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Shift Differential Operators
in

The Theory of m-Quasi-Invariants

by

A. M. Garsia and N. Wallach

I. Preamble
Let Xn = {x1, x2, . . . , xn} and set R = Q[Xn]. For a polynomial P (x) = P (x1, x2, . . . , xn) ∈ R and

σ ∈ Sn we set
σP (x1, x2, . . . , xn) = P (xσ1 , xσ2 , . . . , xσn

)

we shall also denote by P [∂x] the differential operator

P (∂x) = P (∂x1 , ∂x2 , . . . , ∂xn
) .

The transposition that interchanges xi and xj will be denoted sij . It is easily shown that for any P ∈ R
and 1 ≤ i < j ≤ n we have the factorization

(1 − sij)P (x) = (xi − xj)1+2rPij(x) I.1

with r ≥ 0, Pij(x) prime with (xi − xj) and symmetric in xi, xj .
This given, a polynomial P (x) ∈ Q[Xn] is said to be “m-quasi-invariant” if and only if the difference

(1 − sij)P (x)

is divisible by (xi − xj)2m+1. The space of m-quasi-invariant polynomials in x1, x2, . . . , xn will here and
after be denoted “QIm[Xn]” or briefly “QIm”. Clearly QIm is a vector space over Q, moreover the simple
identity

(1 − sij) PQ = ((1 − sij) P )Q + (sijP )(1 − sij) Q I.2

shows that QIm is also a ring. Note that we have the inclusions

Q[Xn] = QI0[Xn] ⊃ QI1[Xn] ⊃ QI2[Xn] ⊃ · · · ⊃ QIm[Xn] ⊃ · · · ⊃ QI∞[Xn] = SYM[Xn]

where we have denoted by “SYM[Xn]” the space of symmetric polynomials in x1, x2, . . . , xn.

It was recently proved by Etingof and Ginzburg in [] that for each m and n, QIm[Xn] is a free
module over SYM[Xn] or rank n!. This may be viewed as a beautiful extension of the well known analogous
result for the pair Q[Xn] , SYM[Xn]. Infact the identities derived in [] show a that remarkable multitude
of properties connected with the study of this classical pair generalize almost verbatim to each of the pairs
QIm[Xn] , SYM[Xn]. The proofs in [] contain a variety of identities and properties of various differential
operators on Q[Xn] and QIm[Xn] that are of independent interest. In these notes we shall endeavour to
provide a completely self contained presentation of these developments.
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Dunkl operators are defined and their commutativity is established. Since the proof of the
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We also establish the nature of Om and the operator Ωm = OmOm−1 · · ·O1. Finally we prove
some basic theorems on the actions of Lm, Om and Ωm on the polynomial ring Q[Xn]. This
leads us to the definition of the Baker-Akhieser function Ψm(x, y), which is introduced by
means of the formula Ψm(x, y) = OmOm−1 · · ·O1e

(x,y).

4. The Baker-Akhieser function for Sn

The Baker-Akhieser function plays a central role in the Theory of m-Quasi-Invariants of Sn

So this section dedicated to proving some of its basic properties, including its most elusive
property which is the symmetry in x, y This leads us to the study of the family of functions
Φ(x, y) in two sets of variables x = (x1, x2, . . . , xn) y = (y1, y2, . . . , yn) which are of the form
Φ(x, y) = F (x, y)e(x,y) with F (x, y) a rational function and (x, y) =

∑n
i=1 xiyi. .

5. Some remarkable actions of the Laplace operator.
Powers of the Laplacians convert differentiation into multiplication and powers of the power
symmetric function p2. do the converse. These results are established and used to prove
some basic properties of “Dunklized” symmetric polynomials.

6. sl[2] Theory as it applies to Differential operators on quasi-invariants.
The source of most of the identities established in the previous section is revealed in an sl[2]
setting. This leads to further surprising identities and the fundamental role of m-quasi-
invariants in the construction of the commutant of Lm.

6. A glimpse of the m-Quasi-Invariants of D2

The identities and operators introduced in the previous section are specialised to the D2

setting. The Baker-Akhiezer functions for D2 are defined and shown to have a remarkably
simple exponential generating function. Various properties of Lm and Om are derived by
working directly with this generating function.
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1. Dunkl operators and their basic properties

Since the factorization in I.1 plays an ubiquitous role in our developments, for sake of completeness,
it will be good to establish it at the onset.

