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Avoiding a subgraph

F G

@ Let F and G be graphs.
@ G is called F-free if there’s no subgraph isomorphic to F.

@ An example is above.
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Avoiding a subgraph

@ Is the graph on the right F-free?
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Avoiding a subgraph

F G
@ No. There are subgraphs isomorphic to F, even though they're
drawn differently than F.
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Extremal Number

Given a graph F (to avoid), and
a positive integer n,

what'’s the largest # of edges an F-free graph on n vertices can have?

y

@ This number is denoted ex(n, F).
@ This number is called the extremal number or Turan number of F.

@ An F-free graph with n vertices and ex(n, F') edges is called an
extremal graph.
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Extremal Number for K

@ Let F=P,=K;,. (Atwo edge path and K, are the same.)
@ For this F, being F-free means no vertex can be in > 2 edges.

@ So, an F-free graph G must consist of vertex-disjoint edges (a
matching) and/or isolated vertices.
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Extremal Number for K

Extremal F—free graphs
n=8 (even) n=9 (odd)

o——0 o—0
F=K12=< *———0 o*—0
o——0 o—0

o —=eo  o6—°

@ For each positive integer n, what is the extremal number and the
extremal graph(s) for F = P, = K »?

@ The extremal graph is a matching with |n/2] edges, plus an
isolated vertex if n is odd. So ex(n,K;») = |n/2].

@ The book also studies ex(n, K, ) and ex(n, Py), but to-date, these
only have partial solutions.
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Avoiding 2 disjoint edges
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Avoiding 2 disjoint edges

@ Now we consider avoiding a matching of size two (two disjoint
edges).
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Avoiding 2 disjoint edges: n =1,2,3

Extremal graphs
F n=1 n=2 n=3

o—

ex(LF)=0 ex2F)=1 ex3,F)=3

@ Let F be a matching of size two (two disjoint edges).

@ Forn =1,2,3, we can put in all possible edges, giving extremal
graph K, and ex(n, F) = (5).

ex(n, F) for small »n

For any graph F (not just the example above), if n < |V(F)| then the
extremal graph is K,, and ex(n, F) = (}).

@ This is because any graph with fewer than |V (F)| vertices can’t
have F as a subgraph.
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Avoiding 2 disjoint edges: n =4

Extremal graphs for n=4

@ For n =4, there are two F-free graphs with 3 edges.
Either one implies ex(4, F) > 3.

@ Easy to check: all graphs with 4 vertices and > 4 edges have F
as a subgraph.

@ So these are both extremal graphs, and ex(4, F) = 3.

@ These graphs aren’t isomorphic, so there may be more than one
extremal graph. It does not have to be unique!
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Avoiding 2 disjoint edges: n = 5

Extremal graph
n=>35

/AN

K1,4 eX(S,F) =4
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Avoiding 2 disjoint edges: n > 4

Extremal graph
n=3

— /N

K1,4 eX(S,F) =4

Theorem
Let F' be two disjoint edges as shown above.
@ Ifn>4,thenex(n,F) =n— 1.
@ If n > 5, the unique extremal F-free graph is K ;,—.
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Avoiding 2 disjoint edges: n > 4

Proving: If n > 4, then ex(n, F) =n—1

Extremal graph
n=35

o-—o
o—
K1,4 eX(S,F) =4

Proof:
@ K;,11s F-freeand hasn— 1 edges, so ex(n,F) > n— 1.
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Avoiding 2 disjoint edges: n > 4

Proving: If n > 4, then ex(n, F) =n—1

Cycle

Proof, continued:

@ Assume by way of contradiction that there is an F-free graph G on
n vertices with > n edges.

@ Then G must have a cycle, C.

@ If C has > 4 edges, then it contains two vertex-disjoint edges, so
it's not F-free. So C must be a 3-cycle.
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Avoiding 2 disjoint edges: n > 4

Proving: If n > 4, then ex(n, F) =n—1

3—cycle + an edge

— D= B

Proof, continued:

@ We assumed that there is an F-free graph on n vertices with > n
edges, and showed there must be a 3-cycle C.

@ Since C has 3 edges while G has > 4 edges, G has at least one
more edge, e, not in C.

@ Edge e is vertex disjoint with at least one edge of C, so G contains
F, a contradiction.

@ Thus, ex(n,F) < n—1. We already showed >, so ex(n,F) =n— 1.
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Avoiding 2 disjoint edges: n > 4

Extremal graph
n=3

— /N

K1,4 eX(S,F) =4

Theorem
Let F' be two disjoint edges as shown above.
@ Ifn>4,thenex(n,F) =n— 1. v
@ If n > 5, the unique extremal F-free graph is K ,—.

