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Bien que S2 n’est pas assez symetrique

On t’offre sa fonction de BA qui est bien diabolique.

Bon 60-ème anniversaire Alain.

Astract
We show here that a certain sequence of polynomials arising in the study of S2

m-quasi invariants satisfies a 3-term recursion. This leads to the discovery that these poly-
nomials are closely related to the Bessel polynomials studied by Luc Favreau in [3]. This
connection reveals a variety of combinatorial properties of the sequence of Baker-Akhiezer
functions for S2. In particular we obtain in this manner their generating function and show
that it is equivalent to several further identities satisfied by these functions.

I. Introduction
Recent work [1], [2], [4], [5] on m-Quasi-Invariants has brought to focus certain remarkable sequences

of multivariate polynomials associated to each Coxeter group W . There are strong indications that these
sequences of polynomials have a rich combinatorial underpinning. This fact is somewhat obscured by the
complexity and generality with which the subject is treated in present literature. In this paper we report
our first findings in an attempt to develop a more transparent and accessible development of the subject
by a close study of special cases. It develops that the sequence of Baker-Akhiezer functions for S2, which
is one of the simplest special cases, has a beautiful combinatorial description from which several of its
basic properties may be derived with the greatest of ease. The reader is referred to the survey paper of
Etingof and Strickland [2] for the general definition of the Baker-Akhiezer functions arising in the study of
m-quasi-invariants and their significance for the theory. In the case of the symmetric group S2 the Baker-
Akhiezer function ΨS2

m (x; y) = ΨS2
m (x1, x2; y1, y2) should be a formal power series in x1, x2; y2, y2 satisfying

the following conditions:

(1) ΨS2
m (X2;Y2) = PS2

m (X2;Y2)ex1y1+x2y2 with PSn
m (X2;Y2) a polynomial in x1, x2; y1, y2.

(2) PS2
m (X2;Y2) = (x1 − x2)m(y1 − y2)m + · · · (terms of x − degree < m),

(3) ΨS2
m (X2;Y2) = ΨS2

m (Y2;X2) ,
(i) (x1 − x2)2m+1

∣∣ (
ΨS2

m (x1, x2;Y2) − ΨS2
m (x2, x1;Y2)

)
(†), I.1

(ii) L(m)ΨS2
m (x; y) = (y2

1 + y2
2) ΨS2

m (x; y) with L(m) = ∂2
x1

+ ∂2
x2

− 2m 1
x1−x2

(∂x1 − ∂x2) .

We show here that in the presence of (1) and (2) conditions (i) and (ii) are equivalent and either of them
uniquely determines ΨS2

m (X2;Y2). More precisely we show that (1), (2) and (i) imply that the polynomial
PS2

m (x; y) has the simple form

PS2
m (x; y) = 2m

m∑
k=1

(−1)m−kIk
2m−k(x1 − x2)k(y1 − y2)k/2k I.2

with Ik
2m−k giving the number of involutions of S2m−k with k fixed points. Moreover we show that I.2 implies

(†) The symbol “ B|A” means “B divides A”.
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that the sequence {ΨS2
m (X2;Y2)}m≥0 satisfies the identity

ex1y1+x2y2 + (x1−x2)(y1−y2)
2m

∑
m≥1

ΨS2
m−1(X2;Y2)

um

m!
= e

(x1+x2)(y1+y2)
2 +

(x1−x2)(y1−y2)
2

√
1+2u I.3

This of course immediately implies (3). We also show that in the presence of (1) and (2) we have the sequence
of implications

I.3 =⇒ (ii) =⇒ (i)

completing the proof of existence and uniqueness of a formal power series satisfying all the properties in I.1.

These results are derived from a parallel set of results for the dihedral group D2. This approach
leads to several identities which should be of independent interest. More precisely, we start by giving an
explicit construction of the sequence of polynomials {Pm(x, y)}m≥0, in two single variables x and y, which
satisfy the following conditions

(A) Pm(x, y) = xmym + · · · (terms of x − degree < m)

and such that if we set
Ψm(x, y) = Pm(x, y)exy I.4

then
(B) x2m+1

∣∣ (
Ψm(x, y) − Ψm(−x, y)

)
,

and
(C)

(
∂2

x − 2m

x

)
Ψm(x, y) = y2Ψm(x, y) ,

It is easy to see that (A) and (B) force the initial conditions

P0(x, y) = 1 , P1(x, y) = x y − 1 I.5

This given, we show that (A) and (B) uniquely determine that Pm(x, y) can be written in the form

Pm(x, y) = (−1)m(2m − 1)!!Wm(x y) I.6

with
(2m − 1)!! = (2m − 1) · (2m − 3) · · · 3 · 1

and {Wm(z)}m≥0 a sequence of polynomials satisfying the 3-term recursion

Wm+1(z) = Wm(z) +
z2

(2m + 1)(2m − 1)
Wm−1(z) I.7

and initial conditions
W0(z) = 1 , W1(z) = 1 − z
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The recursion in I.6 reveals that the polynomials Wn(z) are closely related to the Bessel polynomials Bn(z)
studied by Luc Favreau in [3]. This connection and I.6 yields the explicit expressions

a) Wm(z) =
1

(2m − 1)!!

m∑
k=0

(−1)kIk
2m−k zk , b) Pm(x, y) =

m∑
k=0

(−1)m−kIk
2m−k (xy)k I.8

We then derive from I.8 b) that the sequence {Ψm(x, y)}m≥0 satisfies the identity

exy + xy
∑
m≥1

Ψm−1(x, y)
um

m!
= exp

(
xy

√
1 + 2u

)
I.9

This done we derive the sequence of implications

I.9 =⇒ (C) =⇒ (B) I.10

completing the proof that the polynomial in I.8 is the unique solution of (A) and (B) as well as (A) and (C).
We should mention that (A) (B) and (C) identify {Ψm(x, y)}m≥0 to be the sequence of Baker-

Akhiezer functions of the dihedral group D2 (see [2]). Now it is stated in [2] that this sequence may also be
constructed from the single initial condition

Ψ0(x, y) = 1

and the recursion
Ψm(x, y) = x∂x Ψm−1(x, y) − (2m − 1)Ψm−1(x, y) . I.11

We show that also this recursion follows from I.9.

This paper is divided into four sections. In the first section we derive I.6 and I.7. In the second section
we present the combinatorial setting that yields I.8. This is obtained by showning that the polynomials
{Im(z)}m≥1 satisfying

Im(z) = (2m − 1)Im−1(z) + z2Im−2(z) (with I0(z) = 1 and I1(z) = 1 + z)

are given by the formula

Im(z) =
m∑

k=1

Ik
2m−k zk . I.12

In section 3 we use a bijection of L. Favreau to show that I.12 is equivalent to the generating function identity

1 + z
∑
m≥0

Im−1(z)
um

m!
= ez(1−

√
1−u) . I.13

This yields I.9. We terminate the section by proving the implications in I.10. Moreover, we show there
that I.9 is the only exponential formula which is consistent with I.9. In section 4 we show that I.13 can
also be obtained by a simple manipulatorial argument. We also prove I.11 and again show that I.9 is the
only exponential formula which is consistent with the recursion in I.11. We terminate the section with the
proof of I.2 and I.3. We should mention that polynomials closely related to I.12 have also emerged from a
different context in the works of B. Leclerc [6] and B. Leclerc and J.-Y. Thibon [7]. In [6] these polynomials
are obtained as univariate specializations of staircase Schur functions. This suggests the possibility that
the Baker-Akhiezer functions of Sn might be related to appropriate multivariate specializations of staircase
Schur functions. Since all that is known so far about the Baker-Akhiezer functions is anything but explicit,
such a development would be quite remarkable and worth further investigation.
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1. The recursion
We shall start by constructing all polynomials Pm(x, y ) of degree m in x such that the formal power

series
Ψm(x, y) = Pm(x, y)

∑
s≥0

xsys

s!

satisfies (B). To this end it will be convenient to write Pm(x, y) in the form

Pm(x, y) =
m∑

r=0

ar(y) yrxr . 1.1

A priori, doing this, may result in the coefficients ar(y) having powers of y in the denominator. However
this will not happen as we shall see.