Proposition 1.1
For any polynomial P [Xn] and for all for all 1 ≤ i < j ≤ n we have a factorization of the form

(1 − sij)P (x) = (xi − xj)2r+1Pij(x) 1.1

with r ≥ 0 and Pij(x) prime with xi − xj . In particular it follows that the divided difference operator

δij =
1

xi − xj
(1 − sij)

sends polynomials into polynomials symmetric in xi, xj .

Proof
Note that for any pair i, j and exponents a, b we have the identities

xa
i xb

j − xa
j xb

i =




xa
i xa

j (xi − xj)(
∑b−a−1

r=0 xr
jx

b−a−1−r
i ) if a ≤ b ,

xb
ix

b
j(xi − xj)(

∑a−b−1
r=0 xr

i x
a−b−1−r
j ) if a > b.

This may be rewritten as

xa
i xb

j − xa
j xb

i

xi − xj
=




xa
i xa

j hb−a−1[xi, xj ] if a ≤ b ,

xb
ix

b
jha−b−1[xi, xj ] if a > b,

1.2

where hm[xi, xj ] denotes the so called “homogeneous symmetric function” of degree m in xi, xj . This shows
that the ratio in 1.2 is always a polynomial that is symmetric in xi, xj . For P ∈ Q[Xn] we thus have a
factorization of the form

(1 − sij)P (x) = (xi − xj)1+rQ(x)

with Q(x) prime with xi − xj and (xi − xj)rQ(x) symmetric in xi, xj . Now if r were an odd number then
we would have

(xi − xj)r(1 + sij)Q(x) = (1 − sij)(xi − xj)rQ(x) = 0

which implies that
(1 + sij)Q(x)

∣∣
xj→xi

= 2Q(x)
∣∣
xj→xi

= 0

and this forces Q(x) to have xi − xj as a factor. This contraddiction forces r to be even and completes our
proof.

It follows from I.2 that the operators δij satisfy the “Leibniz” formula

δij PQ = (δijP )Q + (sijP )δijQ 1.3
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The Dunkl operators are defined by setting for 1 ≤ i ≤ n

∇i(m) = ∂xi
− m

n∑
j=1

(i) 1
xi−xj

(1 − sij) 1.4

where the symbol “
∑

(i)” is to indicate that the sum omits the term j = i.

For notational brevity, when the value of m is not an issue, we shall simply write ∇r for ∇r(m). It
will also be convenient to set

θi =
n∑

j=1

(i) 1
xi−xj

(1 − sij) =
n∑

j=1

(i) ∂ij 1.5

and write

∇i(m) = ∂xi
− m θi . 1.6

These operators have remarkable properties. To begin note that we have

Proposition 1.2
For any σ ∈ Sn

a) σ ∂xi
σ−1 = ∂xσi

, b) σ ∂ij σ−1 = ∂σiσj
, 1.7

thus in particular

a) σ θi σ−1 = θσi , b) σ ∇i σ−1 = ∇σi 1.8

Proof

Note that

σ ∂xi
σ−1 xa

σi
= σ ∂xi

xa
i = a σ xa−1

i = a xa−1
σi

= ∂xσi
xa

σi
.

This proves 1.7 a). Note next that

σ ∂ij σ−1 = σ 1
xi−xj

(1 − sij)σ−1

= 1
xσi

−xσj
σ(1 − sij)σ−1

= 1
xσi

−xσj
(1 − sσiσj ) = ∂σi,σj ,

This proves 1.7 b). This given, 1.8 a) and b) then follow immediately from 1.5 and 1.6 and our proof is thus
complete.

