Chapter 9 Introduction to Extremal Graph Theory

Prof. Tesler

Math 154 Winter 2020

Avoiding a subgraph

- Let *F* and *G* be graphs.
- *G* is called *F*-free if there's no subgraph isomorphic to *F*.
- An example is above.

Avoiding a subgraph

• Is the graph on the right *F*-free?

Avoiding a subgraph

 No. There are subgraphs isomorphic to F, even though they're drawn differently than F.

Question

Given a graph F (to avoid), and a positive integer n,

what's the largest # of edges an *F*-free graph on *n* vertices can have?

- This number is denoted ex(n, F).
- This number is called the *extremal number* or *Turán number* of *F*.
- An *F*-free graph with *n* vertices and ex(*n*, *F*) edges is called an *extremal graph*.

Extremal Number for $K_{1,2}$

• Let $F = P_2 = K_{1,2}$. (A two edge path and $K_{1,2}$ are the same.)

- For this *F*, being *F*-free means no vertex can be in ≥ 2 edges.
- So, an *F*-free graph *G* must consist of vertex-disjoint edges (a matching) and/or isolated vertices.

Extremal Number for $K_{1,2}$

- For each positive integer *n*, what is the extremal number and the extremal graph(s) for $F = P_2 = K_{1,2}$?
- The extremal graph is a matching with $\lfloor n/2 \rfloor$ edges, plus an isolated vertex if *n* is odd. So $ex(n, K_{1,2}) = \lfloor n/2 \rfloor$.
- The book also studies $ex(n, K_{r,s})$ and $ex(n, P_k)$, but to-date, these only have partial solutions.

Avoiding 2 disjoint edges

Now we consider avoiding a matching of size two (two disjoint edges).

Avoiding 2 disjoint edges: n = 1, 2, 3

• Let *F* be a matching of size two (two disjoint edges).

• For n = 1, 2, 3, we can put in all possible edges, giving extremal graph K_n and $ex(n, F) = {n \choose 2}$.

ex(n, F) for small n

For any graph *F* (not just the example above), if n < |V(F)| then the extremal graph is K_n and $ex(n, F) = \binom{n}{2}$.

• This is because any graph with fewer than |V(F)| vertices can't have F as a subgraph.

Avoiding 2 disjoint edges: n = 4

Extremal graphs for n=4

- For n = 4, there are two *F*-free graphs with 3 edges. Either one implies $ex(4, F) \ge 3$.
- Easy to check: all graphs with 4 vertices and ≥ 4 edges have F as a subgraph.
- So these are both extremal graphs, and ex(4, F) = 3.
- These graphs aren't isomorphic, so there may be more than one extremal graph. It does not have to be unique!

Avoiding 2 disjoint edges: $n \ge 4$

Theorem

Let *F* be two disjoint edges as shown above.

- If $n \ge 4$, then ex(n, F) = n 1.
- If $n \ge 5$, the unique extremal *F*-free graph is $K_{1,n-1}$.

Avoiding 2 disjoint edges: $n \ge 4$ Proving: If $n \ge 4$, then ex(n, F) = n - 1

Proof:

• $K_{1,n-1}$ is *F*-free and has n-1 edges, so $ex(n, F) \ge n-1$.

Avoiding 2 disjoint edges: $n \ge 4$ Proving: If $n \ge 4$, then ex(n, F) = n - 1

Proof, continued:

- Assume by way of contradiction that there is an *F*-free graph *G* on *n* vertices with ≥ *n* edges.
- Then G must have a cycle, C.
- If C has ≥ 4 edges, then it contains two vertex-disjoint edges, so it's not F-free. So C must be a 3-cycle.

Avoiding 2 disjoint edges: $n \ge 4$ Proving: If $n \ge 4$, then ex(n, F) = n - 1

Proof, continued:

- We assumed that there is an *F*-free graph on *n* vertices with $\ge n$ edges, and showed there must be a 3-cycle *C*.
- Since C has 3 edges while G has ≥ 4 edges, G has at least one more edge, e, not in C.
- Edge *e* is vertex disjoint with at least one edge of *C*, so *G* contains *F*, a contradiction.
- Thus, $ex(n, F) \leq n 1$. We already showed \geq , so ex(n, F) = n 1.

