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Avoiding a subgraph

F G

Let F and G be graphs.

G is called F-free if there’s no subgraph isomorphic to F.

An example is above.
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Avoiding a subgraph

GF

Is the graph on the right F-free?

Prof. Tesler Ch. 9: Extremal Graph Theory Math 154 / Winter 2020 3 / 50



Avoiding a subgraph

F G

No. There are subgraphs isomorphic to F, even though they’re
drawn differently than F.
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Extremal Number

Question
Given a graph F (to avoid), and

a positive integer n,
what’s the largest # of edges an F-free graph on n vertices can have?

This number is denoted ex(n, F).

This number is called the extremal number or Turán number of F.

An F-free graph with n vertices and ex(n, F) edges is called an
extremal graph.
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Extremal Number for K1,2

G

F = K     =
1,2

Let F = P2 = K1,2. (A two edge path and K1,2 are the same.)

For this F, being F-free means no vertex can be in > 2 edges.

So, an F-free graph G must consist of vertex-disjoint edges (a
matching) and/or isolated vertices.
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Extremal Number for K1,2

n=8 (even)

Extremal F−free graphs

1,2

n=9 (odd)

F = K     =

For each positive integer n, what is the extremal number and the
extremal graph(s) for F = P2 = K1,2?

The extremal graph is a matching with bn/2c edges, plus an
isolated vertex if n is odd. So ex(n, K1,2) = bn/2c.

The book also studies ex(n, Kr,s) and ex(n, Pk), but to-date, these
only have partial solutions.
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Avoiding 2 disjoint edges
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Avoiding 2 disjoint edges

F =

Now we consider avoiding a matching of size two (two disjoint
edges).
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Avoiding 2 disjoint edges: n = 1, 2, 3

ex(3,F) = 3ex(2,F) = 1ex(1,F) = 0

F n=2 n=3

Extremal graphs

n=1

Let F be a matching of size two (two disjoint edges).
For n = 1, 2, 3, we can put in all possible edges, giving extremal
graph Kn and ex(n, F) =

(n
2

)
.

ex(n, F) for small n
For any graph F (not just the example above), if n < |V(F)| then the
extremal graph is Kn and ex(n, F) =

(n
2

)
.

This is because any graph with fewer than |V(F)| vertices can’t
have F as a subgraph.

Prof. Tesler Ch. 9: Extremal Graph Theory Math 154 / Winter 2020 10 / 50



Avoiding 2 disjoint edges: n = 4

F

Extremal graphs for n=4

For n = 4, there are two F-free graphs with 3 edges.
Either one implies ex(4, F) > 3.

Easy to check: all graphs with 4 vertices and > 4 edges have F
as a subgraph.

So these are both extremal graphs, and ex(4, F) = 3.

These graphs aren’t isomorphic, so there may be more than one
extremal graph. It does not have to be unique!
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Avoiding 2 disjoint edges: n = 5

Extremal graph

F

K1,4 ex(5,F) = 4

n=5
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Avoiding 2 disjoint edges: n > 4

Extremal graph

F

K1,4 ex(5,F) = 4

n=5

Theorem
Let F be two disjoint edges as shown above.

If n > 4, then ex(n, F) = n − 1.
If n > 5, the unique extremal F-free graph is K1,n−1.
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Avoiding 2 disjoint edges: n > 4
Proving: If n > 4, then ex(n, F) = n − 1

Extremal graph

F

K1,4 ex(5,F) = 4

n=5

Proof:
K1,n−1 is F-free and has n − 1 edges, so ex(n, F) > n − 1.
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Avoiding 2 disjoint edges: n > 4
Proving: If n > 4, then ex(n, F) = n − 1

F

Cycle

Proof, continued:
Assume by way of contradiction that there is an F-free graph G on
n vertices with > n edges.

Then G must have a cycle, C.

If C has > 4 edges, then it contains two vertex-disjoint edges, so
it’s not F-free. So C must be a 3-cycle.

Prof. Tesler Ch. 9: Extremal Graph Theory Math 154 / Winter 2020 15 / 50



Avoiding 2 disjoint edges: n > 4
Proving: If n > 4, then ex(n, F) = n − 1

F

3−cycle + an edge

Proof, continued:
We assumed that there is an F-free graph on n vertices with > n
edges, and showed there must be a 3-cycle C.
Since C has 3 edges while G has > 4 edges, G has at least one
more edge, e, not in C.
Edge e is vertex disjoint with at least one edge of C, so G contains
F, a contradiction.
Thus, ex(n, F) 6 n − 1. We already showed >, so ex(n, F) = n − 1.
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Avoiding 2 disjoint edges: n > 4

Extremal graph

F

K1,4 ex(5,F) = 4

n=5

Theorem
Let F be two disjoint edges as shown above.

