5-Color Theorem (7.3.1) Every planar graph is 5-colorable.

Proof idea. Induction:

- ightharpoonup Assume planar graphs on k vertices are 5-colorable.
- ▶ To 5-color a planar graph on k+1 vertices, first color a k-vertex subgraph (induction hypothesis), then strategically "switch" colors to free up a color for the last vertex.

Useful tool: (a,b)-**Kempe chain** containing vertex v = maximal connected subgraph with only vtxs of colors **a** and **b** containing v.

Proof of 5 Color Theorem.

Induction base case(s): If G is a planar graph with ≤ 5 vertices, can color with ≤ 5 colors.

Inductive step: assume every planar graph with k vertices is 5-colorable, and let G be a planar graph with k+1 vertices.

Know: G has a vertex of degree < 5.

Easy case: If G has a vertex v of degree ≤ 4 , delete v. Then by induction, G - v is 5-colorable. Put v back in, color it.

Hard case: Every vertex in G has degree ≥ 5 .

Still know: G has a vertex v of degree 5. And by induction, G - v is 5-colorable.

Color G - v with 5 colors, assume the neighbors v_1, v_2, v_3, v_4, v_5 of v all get different colors (else finish as in easy case).

Assume v_1, v_2, v_3, v_4, v_5 appear clockwise in this order in our planar embedding of G.

Say v_1 has color 1 and v_3 has color 3.

Goal: "switch" v_1 to color 3, so color 1 is available for v.

Setup: v_1 has color 1 and v_3 has color 3.

Goal: "switch" v_1 to color 3, so color 1 is available for v.

Consider the (1,3)-Kempe chain containing v_1 .

If it **doesn't** contain v_3 , then switch color 1 and color 3. Now v_1, v_3 both have color 3, and we can use color 1 for v.

If it **does** contain v_3 , then there's an alternating path of vertices colored 1 and 3 between v_1 and v_3 .

Current case: have an alternating path of vertices colored 1 and 3 between v_1 and v_3 .

Similar reasoning: consider v_2 and v_4 , boil down to the case where there is also an alternating path of vertices colored 2 and 4 between v_2 and v_4 .

Now notice: these paths must cross. But we are in a **planar** embedding of *G*. Contradiction!!!

Therefore G is 5-colorable

4-Color Theorem Every planar graph is 4-colorable.

- ▶ Proved by Kenneth Appel and Wolfgang Haken in 1976 first computer-assisted proof of a major result.
- ► Their strategy: split into cases, use a computer to check them all more than 1200 hours of computer runtime!
- ► Some simplifications since then, but still no non-computer-assisted proof!

Cool resources:

- ► Neat video explaining the flaw in Kempe's original "proof" of the 4-Color Theorem: https://youtu.be/adZZv4eEPs8
- ► Try coloring a randomly-generated map with 4 colors: https://bit.ly/3PjVHNX