Avoiding 2 disjoint edges: $n \ge 4$

Theorem

Let *F* be two disjoint edges as shown above.

- If $n \ge 4$, then ex(n, F) = n 1.
- If $n \ge 5$, the unique extremal *F*-free graph is $K_{1,n-1}$.

- All edges of *G* are in one component:
 - If G has edges in two or more components, it's not F-free.
 - However, it can have multiple components, where all edges are in one component, and the other components are isolated vertices.
- If G has exactly one vertex of degree ≥ 2 , then G is $K_{1,n-1-m}$ plus m isolated vertices.
 - For this case, $G = K_{1,n-1}$ has the most edges.
- If G has two or more vertices of degree ≥ 2 :
 - *G* can't have a path of length ≥ 3 or a cycle of length ≥ 4 , since it's *F*-free.
 - So G must be a triangle plus n 3 isolated vertices.

Avoiding 2 disjoint edges: $n \ge 4$ Proving that if $n \ge 5$, the unique extremal *F*-free graph is $K_{1,n-1}$.

We've narrowed down the candidates for extremal graphs to

- (a) $K_{1,n-1}$ n-1 edges
- (b) A triangle plus n 3 isolated vertices. 3 edges
- For n = 4, these are tied at 3 edges, so ex(4, F) = 3 and there are two extremal graphs, as we showed before.
- But for $n \ge 5$, the unique solution is $K_{1,n-1}$.

Triangle-free graphs and Mantel's Theorem

- Next we consider avoiding triangles $(F = K_3)$.
- Instead of literally saying "F-free", you can plug in what F is: "triangle-free."

- This graph is triangle-free, so $ex(5, F) \ge 4$.
- You can't add more edges without making a triangle, so it's a maximal triangle-free graph.
- Can you make a graph on 5 vertices with more edges?

Avoiding triangles

- A pentagon is triangle-free, so $ex(5, F) \ge 5$.
- You can't add more edges without making a triangle, so it's also a maximal triangle-free graph.
- Can you make a graph on 5 vertices with more edges?

Avoiding triangles

- $K_{2,3}$ shows $ex(5, F) \ge 6$.
- This turns out to be the extremal graph! So ex(5, F) = 6.

Maximal vs. Maximum

- A *maximal F*-free graph means there is no *F*-free graph *H* extending *G* (by adding edges to *G*, keeping it at *n* vertices).
- A *maximum F*-free graph means the size (in edges) is maximum.
- $K_{1,4}$ and a pentagon are not subgraphs of $K_{2,3}$. They are *maximal* but not *maximum*.
- The distinction between *maximal* and *maximum* arises in problems concerning *partially ordered sets*.
 - For real numbers, ≤ is a *total order*: for any real numbers *x*, *y*, either *x* = *y*, *x* < *y*, or *y* < *x*.
 - For sets, ⊆ is a *partial order*: sometimes neither set is contained in the other. E.g., {1, 3} and {2, 3} are not comparable.
 - Subgraph is a partial order.

Mantel's Theorem (1907)

Let $n \ge 2$ and G be an n-vertex triangle-free graph. Then (a) $|E(G)| \le \lfloor n^2/4 \rfloor$. (b) $|E(G)| = \lfloor n^2/4 \rfloor$ iff $G = K_{k,n-k}$ for $k = \lfloor n/2 \rfloor$. (c) $ex(n, K_3) = \lfloor n^2/4 \rfloor$.

That is, the unique extremal graph is $K_{k,n-k}$, and it has $\lfloor n^2/4 \rfloor$ edges.