If n > 4, then ex(n, F) = n − 1. X
If n > 5, the unique extremal F-free graph is K1,n−1.
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Avoiding 2 disjoint edges: n > 4
Proving that if n > 5, the unique extremal F-free graph is K1,n−1.

All edges of G are in one component:
If G has edges in two or more components, it’s not F-free.
However, it can have multiple components, where all edges are in
one component, and the other components are isolated vertices.

If G has exactly one vertex of degree > 2, then G is K1,n−1−m plus
m isolated vertices.

For this case, G = K1,n−1 has the most edges.

If G has two or more vertices of degree > 2:
G can’t have a path of length > 3 or a cycle of length > 4, since it’s
F-free.
So G must be a triangle plus n − 3 isolated vertices.
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Avoiding 2 disjoint edges: n > 4
Proving that if n > 5, the unique extremal F-free graph is K1,n−1.

F

Extremal graphs for n=4

We’ve narrowed down the candidates for extremal graphs to
(a) K1,n−1 n − 1 edges
(b) A triangle plus n − 3 isolated vertices. 3 edges

For n = 4, these are tied at 3 edges, so ex(4, F) = 3 and there are
two extremal graphs, as we showed before.

But for n > 5, the unique solution is K1,n−1.
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Triangle-free graphs and Mantel’s
Theorem
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Avoiding triangles

F

Next we consider avoiding triangles (F = K3).

Instead of literally saying “F-free”, you can plug in what F is:
“triangle-free.”
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Avoiding triangles

F G

This graph is triangle-free, so ex(5, F) > 4.

You can’t add more edges without making a triangle, so it’s a
maximal triangle-free graph.

Can you make a graph on 5 vertices with more edges?
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Avoiding triangles

F G

A pentagon is triangle-free, so ex(5, F) > 5.

You can’t add more edges without making a triangle, so it’s also a
maximal triangle-free graph.

Can you make a graph on 5 vertices with more edges?
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Avoiding triangles

GF

K2,3 shows ex(5, F) > 6.

This turns out to be the extremal graph! So ex(5, F) = 6.
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Maximal vs. Maximum

A maximal F-free graph means there is no F-free graph H
extending G (by adding edges to G, keeping it at n vertices).

A maximum F-free graph means the size (in edges) is maximum.

K1,4 and a pentagon are not subgraphs of K2,3.
They are maximal but not maximum.

The distinction between maximal and maximum arises in
problems concerning partially ordered sets.

For real numbers, 6 is a total order : for any real numbers x, y,
either x = y, x < y, or y < x.

For sets, ⊆ is a partial order : sometimes neither set is contained in
the other. E.g., {1, 3} and {2, 3} are not comparable.

Subgraph is a partial order.
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Mantel’s Theorem

Mantel’s Theorem (1907)
Let n > 2 and G be an n-vertex triangle-free graph. Then
(a) |E(G)| 6

⌊
n2/4

⌋
.

(b) |E(G)| =
⌊
n2/4

⌋
iff G = Kk,n−k for k = bn/2c.

(c) ex(n, K3) =
⌊
n2/4

⌋
.

That is, the unique extremal graph is Kk,n−k, and it has
⌊
n2/4

⌋
edges.
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Mantel’s Theorem

Consider the complete bipartite graph K`,n−` with ` = 1, . . . , n − 1.

It’s triangle free, and adding any edge would form a triangle (since
it would be between two vertices in the same part, both connected
to each vertex in the other part).

It has `(n − `) edges. This is maximum at ` = bn/2c (or dn/2e, but
that’s equivalent; for example, K2,3 and K3,2 are isomorphic).

The max value is k(n − k) =
⌊
n2/4

⌋
(where k = bn/2c):

For even n, k(n − k) =
n
2
· n

2
=

n2

4
is an integer.

For odd n, k(n − k) =
n − 1

2
· n + 1

2
=

n2 − 1
4

=
⌊
n2/4

⌋
.

Further odd/even verifications are listed at the end / left to you.

Thus, ex(n, K3) >
⌊
n2/4

⌋
.
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Mantel’s Theorem

We showed Kk,n−k is triangle-free and has the most edges among
bipartite graphs.

Could there be a different triangle-free graph with more edges?
We’ll prove not.
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Mantel’s Theorem

Claim
For n > 2, if G is a triangle-free n vertex graph with at least

⌊
n2/4

⌋
edges, then G = Kk,n−k, where k = bn/2c.

Proof (base case):

We will induct on n.

Base case: For n = 2, since n < |V(F)| = 3, the extremal graph is
K2, which is equivalent to K1,1:

K2 = K1,1 = • •
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Mantel’s Theorem
Claim: If G is a triangle-free graph with >

⌊
n2/4

⌋
edges, then G = Kk,n−k (k = bn/2c).

Proof (induction step):

For n > 3, assume the claim holds for smaller n.

