Let X be a Bernoulli random variable: $X= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}$
(a) Compute the moments: $\mathbb{E}(X), \mathbb{E}\left(X^{2}\right), \mathbb{E}\left(X^{3}\right), \ldots$
(b) Compute the derivatives $M_{X}^{\prime}(0), M_{X}^{\prime \prime}(0), M_{X}^{\prime \prime \prime}(0), \ldots$ (Remember: last time, we found that $M_{X}(t)=p \cdot e^{t}+(1-p)$)

Context: Last time, we argued that for a random variable X,

$$
\begin{aligned}
M_{X}(0) & =\mathbb{E}\left(X^{0}\right) \\
M_{X}^{\prime}(0) & =\mathbb{E}\left(X^{1}\right) \\
M_{X}^{\prime \prime}(0) & =\mathbb{E}\left(X^{2}\right)
\end{aligned}
$$

This means that the Taylor series expansion of $M_{t}(X)$ is:

$$
\sum_{k=0}^{\infty} \frac{M_{X}^{(k)}(0)}{k!} t^{k}=\sum_{k=0}^{\infty} \frac{\mathbb{E}\left(X^{k}\right)}{k!} t^{k}
$$

Equivalently, this series is the exponential generating function of the sequence of moments $\mathbb{E}\left(X^{0}\right), \mathbb{E}\left(X^{1}\right), \mathbb{E}\left(X^{2}\right), \ldots$