Mantel's Theorem

- Consider the complete bipartite graph $K_{\ell,n-\ell}$ with $\ell = 1, \ldots, n-1$.
- It's triangle free, and adding any edge would form a triangle (since it would be between two vertices in the same part, both connected to each vertex in the other part).
- It has $\ell(n \ell)$ edges. This is maximum at $\ell = \lfloor n/2 \rfloor$ (or $\lceil n/2 \rceil$, but that's equivalent; for example, $K_{2,3}$ and $K_{3,2}$ are isomorphic).
- The max value is $k(n-k) = \lfloor n^2/4 \rfloor$ (where $k = \lfloor n/2 \rfloor$):
 - For even *n*, $k(n-k) = \frac{n}{2} \cdot \frac{n}{2} = \frac{n^2}{4}$ is an integer.
 - For odd n, $k(n-k) = \frac{n-1}{2} \cdot \frac{n+1}{2} = \frac{n^2-1}{4} = \lfloor n^2/4 \rfloor$.
 - Further odd/even verifications are listed at the end / left to you.
- Thus, $ex(n, K_3) \ge \lfloor n^2/4 \rfloor$.

- We showed $K_{k,n-k}$ is triangle-free and has the most edges among bipartite graphs.
- Could there be a different triangle-free graph with more edges? We'll prove not.

Claim

For $n \ge 2$, if *G* is a triangle-free *n* vertex graph with at least $\lfloor n^2/4 \rfloor$ edges, then $G = K_{k,n-k}$, where $k = \lfloor n/2 \rfloor$.

Proof (base case):

- We will induct on *n*.
- **Base case:** For n = 2, since n < |V(F)| = 3, the extremal graph is K_2 , which is equivalent to $K_{1,1}$:

$$K_2 = K_{1,1} = \bullet \bullet \bullet$$

Proof (induction step):

- For $n \ge 3$, assume the claim holds for smaller *n*.
- Let *H* be a subgraph of *G* with all *n* vertices and $|n^2/4|$ edges.
- We'll prove $H = K_{k,n-k}$.
- Since adding any edge to *H* would give a triangle, and *H* is a subgraph of *G*, we must have $G = H = K_{k,n-k}$.

- Let *H* be a subgraph of *G* with all *n* vertices and $\lfloor n^2/4 \rfloor$ edges. We'll prove $H = K_{k,n-k}$.
- By the Handshaking Lemma, the sum of degrees in *H* is

$$\sum_{v \in H} d_H(v) = 2 |E(H)| = 2 \lfloor n^2/4 \rfloor.$$

• Thus, the average degree in *H* is

$$\frac{\text{sum of degrees}}{\text{\# vertices}} = \frac{2\left\lfloor n^2/4 \right\rfloor}{n}.$$

- Let *H* be a subgraph of *G* with all *n* vertices and $|n^2/4|$ edges.
- We've shown the average degree in *H* is $\frac{2\lfloor n^2/4\rfloor}{n}$.
- Let v be a vertex in H of minimum degree, $d_H(v) = \delta_H(v)$.
- The min degree is \leqslant the average degree, and is an integer, so

$$\delta_H(v) \leqslant \left\lfloor \frac{2 \left\lfloor n^2/4 \right\rfloor}{n} \right\rfloor = \lfloor n/2 \rfloor = k .$$

prove this on your own

- Let *H* be a subgraph of *G* with all *n* vertices and $\lfloor n^2/4 \rfloor$ edges.
- Let v be a vertex in H of minimum degree: $d_H(v) = \delta(H) \leq k$.
- Let $H' = H \{v\}$. This is a subgraph of H on n 1 vertices. It's triangle-free and the number of edges is: $|E(H')| = |E(H)| - \delta_H(v) \ge \left\lfloor \frac{n^2}{4} \right\rfloor - k = \left\lfloor \frac{n^2}{4} \right\rfloor - \left\lfloor \frac{n}{2} \right\rfloor = \left\lfloor \frac{(n-1)^2}{4} \right\rfloor$

prove this on your own

• Since the claim holds for n-1 vertices, $H' = K_{\ell,n-1-\ell}$ where $\ell = \lfloor \frac{n-1}{2} \rfloor = \begin{cases} k & \text{if } n \text{ odd}; \\ k-1 & \text{if } n \text{ even.} \end{cases}$ and $n-1-\ell = k$.