To begin note that we can write

Ψm(x, y) − Ψm(−x, y) = 2
∑

r+s=odd

ar(y)
s!

yr+sxr+s 1.2

with the convention that ar(y) = 0 for r > m. Thus (B) may be expressed as the system of equations
∑

r+s=2k+1

ar(y)
s!

xr+s = 0 (for k = 0, 1, . . . , m − 1) 1.3

It will be illuminating to view this system in a special case. For instance for m = 6 we get

a0

1!
+

a1

0!
= 0

a0

3!
+

a1

2!
+

a2

1!
+

a3

0!
= 0

a0

5!
+

a1

4!
+

a2

3!
+

a3

2!
+

a4

1!
+

a5

0!
= 0

a0

7!
+

a1

6!
+

a2

5!
+

a3

4!
+

a4

3!
+

a5

2!
+

a6

1!
= 0

a0

9!
+

a1

8!
+

a2

7!
+

a3

6!
+

a4

5!
+

a5

4!
+

a6

3!
= 0

a0

11!
+

a1

10!
+

a2

9!
+

a3

8!
+

a4

7!
+

a5

6!
+

a6

5!
= 0

1.4

Thus we may express a1, a2, . . . , a6 in terms of a0 by solving the system
a1

0!
= −a0

1!
a1

2!
+

a2

1!
+

a3

0!
= −a0

3!
a1

4!
+

a2

3!
+

a3

2!
+

a4

1!
+

a5

0!
= −a0

5!
a1

6!
+

a2

5!
+

a3

4!
+

a4

3!
+

a5

2!
+

a6

1!
= −a0

7!
a1

8!
+

a2

7!
+

a3

6!
+

a4

5!
+

a5

4!
+

a6

3!
= −a0

9!
a1

10!
+

a2

9!
+

a3

8!
+

a4

7!
+

a5

6!
+

a6

5!
= − a0

11!

1.5



On the Baker-Akhiezer functions October 26, 2003 5

Thus the existence and uniqueness of the solution, given a0, depends on the non-vanishing of the determinant

D5 = det

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1
1!

1
0! 0 0 0

1
3!

1
2!

1
1!

1
0! 0

1
5!

1
4!

1
3!

1
2!

1
1!

1
7!

1
6!

1
5!

1
4!

1
3!

1
9!

1
8!

1
7!

1
6!

1
5!

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1.6

In the general case the corresponding determinant is

Dm−1 = det
∥∥∥ 1

(2i − j)!

∥∥∥m−1

i,j=1
. 1.7

Now it is well known (see [8] ) that for a given λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) � n the expression

fλ = n! det
∥∥∥ 1

(λi + j − i)!

∥∥∥k

i,j=1

gives the number of standard tableaux of shape λ. Thus from the Frame-Robinson-Thrall formula we derive
that

det
∥∥∥ 1

(λi + j − i)!

∥∥∥k

i,j=1
=

1
hλ

1.8

where hλ is the product of the hooks of λ. In particular, for λ = (m − 1, m − 2, . . . , 2, 1) 1.8 reduces to

det
∥∥∥ 1

(m − i + j − i)!

∥∥∥m−1

i,j=1
=

1
(2m − 3)!! · · · 3!! · 1!!

. 1.9

Since

det
∥∥∥ 1

(m − i + j − i)!

∥∥∥m−1

i,j=1
= det

∥∥∥ 1
(2i − j)!

∥∥∥m−1

i,j=1

from 1.7 we get that

Dm−1 =
1

(2m − 3)!! · · · 3!! · 1!!
. 1.10

In particular

D5 =
1

9!! · 7!! · 5!! · 3!! · 1!!
.

This proves that the system in 1.5 and more generally the system in 1.3 has a unique solution for any given
choice of a0(y).
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Thus we can state

Theorem 1.1
If the constants c

(m)
1 , c

(m)
2 , . . . , c

(m)
m are obtained by solving 1.3 for a0 = 1, then every polynomial

Pm(x, y), of degree ≤ m in x such that Ψm(x, y) = Pm(x, y)exy satisfies (B) may be written in the form

Pm(x, y) = u(y)pm(x, y)

with

pm(x, y) = 1 +
m∑

r=1

c(m)
r (xy)r 1.11

In particular the symmetry condition Pm(x, y) = Pm(y, x) forces u(y) to be a constant as well.

To identify the polynomial in 1.11 we need two auxiliary results

Proposition 1.1
For all m ≥ 1 we have

pm(x, y)
∣∣
xm = (−1)m

(2m−1)!! ym 1.12

Proof
Let us view again the special case m = 6. Here, an application of Cramer’s rule to the system in 1.5

(with a0 = 1) yields that

c
(6)
6 =

1
D5

det

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1
0! 0 0 0 0 − 1

1!

1
2!

1
1!

1
0! 0 0 − 1

3!

1
4!

1
3!

1
2!

1
1!

1
0! − 1

5!

1
6!

1
5!

1
4!

1
3!

1
2! − 1

7!

1
8!

1
7!

1
6!

1
5!

1
4! − 1

9!

1
10!

1
9!

1
8!

1
7!

1
6! − 1

11!

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
or better

c
(6)
6 =

(−1)5

D5
det

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

− 1
1!

1
0! 0 0 0 0

− 1
3!

1
2!

1
1!

1
0! 0 0

− 1
5!

1
4!

1
3!

1
2!

1
1!

1
0!

− 1
7!

1
6!

1
5!

1
4!

1
3!

1
2!

− 1
9!

1
8!

1
7!

1
6!

1
5!

1
4!

− 1
11!

1
10!

1
9!

1
8!

1
7!

1
6!

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

=
(−1)6

D5
D6 =

(−1)6 9!! · 7!! · 5!! · 3!!
11!! · 9!! · 7!! · 5!! · 3!!

=
(−1)6

11!!
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It is easily seen that in the general case we will get

c(m)
m =

(−1)m

Dm−1
Dm =

(−1)m

(2m − 1)!!
.

This proves 1.12.

Remark 1.1

We should note that Theorem 1.1 together with 1.12 imply that any polynomial Pm(x, y) which
satisfies (B) must be of degree at least m in x or identically vanish. Let us keep in mind this fact since it
will play a crucial role later.

Proposition 1.2
The polynomials of degree at most m + k

q(x, y) =
m+k∑
r=1

dr(xy)r

such that Ψm(x, y) = q(x, y)exy satisfies (B) span a k + 1-dimensional vector space.

Proof

Let us view the argument in a special case. For instance for m = 6 and k = 1 the constants
d0, d1, d2, . . . , d7 must satisfy the homogeneous system

d1

0!
= −d0

1!
d1

2!
+

d2

1!
+

d3

0!
= −d0

3!
d1

4!
+

d2

3!
+

d3

2!
+

d4

1!
+

d5

0!
= −d0

5!
d1

6!
+

d2

5!
+

d3

4!
+

d4

3!
+

d5

2!
+

d6

1!
= −d0

7!
− d7

0!
d1

8!
+

d2

7!
+

d3

6!
+

d4

5!
+

d5

4!
+

d6

3!
= −d0

9!
− d7

2!
d1

10!
+

d2

9!
+

d3

8!
+

d4

7!
+

d5

6!
+

d6

5!
= − d0

11!
− d7

4!

1.13

and the non-vanishing of the determinant in 1.6 yields that d1, d2, . . . , d6 are uniquely determined by d0 and
d7. Since the latter may be arbitrarily prescribed we see that in this case the polynomials q(x, y) span a
2-dimensional space. It should be clear that an analogous argument can be carried out in the general case.

