Name:

Problem 1: (1 points) You flip 3 fair coins independently. Let X be the number of heads observed and let Y be the number of tails. Are X and Y independent random variables? (You do not need to show your work or justify your answers for this problem.)

Choose one:

\bigcirc Yes

- No

Solution: X and Y are not independent, since knowing one determines the other other completely. Concretely, to show that they are not independent, we have (for example) $P(X=3)=P(H H H)=$ $1 / 8$ and $P(Y=3)=P(T T T)=1 / 8$, but $P(X=3, Y=3)=0 \neq P(X=3) \cdot P(Y=3)$.

Problem 2: (1 points) If X is an exponential random variable with parameter 2, which of the following is equal to the conditional probability $P(X>10 \mid X>9)$?
(You do not need to show your work or justify your answers for this problem.)

Choose one:

○ $1-e^{-2 \cdot 1}$

- $P(X>1)$

○ $P(X>9)$
$\bigcirc e^{-2 \cdot 10}$

Solution: By the memoryless property of exponential random variables, we have

$$
P(X>9+1 \mid X>9)=P(X>1) .
$$

Explicitly, using the CDF of an exponential random variable, this is also equal to $P(X>1)=$ $1-P(X \leq 1)=1-\left(1-e^{-2 \cdot 1}\right)=e^{-2 \cdot 1}$.

Problem 3: (2 points) Let X be a normal random variable with mean 1 and variance 4 . Which of the following is equal to $P(|X-1| \geq 2)$?
(You do not need to show your work or justify your answers for this problem.)

Choose one:

$\bigcirc(0)+(1-\Phi(2))$
$\Phi(1)+\Phi(-1)$
$2 \cdot(1-\Phi(1))$
○ $\Phi(1 / 2)$

Name:

Solution: You can notice that $P(|X-1| \geq 2)$ is the probability that X is at least one standard deviation from its mean, which is given by $2 \cdot(1-\Phi(1))$. Or algebraically, using the properties that $\Phi(-x)=1-\Phi(x)$ and that $\frac{x-1}{2}$ is a standard normal random variable, we see that

$$
\begin{aligned}
P(|X-1| \geq 2) & =P(X-1 \geq 2)+P(X-1 \leq-2) \\
& =P\left(\frac{X-1}{2} \geq 1\right)+P\left(\frac{X-1}{2} \leq-1\right) \\
& =\left(1-P\left(\frac{X-1}{2} \leq 1\right)\right)+\Phi(-1) \\
& =(1-\Phi(1))+(1-\Phi(1)) \\
& =2 \cdot(1-\Phi(1)) .
\end{aligned}
$$

Problem 4: (10 points) Let X and Y be continuous random variables with joint distribution

$$
f_{X, Y}(x, y)=\frac{6}{7} \cdot y, \text { for } x \in(0,1) \text { and } y \in(0, x+1)
$$

You may express your answers for parts (a) through (c) in terms of explicit but unevaluated integrals. (a) (3 points) Compute F_{X+Y} (1).

$$
F_{x+y}(1)=\int_{x=0}^{1}=\int_{0}^{1 \cdot x} \sqrt[b]{n} \cdot y d y d x
$$

$$
x+y=1
$$

Answer:

$$
\int_{x=0}^{1} \int_{0}^{1-x} \frac{b}{7} \cdot y d y d x
$$

Problem 4 (continued) $\quad x=1 / 2$
(b) (3 points) Compute $P\left(X \leq \frac{1}{2}\right)$.

$$
\begin{aligned}
& \int_{0}^{1 / 2} \int_{0}^{x+1} \frac{6}{7} y d y d x \\
&=\left.\int_{0}^{1 / 2} \frac{6}{7} \frac{y^{2}}{2}\right|_{0} ^{x+1} d x=\left.\int_{0}^{1 / 2} \frac{6 y^{2}}{14}\right|_{0} ^{x+1} d x=\int_{0}^{1 / 2} \frac{6(x+1)^{2}}{14} d x \\
&=\frac{6}{14} \int_{0}^{1 / 2} 6\left(x^{2}+2 x+1\right) d x=\frac{6}{14} \int_{0}^{1 / 2} x^{2}+2 x+1 d x \\
&=\frac{6}{14}\left[\frac{x^{3}}{3}+x^{2}+x\right]_{0}^{1 / 2} \\
&=\frac{3}{14}\left[\frac{1}{24}+\frac{1}{4}+\frac{1}{2}\right]_{12}^{24} \frac{12}{244}
\end{aligned}
$$