Prof. Tesler Ch. 9: Extremal Graph Theory Math 154 / Winter 2020 17 /50



Avoiding 2 disjoint edges: n > 4

Proving that if n > 5, the unique extremal F-free graph is K, ,_;.

@ All edges of G are in one component:

e If G has edges in two or more components, it's not F-free.
e However, it can have multiple components, where all edges are in
one component, and the other components are isolated vertices.

@ If G has exactly one vertex of degree > 2, then G is K; ;,—1—, plus
m isolated vertices.

e For this case, G = K, ,_ has the most edges.

@ If G has two or more vertices of degree > 2:

@ G can't have a path of length > 3 or a cycle of length > 4, since it's
F-free.
@ So G must be a triangle plus n — 3 isolated vertices.
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Avoiding 2 disjoint edges: n > 4

Proving that if n > 5, the unique extremal F-free graph is K, ,_;.

Extremal graphs for n=4

@ We've narrowed down the candidates for extremal graphs to
(a) Ki,—1 n — 1 edges
(b) A triangle plus n — 3 isolated vertices. 3 edges

@ Forn =4, these are tied at 3 edges, so ex(4, F) = 3 and there are
two extremal graphs, as we showed before.

@ But forn > 5, the unique solution is K ,,—;.
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Triangle-free graphs and Mantel's

Theorem
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Avoiding triangles

@ Next we consider avoiding triangles (F = K3).

@ Instead of literally saying “F-free”, you can plug in what F Is:
“triangle-free.”
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Avoiding triangles

F G

@ This graph is triangle-free, so ex(5, F) > 4.

@ You can’t add more edges without making a triangle, so it's a
maximal triangle-free graph.

@ Can you make a graph on 5 vertices with more edges?
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Avoiding triangles

F G

@ A pentagon is triangle-free, so ex(5,F) > 5.

@ You can’'t add more edges without making a triangle, so it's also a
maximal triangle-free graph.

@ Can you make a graph on 5 vertices with more edges?
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Avoiding triangles

@ K3 shows ex(5,F) > 6.

@ This turns out to be the extremal graph! So ex(5, F) = 6.
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Maximal vs. Maximum

@ A maximal F-free graph means there is no F-free graph H
extending G (by adding edges to G, keeping it at n vertices).

@ A maximum F-free graph means the size (in edges) is maximum.

@ K;4 and a pentagon are not subgraphs of K 3.
They are maximal but not maximum.

@ The distinction between maximal and maximum arises in
problems concerning partially ordered sets.

e For real numbers, < is a total order: for any real numbers x, y,
eitherx =y, x <y, ory < x.

e For sets, C is a partial order: sometimes neither set is contained in
the other. E.qg., {1,3} and {2, 3} are not comparable.

@ Subgraph is a partial order.
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Mantel’'s Theorem

Mantel's Theorem (1907)

Letn > 2 and G be an n-vertex triangle-free graph. Then

(a) E(G)| < |n*/4].
( ) |E L /JIffG Kkn kal’k— Ln/ZJ
(C) eXnK3 :Lz J

That is, the unique extremal graph is Ky ., and it has |n*/4| edges.

v
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Mantel’'s Theorem

@ Consider the complete bipartite graph K¢ ,,—¢ with¢=1,...,n— 1.

@ It’s triangle free, and adding any edge would form a triangle (since
it would be between two vertices in the same part, both connected
to each vertex in the other part).

@ It has {(n — ) edges. This is maximum at { = |n/2]| (or [n/2], but
that’s equivalent; for example, K, 3 and K3, are isomorphic).

@ The max value is k(n — k) = |n*/4| (where k = |n/2]):

2

n n n . .
e For even n, k(n—k)_i-i_z IS an integer.
— 1 1 21
o Foroddn, kin—k=""—."0— ="~ |,

e Further odd/even verifications are listed at the end / left to you.

@ Thus, ex(n,K3) > Ln2/4J.
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Mantel’'s Theorem

@ We showed K, IS triangle-free and has the most edges among
bipartite graphs.

@ Could there be a different triangle-free graph with more edges?
We’'ll prove not.
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Mantel’'s Theorem

For n > 2, if G is a triangle-free n vertex graph with at least |n*/4
edges, then G = Kj.,—, Where k = |n/2].

Proof (base case):

@ We will induct on .