The special case k = 1 of this result completely characterizes the sequence {pm(x, y)}m≥0. More
precisely we have
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Theorem 1.2
The polynomials pm(x, y) given by 1.11 statisfy the recurrence

pm+1(x, y) = pm(x, y) +
(xy)2

(2m + 1)(2m − 1)
pm−1(x, y) 1.14

together with the initial conditions

p0(x, y) = 1 , p1(x, y) = 1 − xy . 1.15

Proof
Our definition of pm+1(x, y), pm(x, y) and pm−1(x, y) assures that the differences

pm+1(x, y)exy − pm+1(−x, y)e−xy

pm(x, y)exy − pm(−x, y)e−xy

(xy)2pm−1(x, y)exy − (−xy)2pm−1(−x, y)e−xy

are all divisible by x2m+1. Thus these three polynomials belong to a vector space of polynomials of degree
at most m + 1 which, by Proposition 1.1, is 2 dimensional. Since pm(x, y) and (xy)2pm−1(x, y) are linearly
independent, there must be coefficients a(y) and b(y) yielding

pm+1(x, y) = a(y) pm(x, y) + b(y) (xy)2pm−1(x, y) . 1.16

Since by construction pm+1(0, y) = pm(0, y) = 1, setting x = 0 in 1.16 gives a(y) = 1. On the other hand,
equating coefficients of xm+1, Proposition 1.1 gives

(−1)m+1

(2m + 1)!!
ym+1 = b(y)

(−1)m+1

(2m − 3)!!
ym+1

or better
b(y) = (2m + 1)(2m − 1) .

Thus 1.14 must hold true precisely as asserted. The initial conditions in 1.15 are forced by the condition
pm(0) = 1 and 1.12 for m = 1.

It will be convenient here and after to set

Wm(z) = 1 +
m∑

r=1

c(m)
r zm 1.17

so that we may write
pm(x, y) = W (xy) . 1.18

In this notation, Theorem 1.2 simply states that the sequence {Wm(z)}m≥0 statisfies the recursion

Wm(z) = Wm−1(z) +
z2

(2m − 1)(2m − 3)
Wm−2(z) 1.19
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with initial conditions
W0(z) = 1 , W1(z) = 1 − z . 1.20

Combining 1.12 and 1.18 we get that the polynomial Pm(x, y) satisfying (A) and (B) may now be expressed
as

Pm(x, y) = (−1)m(2m − 1)!!Wm(xy) 1.21

2. Counting involutions.
Solving the recursion in 1.19 with the initial conditions in 1.20 produces a sequence of polynomials

with rational coefficients of alternating signs. However, the underlying combinatorial mechanism yielding
these polynomials quickly emerges by working with the sequence

Im(z) = (2m − 1)!!Wm(−z) 2.1

In fact, multiplying both sides of 1.19 by (2m − 1)!! and replacing z by −z we get

(2m − 1)!!Wm(−z) = (2m − 1) × (2m − 3)!!Wm−1(−z) + z2(2m − 5)!!Wm−2(z)

and 2.1 gives
Im(z) = (2m − 1)Im−1(z) + z2Im−2(z) , 2.2

and the initial conditions
I0(z) = 1 , I1(z) = 1 + z . 2.3

Starting from 2.3 and iterating according to 2.2 we obtain

I0 = 1
I1 = 1 + z

I2 = 3 + 3 z + z2

I3 = 15 + 15 z + 6 z2 + z3

I4 = 105 + 105 z + 45 z2 + 10 z3 + z4

I5 = 945 + 945 z + 420 z2 + 105 z3 + 15 z4 + z5

It develops that a work of L. Favreau [3] yields a combinatorial interpretations for these coefficients. To be
precise, it is stated in [3] (see pp. 72 and 76) that the sequence of polynomials Bm(z) which satisfies the
recursion

Bm(z) = (2m − 1)zBm−1(z) + Bm−2(z) , 2.4

with initial conditions Bo(z) = 1 and B1(z) = 1 + z may be expressed in the form

Bm(z) =
m∑

k=0

Ik
2m−kzm−k 2.5

where Ik
2m−k gives the number of involutions in S2m−k with k fixed points. Note that if we replace z by 1/z

in 2.4 and multiply both sides by zm we get

zmBm(1/z) = (2m − 1)zm−1Bm−1(1/z) + z2zm−2Bm−2(1/z) ,
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Comparing with 2.2 we see that we must have

Im(z) = zm Bm(1/z) 2.6

thus from 2.5 we derive that

Im(z) =
m∑

k=0

Ik
2m−kzk 2.7

and 2.1 gives

Wm(z) =
1

(2m − 1)!!

m∑
k=0

(−1)kIk
2m−k zk . 2.8

The relation in 2.5 is proved in [3] by a combinatorial argument. We can show 2.7 here by appropriately
counting involutions. To be precise the expansion in 2.7 is an immediate corollary of the following identity

Proposition 2.1
For all 1 ≤ k ≤ 2m − k we have

Ik
2m−k = (2m − 1)Ik

2m−k−2 + Ik−2
2m−k−2 2.9

Proof
Note that we may construct an involution in Sn by first choosing the fixed points and then pairing-off

the remaining letters into two cycles. For n = 2m− k, k fixed points can be chosen in
(
2m−k

k

)
distinct ways.

This done, the remaing 2m − 2k letters can paired off in (2(m − k) − 1)!! distinct ways. This gives

Ik
2m−k =

(
2m − k

k

)
(2(m − k) − 1)!!

Thus 2.9 simply states that

(
2m − k

k

)
(2(m − k) − 1)!! = (2m − 1)

(
2m − k − 2

k

)
(2(m − k) − 3)!! +

(
2m − k − 2

k − 2

)
(2(m − k) − 1)!!

But this is

(2m − k)!
k!(2m − 2k)!

(2(m − k) − 1)!! = (2m − 1)
(2m − k − 2)!

k!(2m − 2k − 2)!
(2(m − k) − 3)!!

+
(2m − k − 2)!

(k − 2)!(2m − 2k)!
(2(m − k) − 1)!!

cancelling common factors and multiplying by k(k − 1)(2m − 2k) gives

(2m − k)(2m − k − 1) = (2m − 1)(2m − 2k) + k(k − 1)

which is easily seen to be true for k = 1, k = 0 and k = m. This proves 2.9.

From 2.9 we derive that the polynomial in the right hand side of 2.7 satisfies the same recursion as
Im(z). Since we may take I0

0 = 1 and I0
1 = I1

1 = 1 these polynomials satisfy also the same initial conditions,
and the equalities in 2.7 and 2.8 necessarily follow.
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We can thus state the basic result of this section
Theorem 2.1

The polynomial Pm(x, y) uniquely characterized by (A) and (B) has the explicit expansion

Pm(x, y) =
m∑

k=0

(−1)m−kIk
2m−k (xy)k 2.10

Proof
Formula 2.10 is an immediate consequence of 2.8 and 1.21.

Remark 2.1
The combinatorial proof of the identity in 2.9 given in [3] is quite interesting and is worth including

here. To begin, set N = 2m−k and denote by Ik
N , Ik

N−2 and Ik−2
N−2 respectively the collections of involutions

on N , N −2 letters with k and k−2 fixed points. This given, to establish 2.8 we need only exhibit a bijection
sending Ik

N onto the union of 2m − 1 copies of Ik
N−2 together with a copy of Ik−2

N−2. We can easily see that
this bijection is simply obtained by “removing” N and N − 1 from the graphic representation of elements
of Ik

N . Indeed, if an element e ∈ Ik
N has both N and N − 1 as fixed points the resulting element e′ falls in

Ik−2
N−2. If neither N and N − 1 are fixed points, and (N, N − 1) is a cycle of e then this removal produces an

element of Ik
N−2. If N and N − 1 occur in different cycles (N, i) and (N − 1, j), we simply remove N, N − 1

and join i, j into a cycle. To remember how this cycle was created by the operation, we consider the resulting
involution of SN−2 as the element e′ of Ik

N−2 with the cycle (i, j) rendered with i in red and j in blue. This
operation requires 2m− 2k− 2 copies Ik

N−2, since there are 2 different ways of coloring one of the m− k− 1
2-cycles of an element of Ik

N−2. Finally two possibilities remain. We could have N − 1 as fixed point and a
cycle (N, i), or N as fixed point and a cycle (N − 1, i). Here we remove N and N − 1 and make i into a fixed
point colored red in the first case and blue in the second case. In this instance we need 2k copies of Ik

N−2

depending on which fixed point is given which color. In summary the removal of N, N − 1 in the manner
indicated above produces: One copy of Ik−1

N−2 and

1 + 2m − k − 2 + 2k = 2m − 1

copies of Ik
N−2.The reversibility of the process yields then the equivalence

Ik
N ≈ Ik−2

N−2 ∪
2m−1⋃
i=1

Ik
N−2

establishing 2.8

3. The generating function
Luc Favreau in [3] goes on to construct by a beautiful combinatorial argument the exponential

generating function of the polynomials Bm(z). To be precise, in the present notation, it is proved in [3]
(section 4.4) that

1 +
∑
m≥1

Bm−1(x)
tm

m!
= e

1−
√

1−2xt

x . 3.1

Replacing x by 1/z and t by uz we get

1 +
∑
m≥1

Bm−1(1/z)
(uz)m

m!
= ez(1−

√
1−2u ) .
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and 2.6 gives

1 + z
∑
m≥1

Im−1(z)
um

m!
= ez(1−

√
1−2u ) . 3.2

Luc Favreau’s argument may be used to give a direct and slightly simpler proof of this identity. We reproduce
it here for sake of completeness. To do this we need to review the combinatorics of “exponential structures ”.