Answer:

$$
\int_{0}^{1 / 2} \int_{0}^{x+1} \frac{6}{7} y d y d x \approx \frac{6}{14}\left(\frac{19}{24}\right)
$$

Problem 4 (continued)
(c) (2 points) Find the marginal PDF of X.

$$
\begin{aligned}
f_{x}(x) & =\int_{0}^{x+1} \frac{6}{7} y d x \\
& =\left\{\begin{array}{cl}
\frac{3}{7}(x+1)^{2} & x \in[0,1] \\
0 & d x
\end{array}\right.
\end{aligned}
$$

Answer:

$$
\left\{\begin{array} { c }
{ x + 1 }
\end{array} \left\{\begin{array}{cc}
\frac{3}{7}(x+1)^{2} & x \in(0,1) \\
0 & \text { dele }
\end{array}\right.\right.
$$

(d) (2 points) Are X and Y independent? Why or why not? No, bc the area of integration isn't a rectangle.

Answer:
No, the area of integration isn't a rectangle.

Problem 5: (10 points) Let X, Y, and Z be independent exponential random variables with parameter 2.
You may express your answers for this problem in terms of explicit but unevaluated integrals; however, your answer for part (b) should not contain any unevaluated "max" terms.
(a) (2 points) Find $E\left(X^{2} Y\right)$.
$x, y \sim E_{x p}(z)$
Sine x, y indef, $f(x, y)=f_{x}(\omega) f,(y)= \begin{cases}\left(2 e^{-2 x}\right)\left(2 e^{-x y}\right) & x, y \geq 0 \\ 0 & \text { else }\end{cases}$
Answer:
$\mathbb{E}\left[x^{2} y\right]=\iint_{0}^{2} x y\left(e^{-2}\right)\left(e^{2} y d y\right.$

Problem 5: (10 points) Let X, Y, and Z be independent exponential random variables with parameter 2.
You may express your answers for this problem in terms of explicit but unevaluated integrals; however, your answer for part (b) should not contain any unevaluated "max" terms.
(a) (2 points) Find $E\left(X^{2} Y\right)$.
since X, Y indeporcent

$$
\begin{aligned}
\mathbb{E}\left(x^{2} y\right) & =\mathbb{E}\left(x^{2}\right) \cdot \mathbb{E}(y) \\
& =\left(\operatorname{Var}(x)+\mathbb{E}\left(x^{2}\right)\right) \cdot \mathbb{E}(y)
\end{aligned}
$$

with parameter 2 .

$$
=\left(\frac{2}{\lambda^{2}}\right) \cdot\left(\frac{1}{\lambda}\right)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}
$$

Answer:

$$
\frac{1}{4}
$$

(b) (4 points) Find the probability $P(\max (X, Y) \leq Z)$.

$$
\text { Let } a, b, c \text { be random real numbers such that } a>b>c
$$ For X, Y, Z, there are $3!=6$ options tor X, Y, Z

x, y, z If we want $\max (x, y) \leqslant z$,

Then z must be a
$P(\max (x, y) \leqslant z)$
$=\frac{2}{6}$
$=\frac{1}{3}$

Very creative! This is not 100% correct, but can be made into a correct solution once we justifiy that the ordering produced by three exponential random variables is uniform.

