It turns out that every red/blue coloring of the edges of K_{6} has at least one red triangle or blue triangle!
- This holds for K_{n} with $n \geqslant 6$, too, since K_{n} contains K_{6}.
- But some colorings of K_{5} don't have a monochromatic triangle.
- Thus, K_{n} for $n \leqslant 5$ does not have to have a monochromatic triangle. E.g., if K_{4} must have a monochromatic triangle, then K_{5} must too since it contains a K_{4}.

Proving there are monochromatic triangles for $n \geqslant 6$

\mathbf{K}_{5}

\mathbf{K}_{6}

- Color the edges of K_{n} red/blue.
- Let r_{i} be the number of red edges on vertex i so $n-1-r_{i}$ is the number of blue edges.
- Each triangle that isn't monochromatic has two vertices with one red and one blue edge, so

$$
\text { \# non-monochromatic triangles }=\frac{1}{2} \sum_{i=1}^{n} r_{i}\left(n-1-r_{i}\right)
$$

(the sum counts each triangle twice, so divide by 2).

Proving there are monochromatic triangles for $n \geqslant 6$

\mathbf{K}_{5}

K_{6}

- The number of monochromatic triangles is

$$
\binom{n}{3}-\frac{1}{2} \sum_{i=1}^{n} r_{i}\left(n-1-r_{i}\right)
$$

- This is minimized by
- n odd: $r_{i}=\frac{n-1}{2}$
- n even: each $r_{i}=\frac{n}{2}$ or $\frac{n}{2}-1$
which leads to:
\# monochromatic triangles $\geqslant\binom{ n}{3}-\left\lfloor\frac{n}{2}\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor\right\rfloor$

Monochromatic triangles

\# monochromatic triangles $\geqslant\binom{ n}{3}-\left\lfloor\frac{n}{2}\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor\right\rfloor$

n	\# monochr. triangles \geqslant
$1, \ldots, 5$	0
6	2
7	4

So for $n=6$, there are actually at least two monochromatic triangles (and this increases as n increases past 6).

Ramsey Numbers

- Color the edges of K_{n} with c colors, $\{1, \ldots, c\}$. Again, this isn't proper edge colorings; it's any function from edges to $\{1, \ldots, c\}$.
- Let m_{1}, \ldots, m_{c} be positive integers.
- It turns out that for sufficiently large n, every such edge coloring must have a monochromatic clique $K_{m_{i}}$ of some color i.

Ramsey's Theorem (1930) - Version for graphs

There is a number $R=R\left(m_{1}, \ldots, m_{c}\right)$ (the Ramsey Number) such that if $n \geqslant R$, then all edge colorings of K_{n} with c colors must have a monochromatic clique $K_{m_{i}}$ of some color i.

- Monochromatic red/blue triangles is $R(3,3)=6$: for $n \geqslant 6$, every K_{n} has a red $K_{m_{1}}=K_{3}$ and/or a blue $K_{m_{2}}=K_{3}$.

Ramsey Numbers

- Trivial cases:
- $R(a, b)=R(b, a)$
- $R(1, b)=1$
- $R(2, b)=b$
- Very few non-trivial Ramsey numbers have been determined, but people have studied bounds and also asymptotic results.

Ramsey Numbers

Graphs are a special case of Ramsey's Theorem.
Ramsey actually proved a more general result for hypergraphs:

- Let $n, c, r \geqslant 1: \quad n=$ \# vertices

$$
\begin{aligned}
& c=\# \text { colors } \\
& r=\text { hyperedge size }
\end{aligned}
$$

- A hyperedge is an r-element subset of the vertices, generalizing $r=2$ for ordinary edges.
- Assign every r-element subset of $\{1, \ldots, n\}$ a color in $\{1, \ldots, c\}$.

Ramsey's Theorem

There is a number $R=R\left(m_{1}, \ldots, m_{c} ; r\right)$ such that if $n \geqslant R$, then in all such colorings, there is a color i and an m_{i}-element set $S \subseteq\{1, \ldots, n\}$, where all r-element subsets of S have color i.

- The monochromatic red/blue triangles case is $R(3,3 ; 2)=6$.