For each k ≥ 1 we are given a finite deck of cards Dk. In each card γ ∈ Dk there is a figure which
contains k circles respectively indexed by the letters 1, 2, . . . , k. Given a partition π = (E1, E2, . . . , Er) of the
set {1, 2, . . . , n} with parts of cardinalities k1, k2, . . . , kr , a composite deck of r cards is obtained by picking a
card γi from the deck Dki

and filling its circles with the elements of Ei. To be precise, if Ei = {j1, j2, . . . , jki
}

then in the circle of γi indexed by s we place js. Let us denote the resulting card by γi(Ei). We thus obtain
a composite deck

ρ(π, γ) =
(
γ1(E1), γ2(E2), . . . , γr(Er)

)
. 3.3

Denoting by Πn,r the collection of set partitions π = (E1, E2, . . . , Er) of {1, 2, . . . , n} the family of composite
decks

E({Dk}k≥1) =
⋃
n≥1

n⋃
r=1

{(
γ1(E1), γ2(E2), . . . , γr(Er)

)
: (E1, E2, . . . , Er) ∈ Πn,r & γi ∈ D|Ei|

}

is called “the exponental structure ” generated by the collection D = {Dk}k≥1. It is customary to give
the composite deck ρ(π, γ) in 3.3 a weight w(ρ(π, γ)) which is a monomial whose factors account for some
characteristic features of the deck. For our purposes here it is sufficient to set

w(ρ(π, γ)) =
zrun

n!
.

This given, one of the earliest results of enumeration theory states that

1 +
∑

ρ∈E(D)

w(ρ) = exp
(
z

∑
k≥1

|Dk|
uk

k!

)
3.4

Denoting by pn(z,D) the polynomial

pn(z,D) =
n∑

r=1

∑
(E1,E2,...,Er)∈Πn,r

γi∈D|Ei|

zr 3.5

the identity in 3.4 may be rewritten as

1 +
∑
n≥1

pn(z,D)
un

n!
= exp

(
z

∑
k≥1

|Dk|
uk

k!

)
. 3.6

We call this the “Exponential Formula ” yielded by the family of decks D = {Dk}k≥1
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Note now that we have the power series expansion

1 −
√

1 − 2u = u +
∑
k≥2

(2k − 3)!!
uk

k!

Thus to prove 3.2 we need to work with a family D = {Dk}k≥1 where Dk for k ≥ 2 has cardinalty
(2k − 3)!!. The present context strongly suggests that we should take Dk (for k ≥ 2) to be a family of cards
each depicting an involution consisting of k−1 two-cycles. Luc Favreau’s ingenious choice is simply to insert
an additional fixed point. The cards used in [3] are best understood through examples. For instance the
figure below gives a typical card in D4

3.7

Each of the first 3 ovals here represents a 2-cycle, the last represents a fixed point. Note that the first oval
can be constructed in 5 different ways, this done for the second we have only 3 choices and the last is forced.
So we see that our deck D4 contains 5×3 = 15 cards. As required each card has four circles indexed 1, 2, 3, 4.
The figure below exhibits a card of D5

3.8

Now suppose we are given a 3-part partition Π = (E1, E2, E3) of the set of {1.2. . . . , 13} with

E1 = {1, 3, 5, 10} , E2 = {2, 4, 6, 8, 13} E3 = {7, 9, 1, 12}
)

.

As customary, the parts of a partitions are ordered by increasing minimal elements. To construct a composite
deck from this partition we must select γ1, γ3 ∈ D4 and γ2 ∈ D5. Suppose we take the card in 3.7 for both
γ1 and γ3 and the card in 3.8 for γ2. Then according to the recipe above the resulting composite deck is as
illustrated below.

3.9
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The trick now is to see that this is none other than an involution in disguise. To be precise, in order
to obtain 3.2 from 3.6. we must show that for this particular collection of decks D we have

pm(z;D) = z Im−1(z) 3.10

Since the composite deck in 3.9 has weight z3 u13/10!, it must turn out to be one of those contributing
to I12(z). More specifically, the fact that z factors out in 3.10, forces this deck to one of those counted
by I2

2×12−2. In summary, 3.9 must represent an involution with two fixed points in S22. This requires an
algorithm which transforms the labeling in 3.9 into an appropriate labelling, by 1, 2, . . . , 23, of all the nodes
in 3.9 (circles and dots included). The algorithm presented in [3] produces such a relabeling with the highest
label falling on a fixed point. The removal of this fixed point produces the desired target involution.

In the general case Luc Favreau’s relabeling process defines a map Φ which sends a composite
deck ρ = ρ(π, γ) with k + 1 cards and labels 1, 2, . . . , m onto an involution σ = Φ(ρ) with k fixed points in
S2(m−1)−k. The invertibility of Φ assures that we have the bijection between composite decks and involutions
that is needed to establish 3.2.

It will suffice to give a brief description of Luc Favreau’s relabeling process in the particular case
of the composite deck of 3.9. This process is quite simple. In this case we are to ultimately place the
labels 1, 2, . . . , 23 in the 23 nodes of the composite deck. At the ith step of the process the final labels
1, 2, . . . i−1 have been placed. At the same time there will be a number of “discarded ” labels and a number
of “candidate ” labels which include the label i. The card γ that contains the label i is located and i is
converted into a final label if to the left of i in γ there are no unlabelled nodes, otherwise the left-most
unlabelled node of γ is given the label i and each candidate label j > i is discarded and replaced by a new
candidate label j + 1. At the start of the process all the labels are candidate. In this example the starting
configuration is 3.9 and 1, 2, . . . , 13 are all candidate labels. Now 1 has no unlabeled node to the left, so it
becomes final. The same for 2 and 3. However 4 has an unlabelled node to the left so that node is given
the final label 4 and the candidate labels 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 are discarded and respectively replaced
by the new candidate labels 5, 6, 7, 8, 9, 10, 11, 12, 13, 14. Now the candidate label 5 has no unlabelled nodes
to its left and it becomes final. The same holds true for the candidate labels 6, 7, 8, 9, 10. Next, 11 has
a unlabelled node to its left. That node gets the final label 11 and the candidate labels 11, 12, 13, 14 are
discarded and replaced by the candidate labels 12, 13, 14, 15. It should be now quite clear how this labeling
process is continued. The display below gives the target involution. All the final labels are in clear circles.
The labels in the shaded circles are the discarded original labels. We have also listed in succession all the
discarded candidate labels. The target involution is obtained by removing the fixed point labeled 23.

3.11
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We should note that at any step of the process the final labels as well as the candidate labels increase
from left to right in each card. This fact uniquely determines the reverse process which yields the inverse of
the map Φ.

To be precise, given an involution σ ∈ SN (N = 2(m−1)−k) with k fixed points we are to construct
the composite deck ρ = ρ(π, γ) with k + 1 cards and labels 1, 2, . . . , m such that .