Answer:

Alternate solution to 5(b):

(b) (4 points) Find the probability $P(\max (X, Y) \leq Z)$.

$$
\begin{aligned}
P(\max (x, Y) \leqslant Z) & =P(x \leqslant Y \leqslant Z \cap Y<x \leqslant z) \quad f_{X, Y, Z}(x, y, z)=\left\{\begin{array}{l}
8 e^{-2 x-2 y-2 z}, x, y, z \geqslant 0 \\
0
\end{array},\right. \text { else } \\
& =P(x \leqslant Y \leqslant z)+P(Y<x \leqslant z) \\
& =\iint_{X \leq Y \leq z} f_{x, y, z}(x, y, z) d x d y d z+\iint_{Y} \int_{Y<x \leq z} f_{x, Y, z}(x, y, z) d x d y d z \\
& =\int_{0}^{\infty} \int_{0}^{z} \int_{0}^{y} 8 e^{-2 x-2 y-2 z} d x d y d z+\int_{0}^{\infty} \int_{0}^{z} \int_{0}^{x} 8 e^{-2 x-2 y-2 z} d y d x d z
\end{aligned}
$$

Answer:

$$
\int_{0}^{\infty} \int_{0}^{z} \int_{0}^{y} 8 e^{-2 x-2 y-2 z} d x d y d z+\int_{0}^{\infty} \int_{0}^{z} \int_{0}^{x} 8 e^{-2 x-2 y-2 z z} d y d x d z
$$

5c Solution: Notice that $X-Y=X+(-Y)$, so we can use a formula for the sum of two random variables. Since X and $-Y$ are independent, we can use the convolution formula and we find

$$
f_{X-Y}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{-Y}(z-x) d x
$$

where f_{X-Y} is the density of the difference, X has density

$$
f_{X}(x)= \begin{cases}2 e^{-2 x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

and $-Y$ has density

$$
f_{-Y}(y)=\left\{\begin{array}{ll}
2 e^{2 y} & y \leq 0 \\
0 & y>0
\end{array} .\right.
$$

Now we have to evaluate the integral. The key thing to note here is that X can take any nonnegative value and $-Y$ can take any nonpositive value. So $X+(-Y)$ can take on any value in $(-\infty, \infty)$ and our density must reflect that fact. We therefore break the integral into two cases. If $z \leq 0$, then $f_{X}(x) f_{-Y}(z-x)$ is nonzero for any $x \geq 0$ as the first term is always positive and the second term is always negative. However, if $z>0$, then we must have $x \geq z$ for $z-x$ to be negative. Thus we have

$$
\begin{aligned}
f_{X-Y}(z) & =\int_{-\infty}^{\infty} f_{X}(x) f_{-Y}(z-x) d x \\
& = \begin{cases}\int_{0}^{\infty} f_{X}(x) f_{-Y}(z-x) d x & z \leq 0 \\
\int_{z}^{\infty} f_{X}(x) f_{-Y}(z-x) & z \geq 0\end{cases} \\
& = \begin{cases}\int_{0}^{\infty} 2 e^{-2 x} 2 e^{2(z-x)} d x & z \leq 0 \\
\int_{z}^{\infty} 2 e^{-2 x} 2 e^{2(z-x)} d x & z \geq 0\end{cases}
\end{aligned}
$$

Now we evaluate each integral individually. For $z \leq 0$.

$$
\begin{aligned}
\int_{0}^{\infty} 2 e^{-2 x} 2 e^{2(z-x)} d x & =e^{2 z} \int_{0}^{\infty} 4 e^{-4 x} d x \\
& =\left.e^{2 z}\left(-e^{-4 x}\right)\right|_{x=0} ^{\infty} \\
& =e^{2 z}
\end{aligned}
$$

Now for $z \geq 0$

$$
\begin{aligned}
\int_{z}^{\infty} 2 e^{-2 x} 2 e^{2(z-x)} d x & =e^{2 z} \int_{z}^{\infty} 4 e^{-4 x} d x \\
& =\left.e^{2 z}\left(-e^{-4 x}\right)\right|_{x=z} ^{\infty} \\
& =e^{-2 z}
\end{aligned}
$$

So our final density is

$$
f_{X-Y}(z)= \begin{cases}e^{2 z} & z \leq 0 \\ e^{-2 z} & z>0\end{cases}
$$

Equivalently, we could also write $f_{X-Y}(z)=e^{-2|z|}$