Let H be a subgraph of G with all n vertices and
⌊
n2/4

⌋
edges.

We’ll prove H = Kk,n−k.

Since adding any edge to H would give a triangle, and H is a
subgraph of G, we must have G = H = Kk,n−k.
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Mantel’s Theorem
Claim: If G is a triangle-free graph with >

⌊
n2/4

⌋
edges, then G = Kk,n−k (k = bn/2c).

Proof (induction step), continued:

Let H be a subgraph of G with all n vertices and
⌊
n2/4

⌋
edges.

We’ll prove H = Kk,n−k.

By the Handshaking Lemma, the sum of degrees in H is∑
v∈H

dH(v) = 2 |E(H)| = 2
⌊
n2/4

⌋
.

Thus, the average degree in H is

sum of degrees
# vertices

=
2
⌊
n2/4

⌋
n

.
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Mantel’s Theorem
Claim: If G is a triangle-free graph with >

⌊
n2/4

⌋
edges, then G = Kk,n−k (k = bn/2c).

Proof (induction step), continued:

Let H be a subgraph of G with all n vertices and
⌊
n2/4

⌋
edges.

We’ve shown the average degree in H is
2bn2/4c

n .

Let v be a vertex in H of minimum degree, dH(v) = δH(v).

The min degree is 6 the average degree, and is an integer, so

δH(v) 6
⌊

2
⌊
n2/4

⌋
n

⌋
= bn/2c︸                      ︷︷                      ︸

prove this on your own

= k .
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Mantel’s Theorem
Claim: If G is a triangle-free graph with >

⌊
n2/4

⌋
edges, then G = Kk,n−k (k = bn/2c).

Proof (induction step), continued:

Let H be a subgraph of G with all n vertices and
⌊
n2/4

⌋
edges.

Let v be a vertex in H of minimum degree: dH(v) = δ(H) 6 k.

Let H ′ = H − {v}. This is a subgraph of H on n − 1 vertices.
It’s triangle-free and the number of edges is:

|E(H ′)| = |E(H)|− δH(v) >
⌊

n2

4

⌋
− k =

⌊
n2

4

⌋
−
⌊n

2

⌋
=
⌊
(n−1)2

4

⌋
︸                          ︷︷                          ︸

prove this on your own

Since the claim holds for n − 1 vertices, H ′ = K`,n−1−` where

` =
⌊n−1

2

⌋
=

{
k if n odd;
k − 1 if n even.

and n − 1 − ` = k.
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Mantel’s Theorem
Claim: If G is a triangle-free graph with >

⌊
n2/4

⌋
edges, then G = Kk,n−k (k = bn/2c).

Proof (induction step), continued:

Let H be a subgraph of G with all n vertices and
⌊
n2/4

⌋
edges;

v be a vertex in H of minimum degree: dH(v) = δ(H) 6 k;
H ′ = H − {v} = K`,n−1−`, where ` =

⌊n−1
2

⌋
.

We have |E(H ′)| =
⌊ (n−1)2

4

⌋
, so dH(v) =

⌊n2

4

⌋
−
⌊ (n−1)2

4

⌋
= k.

Add v back in to H ′ to get H.
H ′ is bipartite with two parts, A ′ and B ′, of sizes ` and n − 1 − `.
If v has neighbors in both parts, there would be a triangle.
So all neighbors of v are in A ′, or all are in B ′.
Putting v back in gives H = Kk,n−k (have to check n even/odd).

Adding any more edges to H would form a triangle, but G is
triangle-free, so G = H = Kk,n−k.
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Mantel’s Theorem
Odd/even n details — These are all straightforward to verify

Quantity n even n odd

k = bn/2c n
2

n−1
2⌊

2bn2/4c
n

⌋
n
2 = k n−1

2 = k

` =
⌊n−1

2

⌋ n
2 − 1 = k − 1 n−1

2 = k

n − 1 − ` n
2 = k n−1

2 = k

dH(v) =
⌊n2

4

⌋
−
⌊ (n−1)2

4

⌋ n
2 = k n−1

2 = k
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Complete multipartite graph
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Complete multipartite graph

K2,3,4

The complete multipartite graph Kq1,q2,...,qm has:
Vertices split into disjoint parts V1, . . . , Vm with |Vi| = qi

Total vertices: n = q1 + · · ·+ qm

Edges between all pairs of vertices in different parts:

E =
{
{x, y} : x ∈ Vi, y ∈ Vj where i , j are between 1 and m

}
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Complete multipartite graph

K2,3,4

Kq1,q2,...,qm is m-colorable, so it cannot contain Km+1.