@ Base case: Forn =2, since n < |V(F)| = 3, the extremal graph is
K;, which is equivalent to K ;:

Ky =Ky = e—e
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Mantel’'s Theorem

Claim: If G is a triangle-free graph with > |n?/4| edges, then G =K, (k= [n/2]).

Proof (induction step):

@ For n > 3, assume the claim holds for smaller x.
@ Let H be a subgraph of G with all n vertices and |n*/4| edges.
@ We'll prove H = Ky ;.

@ Since adding any edge to H would give a triangle, and H is a
subgraph of G, we must have G = H = Kj ;.
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Mantel’'s Theorem

Claim: If G is a triangle-free graph with > |n?/4| edges, then G =K, (k= [n/2]).

Proof (induction step), continued:

@ Let H be a subgraph of G with all n vertices and |n?/4| edges.
We'll prove H = Kj .

@ By the Handshaking Lemma, the sum of degrees in H is

Y du(v) =2|E(H)| =2|n?/4].

veEH

@ Thus, the average degree in H is

sum of degrees 2 |n°/4)
#vertices  n
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Mantel’'s Theorem

Claim: If G is a triangle-free graph with > |n?/4| edges, then G =K, (k= [n/2]).

Proof (induction step), continued:

@ Let H be a subgraph of G with all n vertices and |n*/4| edges.

2
@ We've shown the average degree in H is ZL”TMJ.

@ Let v be a vertex in H of minimum degree, dy(v) = dg(v).
@ The min degree is < the average degree, and is an integer, so

sul) < | -/ 4JJ _|n/2) =k

.

N

prove this on your own
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Mantel’'s Theorem

Claim: If G is a triangle-free graph with > |n?/4| edges, then G =K, (k= [n/2]).

Proof (induction step), continued:

@ Let H be a subgraph of G with all n vertices and |n?/4| edges.
@ Let v be a vertex in H of minimum degree: dy(v) = 8(H) < k.

@ Let H' = H—{v}. This is a subgraph of H on n — 1 vertices.
It's triangle-free and the number of edges is:
n—1)2
E(H') = [EH) —8u(v) > |5 | —k= | 5| = [3] = | "]

IV

prove this on your own

@ Since the claim holds for n — 1 vertices, H' = K;,,_1_¢ Where
0 — Ln_IJ _ {k If n Odd;

2 k—1 ifneven.
andn—1—4{ =k.
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Mantel’'s Theorem

Claim: If G is a triangle-free graph with > |n?/4| edges, then G =K, (k= [n/2]).

Proof (induction step), continued:

@ Let H be a subgraph of G with all n vertices and |n*/4| edges;
v be a vertex in H of minimum degree: dgy(v) = 6(H) < k;
H' =H—{v}=Kgu_1—¢, Where { = | 1],

o We have |[E(H')| = | "2V | sody(v) = | 2| — |12 | =«

@ Add v backinto H' to get H.

e H'is bipartite with two parts, A’ and B’, of sizes{andn—1 — L.

e If v has neighbors in both parts, there would be a triangle.
So all neighbors of v are in A’, or all are in B’.
e Putting v back in gives H = K, ,_ (have to check n even/odd).

@ Adding any more edges to H would form a triangle, but G is
triangle-free, so G = H = K. .

34 /50
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Mantel’'s Theorem

Odd/even n details — These are all straightforward to verify

Quantity n even n odd
k= |n/2| 3 il
2o j =k =k
(= |z L —1=k—1 il =k
n—1—14 5=k ”;21:k
n) = 5] [ 5] j =k =k

Prof. Tesler
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Complete multipartite graph
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Complete multipartite graph

Ks34

The complete multipartite graph K, 4,.....q,, Nas:
@ Vertices split into disjoint parts Vi, ..., V,, with |V;| = ¢;
Total vertices: n=qg1 + -+ - + gn,

@ Edges between all pairs of vertices in different parts:

E={{x,y} : x€V, yeV, wherei#+jare between 1 and m }

Prof. Tesler Ch. 9: Extremal Graph Theory Math 154 / Winter 2020 37/50



Complete multipartite graph

@ K, .0b...q, 1S m-colorable, so it cannot contain K,,, .

@ This example has 3-parts, so it's 3-colorable, so it can’t contain Kj.
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Complete multipartite graph

@ The number of edges in K, 4,....4., IS

Q FOfK2,3,4:2°3—|—2°4—|—3'4:6—|—8—|—12:26
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Complete multipartite graph

@ For n vertices and m parts, the # edges is maximized when all
parts are as close as possible; so all parts are |n/m| or [n/m].
e The graph with these parameters is called the Turan graph.
e The graph is denoted by T7,,(n).
o The number of edges is denoted ¢,,(n). It's roughly 3 (1 — - )n?.