Φ(ρ) = σ

Of course the reverse process must start by adding a fixed point with label N + 1. This done, the process
must relable all the nodes of σ and at the same time construct the k + 1 cards of ρ by assigning each two-
cycle of σ to an appropriate fixed point. To carry this process it is helpful to draw σ with its nodes labelled
1, 2, . . . , N + 1 drawn from left to right on a straight line. In this manner each two cycle (i, j), with i < j,
will appear with i to the left of j as in the figure below where for clarity we have represented a two-cycle
(i, j) as a path from i to j. We will call i the “head ” and j the “tail ” of (i, j)

3.12

The reader may recognize this as the involution in 3.11 with N + 1 = 23 and k = 2. It should be clear at
the start that all the two-cycles whose tail is to the right of the kth fixed point must be assigned to the last
fixed point. Thus in this case the first step of the relabeling process is to assign the cycle (9, 22) to the last
fixed point, remove the label 22, discard 23 and replace it by 22. In the next step, we assign (5, 21) to the
last fixed point, remove the label 21, discard 22 and replace it by 21. Next, we assign (7, 20) to the last fixed
point, remove the label 20, discard 21 and replace it by 20.

In this process, when we operate on the label r all the cycles (i, j) with j > r have already been
assigned to a fixed point and their tails have no longer a label. There are two cases to be considered according
as a) r is a head of a cycle c or b) r is a tail of c. In the first case c has already been assigned and its tail
has no label. We leave r alone and proceed to operate on r− 1. In case b) we know that in the construction
of Φ the label r was inherited from the head of a cycle c′ to the right of it in the same card. At this stage
c′ is easily identified. It is precisely the cycle whose head has label r + 1. If c′ is a fixed point then we
assign c to c′. If c′ is a two-cycle then at this time c′ has already been assigned to a fixed point and we are
forced to assign c to the same fixed point. In either case we move r from the tail of c to the head of c′ and
decrease by one all the labels greater than r. After we finish processing the label 1 only the heads of the
m− k − 1 two-cycles have a label and since there are k + 1 fixed points the end product is a composite deck
ρ(π, γ) with k + 1 cards with labels 1, 2, . . . , m. The parts of the partition π are then the k + 1 subsets of
{1, 2, . . . , m} obtained by reading the labels from each of the cards. The k + 1 components of γ will then be
given by the geometry of the cards induced by the rectilinear diagram of the original involution σ.

This completes the proof of 3.2.

We can now derive the main result of this section
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Theorem 3.1
The sequence

Ψm(x, y) = Pm(x, y) exy 3.13

is generated by the exponential formula

exy + xy
∑
m≥1

Ψm−1(x, y)
um

m!
= exp

(
xy

√
1 + 2u

)
3.14

Proof
Note that 2.1 and 1.21 give

Pm(x, y) = (−1)mIm(−xy) . 3.15

Making the replacement z→− xy in 3.2 we obtain

1 − xy
∑
r≥1

Im−1(−xy)
um

m!
= exy (

√
1−2u−1)

and the change of sign u→− u gives

1 + xy
∑
r≥1

(−1)m−1Im−1(−xy)
um

m!
= exy (

√
1+2u−1) .

Using 3.15 we now get

1 + xy
∑
r≥1

Pm−1(x, y)
um

m!
= exy (

√
1+2u−1) .

Multiplying both sides by ex y and using 3.13 yields 3.14 as desired.

Our next task is to show that 3.14 implies (C). What is remarkable at this point is that 3.14 is in
fact, equivalent to (C). To begin with we have

Theorem 3.2
The sequence Ψm(x, y) with initial conditions

Ψ0(x, y) = exy , Ψ1(x, y) = (xy − 1)exy

generated by the exponential formula

exy + xy
∑
r≥1

Ψm−1(x, y)
um

m!
= exy f(u) , 3.16

satisfies the differential equation

(
∂2

x − 2m

x
∂x

)
Ψm(x, y) = y2 Ψm(x, y) . 3.17

if and only if

f(u) =
√

1 + 2u . 3.18
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Proof
It is convenient to simplify our notation and set

Ψm(x, y) = Ψm(xy)

with {Ψm(z)}m≥0 a sequence of formal power series in z satisfying the initial conditions

Ψ0(z) = ez , Ψ1(z) = (z − 1)ez . 3.19

With this notation we see that 3.17 will hold true if and only if for all m ≥ 1 we have

Ψ′′
m−1(z) − 2(m − 1)

z
Ψ′

m−1(z) = Ψm−1(z) . 3.20

Thus we need to show that if
ez + z

∑
m≥1

Ψm−1(z)
um

m!
= ez f(u) , 3.20

then 3.19 and 3.20 are equivalent to 3.18.
To this end note that applying the operator u∂u to both sides of 3.20 we get

∑
m≥1

m Ψm−1(z)
um

m!
= uf ′(u) ez f(u) .

and this differentiated by z gives

∑
m≥1

m Ψ′
m−1(z)

um

m!
= uf(u)f ′(u) ez f(u) . 3.21

On the other hand differentiating twice by z both sides of 3.20 we get

ez + 2
∑
m≥1

Ψ′
m−1(z)

um

m!
+ z

∑
r≥1

Ψ′′
m−1(z)

um

m!
=

(
f(u)

)2
ez f(u) ,

and subtracting from this twice 3.21 gives

ez + z
∑
m≥1

(
Ψ′′

m−1(z) − 2(m − 1)
z

Ψ′
m−1(z)

)um

m!
=

(
f2 − 2uff ′)ez f .

Subtracting 3.20 we are finally brought to the identity

z
∑
m≥1

(
Ψ′′

m−1(z) − 2(m − 1)
z

Ψ′
m−1(z) − Ψm−1(z)

)um

m!
=

(
f2 − 2uff ′ − 1

)
ez f ,

which shows that 3.20 is equivalent to
f2 − 2uff ′ = 1 .
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Now this may be rewritten in the form (
f2 − 1

)′
f2 − 1

=
1
u

So for some constant c we must have
f2 − 1 = c u

or better
f(u) = ±

√
1 + c u 3.22

The argument is completed by showing that the initial conditions in 3.19 force “+” and c = 2 in 3.22 giving

f(u) =
√

1 + 2u

as desired.

To complete the implications in I.10 we need to show

(C) =⇒ (i) 3.23

But to do that we need the following auxiliary result

Proposition 3.1
Let P (x, y) and Q(x, y) be homogeneous polynomials of degrees r and r − 2 such that

(∂2
x − 2m

x ∂x)P (x, y) = Q(x, y) 3.24

then

x2m+1
∣∣ (

Q(x, y) − Q(−x, y)
)

3.25

implies

x2m+1
∣∣ (

P (x, y) − P (−x, y)
)

3.26

Proof
Let us write

Q(x, y) =
r−2∑
s=0

qsx
syr−2−s and P (x, y) =

r∑
s=0

psx
syr−s 3.27

then we have have 3.25 if and only if

q2s+1 = 0 for 0 ≤ s ≤ m − 1 3.28

and analogously we have 3.26 if and only if

p2s+1 = 0 for 0 ≤ s ≤ m − 1 3.29

Thus we need to show that, in the presence of 3.24, 3.28 implies 3.29. To this end note first that since
∂2

xP (x, y) and Q(x, y) are polynomials it follows from 3.24 that ∂xP (x, y) must be divisible by x. This
already gives

p1 = 0 .
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This given, using the expansions in 3.27, equation 3.2 translates into the identity

r∑
s=2

s(s − 1 − 2m))psx
s−2yr−s =

r−2∑
s=0

qsx
syr−2−s . 3.30

Equating coefficients of powers of x 3.30 gives:
(a) for an even power x2i

p2i =
q2i−2

2i(2i − 1 − 2m)

(b) and for an odd power x2i+1 with i 
= m

p2i+1 =
q2i−1

(2i + 1)2(im)

Thus 3.28 implies 3.29 as desired, completing our proof.

As a corollary we derive that
Theorem 3.3

Let Ψ(x, y) be a formal power series

Ψ(x, y) =
∑
r≥0

Ψ(r)(x, y) 3.31

with Ψ(r)(x, y) a homogeneous polynomial of degree r and suppose that

(
∂2

x − 2m
x ∂x

)
Ψ(x, y) = y2Ψ(x, y) 3.32

then

x2m+1
∣∣ (

Ψ(x, y) − Ψ(−x, y)
)

3.33

Proof
Note that 3.31 and 3.32 give

∑
r≥0

(
x∂2

x − 2m ∂x

)
Ψ(r)(x, y) =

∑
r≥0

x y2Ψ(r)(x, y) .

