An example of convolution

In lecture, we looked at the example of independent random variables X and Y distributed
uniformly on [0, 1]; specifically, we asked for the probability density function fxiy(z). The
method we used was to start by finding the CDF of X +Y:

o) = [ pe@p,)dedy,
r+y<z

and then we differentiated the CDF to obtain the PDF. (Notice that the integrand here is
fx(@)fy(Y) = fx,y(z,,y) since X and Y are independent.)

However, for any two independent random variables X and Y, the convolution formula
(Fact 7.1) pre-packages some parts of this calculation, and tells us the following;:

Ixtv(z) = /OO fx (@) fy(z — x) dx.

=—00
In practice, since many of the continuous random variables we work with have piecewise-
defined PDFs that are often equal to 0, the main difficulty in applying the convolution formula
comes down to finding the limits of integration so that both terms in the integrand (fx(x)
and fy(z — x)) are nonzero.

The textbook goes through our example from lecture (Example 7.13) using the convolution
formula rather than the approach we used in lecture. I've attached that page of the textbook
at the end of this document, and I’d encourage you to work through it! But one thing I want
to point out is that in the solution presented in the textbook, finding the limits of integration
comes down to carefully solving a system of inequalities. While this is a useful and robust
method, it is very easy to get lost and make errors. So whenever you use the convolution
formula, I recommend drawing a picture to help you find the limits of integration. For example,
when X, Y ~ Unif[0,1], and z € [1,2], our picture for the integral [° _ fx(z)fy(z —z)dx
would look like this:
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We know that fx(x) and fy(y) are nonzero when x,y € [0, 1]; these are all the points in
the brown square. The points (z, z—x) are those on the pink line. So we would like the points
(z,z — ) in the integrand to be precisely those that are on the pink line and in the brown
square; i.e. the points on the blue squiggly line segment. From the picture, we see that this
means x should be between z — 1 and 1. So for z € [1, 2] for example, we get

1

fX+y(z):/oo fX(:c)fy(z—a:)da::/ 1-1dx.

=—00 r=z—1



242 7. Sums and symmetry

Example 7.13 (Convolution of uniform random variables). Suppose that X and
Y are independent and distributed as Unif[0, 1]. Find the distribution of X + Y.

The density functions for X and Y are

1, 0<x<1
0, z<O0orx>1.

fx(@) = fy(z) = {

X +Y is always between 0 and 2, so the density function fx iy (z) is zero for z < 0
and z > 2. It remains to consider 0 < z < 2. By the convolution formula,

froy(z) = /_ Y @) fr (s — 2) da.

We must take care with the integration limits. The product fx(x)fy(z — ) is
nonzero and equal to 1 if and only if 0 < z <1 and 0 < z— 1z < 1. The second
inequality is equivalent to z — 1 < x < z. To simultaneously satisfy 0 < z < 1 and
z—1 <z < z, we take the larger of the lower bounds and the smaller of the upper
bounds on z. Thus the integrand fx(x)fy(z — z) is 1 if and only if

max(0,z — 1) <z < min(1, 2).
Now for 0 < z < 2
[e%S) min(1,z)
fxav(z) = / fx(@)fy(z — x)dx = / dx = min(1, z) — max(0,z — 1).
—00 max(0,z—1)

We can simplify the result by considering the cases 0 < z < l and 1 < z < 2
separately:

z—0=2z, it 0<z<l1,
f)=R1-(2-1)=2—2, if 1<z<2,
0, otherwise .
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Figure 1. The p.d.f of the convolution of two Unif[0, 1] distributions



	convolutionExamplePG1
	convolutionExamplePG2