- Let *H* be a subgraph of *G* with all *n* vertices and $\lfloor n^2/4 \rfloor$ edges; *v* be a vertex in *H* of minimum degree: $d_H(v) = \delta(H) \leq k$; $H' = H - \{v\} = K_{\ell,n-1-\ell}$, where $\ell = \lfloor \frac{n-1}{2} \rfloor$.
- We have $|E(H')| = \lfloor \frac{(n-1)^2}{4} \rfloor$, so $d_H(v) = \lfloor \frac{n^2}{4} \rfloor \lfloor \frac{(n-1)^2}{4} \rfloor = k$.
- Add v back in to H' to get H.
 - H' is bipartite with two parts, A' and B', of sizes ℓ and $n 1 \ell$.
 - If v has neighbors in both parts, there would be a triangle.
 So all neighbors of v are in A', or all are in B'.
 - Putting v back in gives $H = K_{k,n-k}$ (have to check n even/odd).
- Adding any more edges to *H* would form a triangle, but *G* is triangle-free, so $G = H = K_{k,n-k}$.

Mantel's Theorem Odd/even *n* details — These are all straightforward to verify

Quantity	<i>n</i> even	n odd
$k = \lfloor n/2 \rfloor$	$\frac{n}{2}$	$\frac{n-1}{2}$
$\left\lfloor \frac{2\left\lfloor n^2/4\right\rfloor}{n}\right\rfloor$	$\frac{n}{2} = k$	$\frac{n-1}{2} = k$
$\ell = \left\lfloor \frac{n-1}{2} \right\rfloor$	$\frac{n}{2} - 1 = k - 1$	$\frac{n-1}{2} = k$
$n-1-\ell$	$\frac{n}{2} = k$	$\frac{n-1}{2} = k$
$d_H(v) = \lfloor \frac{n^2}{4} floor - \lfloor \frac{(n-1)^2}{4} floor$	$\frac{n}{2} = k$	$\frac{n-1}{2} = k$

The *complete multipartite graph* $K_{q_1,q_2,...,q_m}$ has:

- Vertices split into disjoint parts V_1, \ldots, V_m with $|V_i| = q_i$ Total vertices: $n = q_1 + \cdots + q_m$
- Edges between all pairs of vertices in different parts:

 $E = \{ \{x, y\} : x \in V_i, y \in V_j \text{ where } i \neq j \text{ are between } 1 \text{ and } m \}$

- $K_{q_1,q_2,...,q_m}$ is *m*-colorable, so it cannot contain K_{m+1} .
- This example has 3-parts, so it's 3-colorable, so it can't contain K_4 .

• The number of edges in $K_{q_1,q_2,...,q_m}$ is

$$\sum_{1 \leqslant i < j \leqslant m} q_i q_j$$

• For $K_{2,3,4}$: $2 \cdot 3 + 2 \cdot 4 + 3 \cdot 4 = 6 + 8 + 12 = 26$

- For *n* vertices and *m* parts, the # edges is maximized when all parts are as close as possible; so all parts are $\lfloor n/m \rfloor$ or $\lceil n/m \rceil$.
 - The graph with these parameters is called the *Turán graph*.
 - The graph is denoted by $T_m(n)$.
 - The number of edges is denoted $t_m(n)$. It's roughly $\frac{1}{2}(1-\frac{1}{m})n^2$.
- E.g., for 7 vertices and 3 parts:
 - The Turán graph is $T_3(7) = K_{2,2,3}$.
 - It has $t_3(7) = 2 \cdot 2 + 2 \cdot 3 + 2 \cdot 3 = 16$ edges.

Turán's Theorem (1941)

Let $n \ge 1$ and G be an n-vertex graph with no K_{m+1} . Then $|E(G)| \le t_m(n)$, with equality iff $G = T_m(n)$.

- Mantel's Theorem is the m = 2 case of this.
- The proof is similar to Mantel's Theorem, but the graph has m parts instead of two, and the formulas are a bit messier.
 See the proof in the book.
- Turán's Theorem is considered the start of the field of extremal graph theory.