This example has 3-parts, so it’s 3-colorable, so it can’t contain K4.
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Complete multipartite graph

K2,3,4

The number of edges in Kq1,q2,...,qm is∑
16i<j6m

qiqj

For K2,3,4: 2 · 3 + 2 · 4 + 3 · 4 = 6 + 8 + 12 = 26
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Complete multipartite graph

K2,2,3

For n vertices and m parts, the # edges is maximized when all
parts are as close as possible; so all parts are bn/mc or dn/me.

The graph with these parameters is called the Turán graph.
The graph is denoted by Tm(n).
The number of edges is denoted tm(n). It’s roughly 1

2 (1 − 1
m )n

2.

E.g., for 7 vertices and 3 parts:
The Turán graph is T3(7) = K2,2,3.
It has t3(7) = 2 · 2 + 2 · 3 + 2 · 3 = 16 edges.
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Turán’s Theorem: Avoiding cliques of a certain size

Turán’s Theorem (1941)
Let n > 1 and G be an n-vertex graph with no Km+1.
Then |E(G)| 6 tm(n), with equality iff G = Tm(n).

Mantel’s Theorem is the m = 2 case of this.
The proof is similar to Mantel’s Theorem, but the graph has m
parts instead of two, and the formulas are a bit messier.
See the proof in the book.
Turán’s Theorem is considered the start of the field of extremal
graph theory.
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Ramsey Numbers
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Monochromatic triangles
5 K6K

Assign every edge of Kn a color: red or blue.
Note: This is not proper edge colorings; this is a different topic.
Edges that share a vertex are allowed to be the same color for this
application.

A monochromatic triangle is a 3-cycle where all the edges are the
same color (all red or all blue).

Do you see any monochromatic triangles in either example
above?
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Monochromatic triangles

5 K6K

It turns out that every red/blue coloring of the edges of K6 has at
least one red triangle or blue triangle!

This holds for Kn with n > 6, too, since Kn contains K6.

But some colorings of K5 don’t have a monochromatic triangle.
Thus, Kn for n 6 5 does not have to have a monochromatic triangle.
E.g., if K4 must have a monochromatic triangle, then K5 must too
since it contains a K4.
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Proving there are monochromatic triangles for n > 6
5 K6K

Color the edges of Kn red/blue.

Let ri be the number of red edges on vertex i
so n − 1 − ri is the number of blue edges.

Each triangle that isn’t monochromatic has two vertices with one
red and one blue edge, so

# non-monochromatic triangles =
1
2

n∑
i=1

ri(n − 1 − ri)

(the sum counts each triangle twice, so divide by 2).
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Proving there are monochromatic triangles for n > 6
5 K6K

The number of monochromatic triangles is(
n
3

)
−

1
2

n∑
i=1

ri(n − 1 − ri)

This is minimized by
n odd: ri =

n−1
2

n even: each ri =
n
2 or n

2 − 1
which leads to:

# monochromatic triangles >

(
n
3

)
−

⌊
n
2

⌊
(n − 1)2

4

⌋⌋
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Monochromatic triangles

# monochromatic triangles >

(
n
3

)
−

⌊
n
2

⌊
(n − 1)2

4

⌋⌋

# monochr.
n triangles >

1, . . . , 5 0
6 2
7 4

So for n = 6, there are actually at least two monochromatic triangles
(and this increases as n increases past 6).
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Ramsey Numbers

Color the edges of Kn with c colors, {1, . . . , c}.
Again, this isn’t proper edge colorings; it’s any function from
edges to {1, . . . , c}.

Let m1, . . . , mc be positive integers.

It turns out that for sufficiently large n, every such edge coloring
must have a monochromatic clique Kmi of some color i.

Ramsey’s Theorem (1930) — Version for graphs
There is a number R = R(m1, . . . , mc) (the Ramsey Number ) such that
if n > R, then all edge colorings of Kn with c colors must have a
monochromatic clique Kmi of some color i.

Monochromatic red/blue triangles is R(3, 3) = 6:
for n > 6, every Kn has a red Km1 = K3 and/or a blue Km2 = K3.
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Ramsey Numbers

Trivial cases:
R(a, b) = R(b, a)
R(1, b) = 1
R(2, b) = b

Very few non-trivial Ramsey numbers have been determined, but
people have studied bounds and also asymptotic results.
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Ramsey Numbers

Graphs are a special case of Ramsey’s Theorem.
Ramsey actually proved a more general result for hypergraphs:

Let n, c, r > 1: n = # vertices
c = # colors
r = hyperedge size

A hyperedge is an r-element subset of the vertices, generalizing
r = 2 for ordinary edges.

Assign every r-element subset of {1, . . . , n} a color in {1, . . . , c}.

Ramsey’s Theorem
There is a number R = R(m1, . . . , mc; r) such that if n > R, then in all
such colorings, there is a color i and an mi-element set S ⊆ {1, . . . , n},
where all r-element subsets of S have color i.

The monochromatic red/blue triangles case is R(3, 3; 2) = 6.
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