So we must have (
x∂2

x − 2m ∂x

)
Ψ(r)(x, y) = 0 for 1 ≤ r ≤ 3 3.34

and (
x∂2

x − 2m ∂x

)
Ψ(r)(x, y) = x y2Ψ(r−4)(x, y) for r ≥ 4 3.35

In either case ∂xΨ(r)(x, y) must be divisible by x. Thus writing

Ψ(r)(x, y) =
r∑

s=0

c(r)
s xsyr−s
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we must have c
(r)
1 = 0 ∀ r ≥ 1.

Using this fact we can easily derive that

Ψ(1)(x, y) = c
(1)
0 y , Ψ(2)(x, y) = c

(2)
0 y2 , Ψ(3)(x, y) =




c
(3)
0 y3 + c

(3)
3 x3 if m = 1,

c
(3)
0 y3 if m 
= 1,

and we see that

x2m+1
∣∣ (

Ψ(r)(x, y) − Ψ(r)(−x, y)
)

3.36

for r = 0, 1, 2, 3. But then 3.35 and Proposition 3.1 give that 3.36 must hold as well for all r ≥ 4 proving the
theorem.

Remark 3.1
It is interesting to see how condition (B) comes out of I.9. To this end note that I.9 gives

exy + e−xy + x y
∑
m≥1

(
Ψm−1(x, y) − Ψm−1(−x, y)

) um

m!
=

= exp
(
xy

√
1 + 2u

)
+ exp

(
− xy

√
1 + 2u

)

=
∑
k≥0

1
k!

[(
xy

√
1 + 2u

)k

+
(
− xy

√
1 + 2u

)k]
= 2

∑
k≥0

(xy)2k

2k!
(
1 + 2u

)k

= 2
∑
k≥0

(xy)2k

2k!

k∑
r=0

(
k

r

)
(2u)r

= 2
∑
r≥0

(2u)r
∑
k≥r

(
k

r

)
(xy)2k

2k!
.

Thus equating coefficients of um+1 yields

(
Ψm(x, y) − Ψm(−x, y)

) xy

(m + 1)!
= 2m+2

∑
k≥m+1

(
k

m + 1

)
(xy)2k

2k!

or better yet

Ψm(x, y) − Ψm(−x, y) = 2m+2
∑

k≥m+1

1
(k − m − 1)!

(xy)2k−1

2k(2k − 1)!!
,

which is a rather nifty version of (B).
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4. Further amenities
In this section, to recover from the combinatorial extravanganzas of last two sections, we shall only

derive manipulatorial consequences of our definitions. The sobering thought is that there is a rather simple
purely manipulatorial proof of the exponential formula in I.9. In fact, it is easily seen that to by-pass
the combinatorics of the last two sections we need only show that the polynomials Im(z) defined by the
generating function in 3.2 satisfy the recurrence in 2.2 together with the initial conditions in 2.3.

To this end note that we can write

1 + z
∑
m≥1

Im−1(z)
um

m!
= ez(1−

√
1−2u) = ez

∑
k≥0

(−z)k(1 − 2u)k/2

k!

= ez
∑
k≥0

(−z)k

k!

∑
r≥0

k/2(k/2 − 1) · · · (k/2 − r + 1)
r!

(−2u)r

= ez
∑
k≥0

(−z)k

k!

∑
r≥0

k(k − 2) · · · (k − 2r + 2)
r!

(−u)r

= ez
∑
r≥0

(−u)r

r!

∑
k≥1

k(k − 2) · · · (k − 2r + 2)
k!

(−z)k

Thus equating coefficients of um+1 gives

z Im(z) = (−1)m+1 ez
∑
k≥1

k(k − 2) · · · (k − 2m − 2 + 2)
k!

(−z)k

or better

Im(z) = ez
∑
k≥1

(−1)m+1−k k(k − 2) · · · (k − 2m)
k!

zk−1 . 4.1

Before we proceed any further we should note that, in spite of appearences, the right hand side of 4.1 can
only yield a polynomial of degree m in z. The reason for this is simple. If the sequence pm(z) is given by
the identity

1 +
∑
m≥1

pm(z)
um

m!
= ezf(u) ,

with f(u) a formal power series

f(u) = u + f1u
2 + · · · + fru

r + · · ·

then for m ≥ 1 we have

pm(z) = m!
∑
k≥1

zk (u + f1u
2 + · · ·)k

k!

∣∣∣
um

= m!
m∑

k=1

zk (u + f1u
2 + · · · + fmum)k

k!

∣∣∣
um

Keeping this in mind, to complete our argument we need only show that the right-hand side of 4.1 satisfies
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the recursion in 2.2 and the initial conditions in 2.3. Now note that 4.1 gives

Im(z) = ez
∑
k≥1

(−1)m+1−k k(k − 2) · · · (k − 2m + 2)
k!

k zk−1

+ 2m ez
∑
k≥1

(−1)m−k k(k − 2) · · · (k − 2m + 2)
k!

zk−1

= ez
∑
k≥1

(−1)m+1−k k(k − 2) · · · (k − 2m + 2)
k!

(k − 1)zk−1 + (2m − 1) Im−1(z)

= z2 ez
∑
k≥3

(−1)m+1−k k(k − 2) · · · (k − 2m + 2)
k!

(k − 1)zk−3 + (2m − 1) Im−1(z)

= z2 ez
∑
k≥3

(−1)m+1−k (k − 4) · · · (k − 2m + 2)
(k − 3)!

zk−3 + (2m − 1) Im−1(z)

= z2 ez
∑
k≥1

(−1)m+1−k (k − 2) · · · (k − 2m + 4)
(k − 1)!

zk−1 + (2m − 1) Im−1(z)

= z2 ez
∑
k≥1

(−1)m+1−k k(k − 2) · · · (k − 2m + 4)
k!

zk−1 + (2m − 1) Im−1(z)

= z2Im−2(z) + (2m − 1) Im−1(z) .

As for the initial conditions, note that 4.1 gives

I0(z) = ez
∑
k≥1

(−1)m+1−k k

k!
zk−1 = 1

and

I1(z) = ez
∑
k≥1

(−1)2−k k(k − 2))
k!

zk−1

= ez
(
− 1(1 − 2)

1!
+

∑
k≥3

(−1)2−k zk−1)
(k − 1)(k − 3)!

)

= (1 + z +
z2

2
+ · · ·)

(
1 − z2

2
+

∑
k≥4

(−1)2−k zk−1)
(k − 1)(k − 3)!

)

= 1 + z + z3R(z) .

But the factor R(z) must vanish since we know before hand that I1(z), as defined by 3.2, is a polynomial of
degree 1 in z. Thus

I1(z) = 1 + z .

as desired to complete our argument.

Our next task is to show that I.9 implies I.11. What is remarkable again is that I.9 is also equivalent
to I.11. To be precise we have
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Theorem 4.1
The sequence Ψm(x, y) generated by the exponential formula

exy + xy
∑
r≥1

Ψm−1(x, y)
um

m!
= exy f(u) , 4.2

satisfies the recursion

x∂xΨm−1(x, y) − (2m − 1)Ψm−1(x, y) = Ψm(x, y) . 4.3

and the initial condition

Ψ(x, y) = exy 4.4

if and only if

f(u) =
√

1 + 2u 4.5

Proof
Setting again as we did in section 3

Ψm(x, y) = Ψm(xy)

we see that 4.3 and 4.4 hold true if and only if we have

a) zΨ′
m−1(z) − (2m − 1)Ψm−1(z) = Ψm(z) and b) Ψ0(z) = ez . 4.6

This reduces us to showing that a sequence {Ψm(z)}m≥0 defined by

ez + z
∑
m≥1

Ψm−1(z)
um

m!
= ez f(u) , 4.7

with f(u) = u + f2u
2 + · · · a formal powers series, satisfies 4.6 if and only if

f(u) =
√

1 + 2u .

To do this it is convenient to write 4.7 in the form

∑
m≥1

Ψm−1(z)
um

m!
=

ez f(u) − ez

z
4.8

so that the operators z ∂z and u ∂u give

∑
m≥1

zΨ′
m−1(z)

um

m!
= −z

ez f(u) − ez

z2
+ f(u) ez f(u) − ez 4.9

and ∑
m≥1

m Ψm−1(z)
um

m!
= u f ′(u) ez f(u) . 4.10
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Now subtracting from 4.9 twice 4.10 and adding 4.8 we get
∑
m≥1

(
zΨ′

m−1(z) − (2m − 1)Ψm−1(z)
) um

m!
= −z

ez f(u) − ez

z2
+ f(u) ez f(u) − ez

− 2 u f ′(u) ez f(u) +
ez f(u) − ez

z

=
(
f(u) − 2 u f ′(u)

)
ez f(u) − ez .