Ramsey Numbers

Monochromatic triangles

- Assign every edge of K_n a color: red or blue.
 Note: This is not proper edge colorings; this is a different topic.
 Edges that share a vertex are allowed to be the same color for this application.
- A *monochromatic triangle* is a 3-cycle where all the edges are the same color (all red or all blue).
- Do you see any monochromatic triangles in either example above?

Monochromatic triangles

- It turns out that every red/blue coloring of the edges of K₆ has at least one red triangle or blue triangle!
 - This holds for K_n with $n \ge 6$, too, since K_n contains K_6 .
- But some colorings of K_5 don't have a monochromatic triangle.
 - Thus, K_n for $n \leq 5$ does not have to have a monochromatic triangle. E.g., if K_4 must have a monochromatic triangle, then K_5 must too since it contains a K_4 .

Proving there are monochromatic triangles for $n \ge 6$

- Color the edges of K_n red/blue.
- Let r_i be the number of red edges on vertex i so $n 1 r_i$ is the number of blue edges.
- Each triangle that isn't monochromatic has two vertices with one red and one blue edge, so

non-monochromatic triangles =
$$\frac{1}{2} \sum_{i=1}^{n} r_i (n-1-r_i)$$

(the sum counts each triangle twice, so divide by 2).

Proving there are monochromatic triangles for $n \ge 6$

• The number of monochromatic triangles is

$$\binom{n}{3} - \frac{1}{2} \sum_{i=1}^{n} r_i (n - 1 - r_i)$$

• This is minimized by

• *n* odd:
$$r_i = \frac{n-1}{2}$$

• *n* even: each $r_i = \frac{n}{2}$ or $\frac{n}{2} - 1$
which leads to:

monochromatic triangles \geq

$$\ge \binom{n}{3} - \left\lfloor \frac{n}{2} \left\lfloor \frac{(n-1)^2}{4} \right\rfloor \right\rfloor$$

monochromatic triangles
$$\ge \binom{n}{3} - \left\lfloor \frac{n}{2} \left\lfloor \frac{(n-1)^2}{4} \right\rfloor \right\rfloor$$

n	# monochr. triangles ≽
1,,5	0
6	2
7	4

So for n = 6, there are actually at least two monochromatic triangles (and this increases as *n* increases past 6).

Ramsey Numbers

- Color the edges of K_n with c colors, {1,...,c}.
 Again, this isn't proper edge colorings; it's any function from edges to {1,...,c}.
- Let m_1, \ldots, m_c be positive integers.
- It turns out that for sufficiently large n, every such edge coloring must have a monochromatic clique K_{m_i} of some color i.

Ramsey's Theorem (1930) — Version for graphs

There is a number $R = R(m_1, ..., m_c)$ (the *Ramsey Number*) such that if $n \ge R$, then all edge colorings of K_n with c colors must have a monochromatic clique K_{m_i} of some color i.

Monochromatic red/blue triangles is R(3, 3) = 6:
 for n ≥ 6, every K_n has a red K_{m1} = K3 and/or a blue K_{m2} = K3.

• Trivial cases:

- R(a,b) = R(b,a)
- R(1,b) = 1
- R(2,b) = b
- Very few non-trivial Ramsey numbers have been determined, but people have studied bounds and also asymptotic results.

Ramsey Numbers

Graphs are a special case of Ramsey's Theorem. Ramsey actually proved a more general result for *hypergraphs*:

- Let $n, c, r \ge 1$: n = # vertices c = # colors r = hyperedge size
- A *hyperedge* is an *r*-element subset of the vertices, generalizing r = 2 for ordinary edges.
- Assign every *r*-element subset of $\{1, \ldots, n\}$ a color in $\{1, \ldots, c\}$.

Ramsey's Theorem

There is a number $R = R(m_1, ..., m_c; r)$ such that if $n \ge R$, then in all such colorings, there is a color *i* and an m_i -element set $S \subseteq \{1, ..., n\}$, where all *r*-element subsets of *S* have color *i*.

• The monochromatic red/blue triangles case is R(3,3;2) = 6.