Consider the following two random variables:

$$X = \begin{cases} +1 & \text{with probability } 1/2 \\ -1 & \text{with probability } 1/2 \end{cases}$$

$$\mathbb{E}(x^2) = (1)^2 \cdot \frac{1}{2} + (-1)^2 \cdot \frac{1}{2} = 1$$

$$Y = \begin{cases} +10 & \text{with probability } 1/200 \\ -10 & \text{with probability } 1/200 \\ 0 & \text{with probability } .99 \end{cases}$$

$$E(Y) = 0$$

 $E(Y^2) = (10)^2 \cdot \frac{1}{200} + (-10)^2 \cdot \frac{1}{200} + 0 = \frac{100}{200} + \frac{100}{200} = 1$

10

What are E(X), E(Y), $E(X^2)$, and $\mathbb{E}(Y^2)$?

Which has higher variance, X or Y? Same

$$E(X^3) = 0$$
, $E(Y^3) = 0$
 $E(X^4) = (1)^4$, $\frac{1}{2} + (-1)^4$, $\frac{1}{2} = 1$
 $E(Y^4) = (10)^4$, $\frac{1}{200} + (-10)^4$. $\frac{1}{200} + 0 = 100$

X: variance is from small, frequent deviations from average