@ E.g., for 7 vertices and 3 parts:
@ The Turan graphis T5(7) = K»,3.
@ lthas(7)=2-2+2-34+2-3 =16 edges.
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Turan’s Theorem: Avoiding cliques of a certain size

Turan’s Theorem (1941)

Let n > 1 and G be an n-vertex graph with no K, ;.
Then |E(G)| < t,,(n), with equality iff G = T,,(n).

@ Mantel's Theorem is the m = 2 case of this.

@ The proof is similar to Mantel's Theorem, but the graph has m
parts instead of two, and the formulas are a bit messier.
See the proof in the book.

@ Turan’s Theorem is considered the start of the field of extremal
graph theory.
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Ramsey Numbers
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Monochromatic triangles
Ks Ke

@ Assign every edge of K,, a color: red or blue.
Note: This is not proper edge colorings; this is a different topic.
Edges that share a vertex are allowed to be the same color for this

application.

@ A monochromatic triangle is a 3-cycle where all the edges are the
same color (all red or all blue).

@ Do you see any monochromatic triangles in either example
above?

Prof. Tesler Ch. 9: Extremal Graph Theory Math 154 / Winter 2020 43 /50




Monochromatic triangles

Ks K

@ It turns out that every red/blue coloring of the edges of K¢ has at
least one red triangle or blue triangle!

@ This holds for K,, with n > 6, t00, since K,, contains K.

@ But some colorings of K5 don’t have a monochromatic triangle.

e Thus, K, for n < 5 does not have to have a monochromatic triangle.
E.g., if K4 must have a monochromatic triangle, then K5 must too
since it contains a Kj.
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Proving there are monochromatic triangles for n > 6

@ Color the edges of K,, red/blue.

@ Let r; be the number of red edges on vertex i
son— 1 — r; Is the number of blue edges.

@ Each triangle that isn't monochromatic has two vertices with one
red and one blue edge, so

. 1
# non-monochromatic triangles = - ; rin—1—r)
(the sum counts each triangle twice, so divide by 2).
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Proving there are monochromatic triangles for n > 6

@ The number of monochromatic triangles is
n | —
(3> - EZH(”— 1 —ri)
i=1
@ This is minimized by

@ nodd: r, = ”;1

e neven:eachr,=750r5—1

which leads to: " n | (n—1)?
# monochromatic triangles > (3> — b { 1 JJ
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Monochromatic triangles

_1)2
# monochromatic triangles > ("> _ E V” 1) JJ

3 4
# monochr.
n triangles >
1,...,5 0
6 2
7 4

So for n = 6, there are actually at least two monochromatic triangles
(and this increases as n increases past 6).
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Ramsey Numbers

@ Color the edges of K, with ¢ colors, {1,...,c}.
Again, this isn’t proper edge colorings; it's any function from

edges to{1,...,c}.
@ Letmy,...,m. be positive integers.

@ |t turns out that for sufficiently large n, every such edge coloring
must have a monochromatic clique K,,, of some color i.

Ramsey’s Theorem (1930) — Version for graphs

There is a number R = R(m,, ..., m.) (the Ramsey Number) such that
If n > R, then all edge colorings of K,, with ¢ colors must have a
monochromatic clique K,,, of some color i.

@ Monochromatic red/blue triangles is R(3,3) = 6:
forn > 6, every K,, has ared K,,, = K3 and/or a blue K,,,, = K.
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Ramsey Numbers

@ Trivial cases:
@ R(a,b) =R(b,a)
@ R(1,b) =1
@ R(2,b)=0b

@ Very few non-trivial Ramsey numbers have been determined, but
people have studied bounds and also asymptotic results.
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Ramsey Numbers

Graphs are a special case of Ramsey’s Theorem.
Ramsey actually proved a more general result for hypergraphs:

@ Letn,c,r > 1: n = # vertices
¢ — # colors
r = hyperedge size

@ A hyperedge is an r-element subset of the vertices, generalizing
r = 2 for ordinary edges.

@ Assign every r-element subset of {1,...,n}acolorin{1,...,c}.
Ramsey’s Theorem
There is a number R = R(my,...,m.;r) such that if n > R, then in all
such colorings, there is a color i and an m;-element set S C {1, ..., n},
where all r-element subsets of S have color i. )

@ The monochromatic red/blue triangles case is R(3, 3;2) = 6.
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