Thus 4.6 a) is equivalent to

ez +
∑
m≥1

Ψm(z)
um

m!
=

(
f(u) − 2 u f ′(u)

)
ez f(u) . 4.11

Note that we may also write 4.10 in the form
∑
m≥1

Ψm−1(z)
um−1

(m − 1)!
= f ′(u) ez f(u) .

and 4.6 b) gives

ez +
∑
m≥1

Ψm(z)
um

m!
= f ′(u) ez f(u) .

Using this in 4.11 reduces it to

f ′(u) ez f(u) =
(
f(u) − 2 u f ′(u)

)
ez f(u) .

So we have 4.6 a) if and only if
(1 + 2u)f ′(u) = f(u)

Thus, for some constant c, we must have

f = c (1 + 2u)1/2 ,

but then 4.6 b) forces c = 1, as desired.

Our final task is to derive the basic identities satisfied by the Baker-Akhiezer functions of S2.
However, before we can do that we need to establish the following somewhat surprising result.

Proposition 4.1
Let Ψ(x, y;u, v) be a formal power series in its arguments such that

Ψ(x, y;u, v) = P (x, y;u, v) ex y+u v 4.12

with P (x, y;u, v) a polynomial of the form

P (x, y;u, v) = xmym + · · · (terms of x − degree < m) 4.13

Then either of the two conditions

a) x2m+1
∣∣(Ψ(x, y;u, v) − Ψ(−x, y;u, v)

)
, b)

(
∂2

x − 2m
x ∂x + ∂2

u

)
Ψ = (y2 + v2)Ψ 4.14

forces P (x, y; u, v) to be independent of u, v.
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Proof
We may write

Ψ(x, y;u, v) = P0,0(x, y)ex y+u v +
∑

r+s>0

urvsPr,s(x, y) ex y+u v

and condition a) implies that the formal power series Φr,s(x, y) = Pr,s(x, y)ex y satisfies

x2m+1
∣∣(Φr,s(x, y) − Φr,s(−x, y)

)
, 4.15

Moreover 4.13 also implies that only P0,0(x, y) contains the term xmym and all other Pr,s(x, y) must be of
degree less than m in x. But then 4.15 and Remark 1.1 yield that Pr,s(x, y) = 0 for all r + s > 1. This
proves the theorem when Ψ(x, y;u, v) satisfies condition a).

Now suppose that Ψ(x, y;u, v) satisfies b). To begin note that for any polynomial f(x, y;u, v) we
have (

∂u − v
)
ex y+u vf(x, y;u, v) = ex y+u v∂u f(x, y;u, v) .

Successive applications of this identity give that

(
∂u − v

)rΨ(x, y;u, v) = ex y+u v∂r
u P (x, y;u, v) . 4.16

If P (x, y;u, v) were of positive degree in u then we would have an r ≥ 1 for which ∂r
u P (x, y;u, v) is in-

dependent of u and does not vanish. But since the operators ∂2
x − 2m

x ∂x + ∂2
u and ∂u − v commute b)

gives (
∂2

x − 2m
x ∂x + ∂2

u

)(
∂u − v

)rΨ(x, y;u, v) = (y2 + v2)
(
∂u − v

)rΨ(x, y;u, v) 4.17

Recalling that ∂r
u P (x, y;u, v) is independent of u from 4.16 we get that

∂2
u

(
∂u − v

)rΨ(x, y;u, v) = ∂2
uexy+uv∂r

uP (x, y;u, v)

= v2exy+uv ∂r
uP (x, y;u, v)

= v2
(
∂u − v

)rΨ(x, y;u, v)

4.18

and subtracting 4.18 from 4.17 gives

(
∂2

x − 2m
x ∂x

)(
∂u − v

)rΨ(x, y;u, v) = y2
(
∂u − v

)rΨ(x, y;u, v)

and this can be rewritten as

(
∂2

x − 2m
x ∂x

)
exy∂r

uP (x, y;u, v) = y2exy∂r
uP (x, y;u, v) 4.19

Expanding ∂r
uP (x, y;u, v) in powers of v

∂r
uP (x, y;u, v) =

∑
j

fj(x, y) vj 4.20

by equating coefficients of powers of v in 4.19 we deduce that

(
∂2

x − 2m
x ∂x

)
exyfj(x, y) = y2exyfj(x, y) . 4.21
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Now this enters in the realm of Theorem 3.3 which assures us that the formal power series

Φj(x, y) = fj(x, y)exy

must satisfy
x2m+1

∣∣ Φj(x, y) − Φj(−x, y) .

However now we can apply Remark 1.1 again and deduce that fj(x, y) must be a polynomial of degree m in
x or identically vanish. But 4.13 and 4.20 show that the degree of fj in x is no more than m − r − j. Since
r ≥ 1 only the second alternative can hold true. But the vanishing of all fj(x, u) contraddicts the hypothesis
that ∂r

uP (x, y;u, v) does not vanish. This contradiction proves that P (x, y, u, v) is independent of u. This
reduces 4.12 to

Ψ(x, y;u, v) = P (x, y; v) ex y+u v 4.22

and condition b) becomes

(y2 + v2)Ψ =
(
∂2

x − 2m
x ∂x + ∂2

u

)
Ψ

=
(
∂2

x − 2m
x ∂x

)
Ψ + ∂2

uP (x, y; v) ex y+u v

=
(
∂2

x − 2m
x ∂x

)
Ψ + v2Ψ .

That is (
∂2

x − 2m
x ∂x

)
Ψ = y2Ψ . 4.23

Now expanding P (x, y; v) in powers of v

P (x, y; v) = P0(x, y) +
∑

j

vjPj(x, y)

gives
Ψ(x, y;u, v) = P0(x, y)exy+uv +

∑
j≥1

vjPj(x, y) exy+uv

and 4.23 translates into the equalities

(
∂2

x − 2m
x ∂x

)
Pj(x, y) exy = y2Pj(x, y) exy . 4.24

Condition 4.13 assures that only P0(x, y) has degree m in x and all Pj(x, y) have degrees less than m. This
combined with 4.23 and Remark 1.1 forces Pj(x, y) to vanish for all j ≥ 1. Thus also P (x, y; v) is independent
of v and our proof is complete.

Note next that if we set

x =
x1 − x2√

2
, u =

x1 + x2√
2

, y =
y1 − y2√

2
, v =

y1 + y2√
2

. 4.25

then
x1 =

u + x√
2

, x2 =
u − x√

2
, y1 =

v + y√
2

, y2 =
v − y√

2
. 4.26
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and
(a) x2

1 + x2
2 = x2 + u2, (b) y2

1 + y2
2 = y2 + v2 (c) x1y1 + x2y2 = xy + uv , 4.27

Morever for any formal power series f(x1, x2; y1, y2) and g(x, y;u, v) we have

(
∂2

x1
+ ∂2

x2
− 2m

x1−x2
(∂x1 − ∂x2)

)
f(x1, x2; y1, y2) =

=
(
∂2

x + ∂2
u − 2m

x ∂x

)
f
(u + x√

2
,
u − x√

2
;
v + y√

2
,
v − y√

2

)∣∣∣x=
x1−x2√

2
, u=

x1+x2√
2

y=
y1−y2√

2
, v=

y1+y2√
2

. 4.28

as well as(
∂2

x + ∂2
u− 2m

x ∂x

)
g(x, y;u, v) =

=
(
∂2

x1
+ ∂2

x2
− 2m

x1−x2
(∂x1 − ∂x2)

)
g
(x1 − x2√

2
,
x1 + x2√

2
;
y1 − y2√

2
,
y1 + y2√

2

)∣∣∣x1=
u+x√

2
, x2=

u−x√
2

y1=
v+y√

2
, y2=

v−y√
2

. 4.29

We have now all the basic ingredients to identify the Baker-Akhiezer functions of S2. We begin with

Theorem 4.2
If

ΨS2
m (X2, Y2) = PS2

m (X2, Y2) ex1y1+x2y2 4.30

and

PS2
m (X2, Y2) = 2m

m∑
k=0

Ik
2m−k (−1)m−k(x1 − x2)k(y1 − y2)k/2k 4.31

then all the properties in I.1 hold true as well as I.3

Proof If
Ψm(x, y) = Pm(x, y)exy 4.32

with

Pm(x, y) =
m∑

k=0

Ik
2m−k (−1)m−kxkyk 4.33

then Theorem 2.1 assures properties (A), (B), (C) are satisfied. Now from 4.30 and 4.31 and 4.27 (c) it
follows that

ΨS2
m (X2, Y2) = 2mΨm(x, y) euv

∣∣∣x=
x1−x2√

2
, u=

x1+x2√
2

y=
y1−y2√

2
, v=

y1+y2√
2

4.34

and
PS2

m (X2, Y2) = 2mPm(x, y)
∣∣∣x=

x1−x2√
2

, u=
x1+x2√

2

y=
y1−y2√

2
, v=

y1+y2√
2

4.35

Now property I.1 (2) follows from the definition in 4.31 and the fact that Im
m = 1. Property I.1 (3) is

immediate. Property I.1 (i) follows from (B). Note that from (C) it follows that
(
∂2

x + ∂2
u − 2m

x ∂x

)
Ψm(x, y) euv =

(
y2 + v2

)
Ψm(x, y) euv 4.36
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so 4.28, 4.34, 4.36 and 4.27 give

(
∂2

x1
+ ∂2

x2
− 2m

x1−x2
(∂x1 − ∂x2)

)
ΨS2

m (X2, Y2) =
(
∂2

x + ∂2
u − 2m

x ∂x

)
2mΨm(x, y) euv

∣∣∣x=
x1−x2√

2
, u=

x1+x2√
2

y=
y1−y2√

2
, v=

y1+y2√
2

=
(
y2 + v2

)
2mΨm(x, y) euv

∣∣∣x=
x1−x2√

2
, u=

x1+x2√
2

y=
y1−y2√

2
, v=

y1+y2√
2

=
(
y2
1 + y2

2

)
ΨS2

m (X2, Y2)

This proves (ii). It is easily seen that the change of variables in 4.25 together with 4.31 changes I.9 into I.3.
This completes our proof.

To complete our treatment we need to reverse the process and show that under (1) and (2), either
(ii) or (i) force I.2. We will do this by establishing that

Theorem 4.3

I.3 =⇒ (ii) =⇒ (i) =⇒ I.2 4.37

Proof
It should be clear by now that the change of variables exhibited in the last proof can be system-

atically used to transfer relations involving Ψm(x, y) and Pm(x, y) into relations involving ΨS2
m (X2, Y2) and

PS2
m (X2, Y2) and viceversa. So in our remaining arguments we will only outline the steps needed to prove

the implications in 4.37. The first step is to change variables and go from I.3 to I.9. In the second step we
use Theorem 3.2 and go from I.9 to (C). In the third step by a change of variables we go from (C) to (ii).
This establishes “I.3 =⇒ (ii)”. In the fourth step we start with a formal power series

Φm(X2, Y2) = Qm(X2, Y2) ex1y1+x2y2 4.38

with Qm(X2, Y2) a polynomial satisfying

Qm(X2;Y2) = (x1 − x2)m(y1 − y2)m + · · · (terms of x-degree < m ) 4.39

and assume that we have
L(m)Φm(X2, Y2) = (y2

1 + y2
2)Φm(X2, Y2) . 4.40

Here using the variable change in 4.26 yields the polynomial

Pm(x, y;u, v) = 2−mQm(X2, Y2)
∣∣∣x1=

u+x√
2

, x2=
u−x√

2

y1=
v+y√

2
, y2=

v−y√
2

4.41

and the formal power series

Ψm(x, y;u, v) = Φm(X2, Y2)
∣∣∣x1=

u+x√
2

, x2=
u−x√

2

y1=
v+y√

2
, y2=

v−y√
2

= Pm(x, y;u, v) exy+uv 4.42
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which satisfies the equation
(
∂2

x + ∂2
u − 2m

x ∂x

)
Ψm(x, y;u, v) = (y2 + v2)Ψm(x, y;u, v) . 4.43

Since 4.39 and 4.41 yield that

Ψm(x, y;u, v) = xmym + · · · (terms of x-degree < m )

we are brought into the realm of Proposition 4.1 which assures that Ψm(x, y;u, v) is independent of u, v.
rewriting Pm(x, y;u, v) to Pm(x, y) reduces 4.42 to

Ψm(x, y;u, v) = Pm(x, y) exy+uv . 4.44

So 4.43 now gives

(y2 + v2)Ψm(x, y;u, v) =
(
∂2

x + ∂2
u − 2m

x ∂x

)
Ψm(x, y;u, v)

=
(
∂2

x + ∂2
u − 2m

x ∂x

)
Pm(x, y) exy+uv

=
(
∂2

x − 2m
x ∂x

)
Pm(x, y) exy+uv + v2Pm(x, y) exy+uv

=
(
∂2

x − 2m
x ∂x

)
Ψm(x, y;u, v) + v2Ψm(x, y;u, v)

or better (
∂2

x − 2m
x ∂x

)
Ψm(x, y;u, v) = y2Ψm(x, y;u, v) .

Factoring out the exponential euv this reduces to
(
∂2

x − 2m
x ∂x

)
Pm(x, y) exy = y2Pm(x, y) exy+uv .

this brings us into the realm of Theorem 3.3 which assures that the formal series Ψ(x, y) = Pm(x, y) exy

satisfies
x2m+1

∣∣ Ψ(x, y) − Ψ(−x, y) . 4.45

and the change of variables in 4.25 can then be used to convert from 4.45 into

(x1 − x2)2m+1
∣∣ (

Φm(x1, x2;Y2) − Φm(x2, x1;Y2)
)

4.46

completing the proof that
(ii) =⇒ (i) .

In the final part of this proof we start again with a formal power series

Φm(X2;Y2) = Qm(X2;Y2)ex1y1+x2y2

as in the previous part but now, in addition to 4.39, we assume 4.46 rather than 4.40. As before we introduce
the auxiliary polynomial Pm(x, y;u, v) and formal power series Ψm(x, y;u, v) given by 4.41 and 4.42. Here
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we use again Proposition 4.1 except that 4.46 now requires a use of the hypothesis in 4.14 a) rather than
4.14 b). The conclusion is the same: Pm(x, y;u, v) is independent of u, v. This reduces Ψm(x, y;u, v) of the
form

Ψm(x, y;u, v) = Pm(x, y) exy+uv .

with Ψ(x, y) = Pm(x, y) exy satisfying

x2m+1
∣∣ (

Ψ(x, y) − Ψ(−x, y)
)
,

Since 4.39 yields that Pm(x, y) satisfies

Pm(x, y) = xmym + · · · (terms of x-degree < m)

we can use Theorem 2.1 and conclude that

Pm(x, y) =
m∑

k=0

(−1)m−kIk
2m−k (xy)k .

This given, the change of variables in 4.25 proves that Qm(X2;Y2) must be given by the right hand side of
I.2, yielding

(i) =⇒ I.2

and completing our task.
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n. 7 Montreal Sept 1991.

[4] G. Felder and A. P. Veselov, Action of Coxeter Groups on m-harmonic Polynomials and KZ equations

arXiv:math.QA/0108012 v2 3 Oct 2001.

[5] M. Feigin and A. P. Veselov, Quasi-invariants of Coxeter groups and m-harmonmic polynomials,
arXiv:math-ph/0105014 v1 11 May 2001.

[6] B. Leclerc, Powers of staircase Schur functions and symmetric analogues of Bessel polynomials,
Discrete Math. 153 (1996) 213-227

[7] B. Leclerc and J.-Y. Thibon, Analogues symetriques des polynomes de Bessel, C.R.A.S. Paris, 315
(1992) 527-530.

[8] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathematical
Monographs, The Clarendon Press Oxford University Press, New York, 1995, Oxford Science Pub-
lications.