What makes the Dunkl operators remarkable is that they commute. More precisely we have the
following surprising identities
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Theorem 4.1
For any pair 1 ≤ a < b ≤ n

a) ∂xa
θb − θb∂xa

= ∂xb
θa − θa∂xb

, b) θaθb = θbθa 1.9

and the latter are equivalent to the validity of

∇a(m)∇b(m) = ∇b(m)∇a(m) (for all m, a, b) . 1.10

Proof
Note that using 1.6 we can write

∇a(m)∇a(m) = (∂xa
− m θa)(∂xb

− m θb) = ∂xa
∂xb

− m ∂xa
θb − m θa∂xb

+ m2θaθb

similarly we get

∇b(m)∇a(m) = (∂xb
− m θb)(∂xa − m θa) = ∂xb

∂xa − m ∂xb
θa − m θb∂xa + m2θbθa

Thus we see that in order for 1.10 to be valid for all m, a, b it is necessary and sufficient that 1.9 a) and b) be
valid for all a, b. Now to prove 1.9 a) and b), in view of Proposition 1.1, we only need to prove the identities

a) ∂x1θ2 − θ2∂x1 = ∂x2θ1 − θ1∂x2 , b) θ1θ2 = θ2θ1 . 1.11

For the same reason, to prove 1.11 a) & b) we need only verify that we have

a) ∂x1θ2 − θ2∂x1 = s12

(
∂x1θ2 − θ2∂x1

)
s12 , b) θ1θ2 = s12

(
θ1θ2

)
s12. 1.12

We will start with 1.12 a). So choose P ∈ Q[Xn] and note that

∂x1θ2 P = ∂x1

n∑
i=1

(2) 1
x2 − xi

(1 − s2i)P

= ∂x1

1
x2 − x1

(1 − s21)P +
n∑

i=3

1
x2 − xi

(1 − s2i) ∂x1P

=
1

(x2 − x1)2
(1 − s21)P +

1
x2 − x1

(∂x1P − s21∂x2P ) +
n∑

i=3

1
x2 − xi

(1 − s2i) ∂x1P .

1.13

Similarly we get

θ2∂x1 P =
n∑

i=1

(2) 1
x2 − xi

(1 − s2i)∂x1P

=
1

x2 − x1
(1 − s21)∂x1P +

n∑
i=3

1
x2 − xi

(1 − s2i) ∂x1P

1.14

Combining 1.13 and 1.14 gives(
∂x1θ2 − θ2∂x1

)
P =

1
(x2 − x1)2

(1 − s21)P +
1

x1 − x2

(
s21∂x2P − s21∂x1P

)
=

1
(x2 − x1)2

(1 − s21)P +
1

x1 − x2

(
∂x1 − ∂x2

)
s21P
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Thus (
∂x1θ2 − θ2∂x1

)
=

1
(x2 − x1)2

(1 − s21) +
1

x1 − x2

(
∂x1 − ∂x2

)
s21 . 1.15

Which easily shows that the left hand side is invariant under conjugation by s21, proving 1.16 a) and a
fortiori establishing 1.13 a). The proof of 1.13 b) is more elaborate. To begin let us set

A1 =
1

x1 − x2
(1 − s12) , B1 =

n∑
i=3

1
x1 − xi

(1 − s1i)

A2 =
1

x2 − x1
(1 − s12) , B2 =

n∑
i=3

1
x2 − xi

(1 − s2i)

θ1 = A1 + B1 , θ2 = A2 + B2 .

1.16

So that
θ1θ2 = A1A2 + A1B2 + B1A2 + B1B2 . 1.17

Now we have
A1A2 =

1
x1 − x2

(1 − s12)
1

x2 − x1
(1 − s12)

=
1

x1 − x2

1
x2 − x1

(1 − s12) − 1
x1 − x2

1
x1 − x2

(1 − s12)s12

= − 1
(x1 − x2)2

(1 − s12) − 1
(x1 − x2)2

(1 − s12)s12

= − 1
(x1 − x2)2

(1 − s12)(1 + s12) = 0 ,

1.18

A1B2 =
1

x1 − x2
(1 − s12)

n∑
i=3

1
x2 − xi

(1 − s2i)

=
1

x1 − x2

n∑
i=3

1
x2 − xi

(1 − s2i) − 1
x1 − x2

n∑
i=3

1
x1 − xi

(1 − s1i)s12 ,

1.19

and

B1A2 =
n∑

i=3

1
x1 − xi

(1 − s1i)
1

x2 − x1
(1 − s21)

=
n∑

i=3

1
x1 − xi

1
x2 − x1

(1 − s21) −
n∑

i=3

1
x1 − xi

1
x2 − xi

(1 − s2i)s1i .

1.20

To complete the picture, we break up B1B2 into two parts, the first (B1B2)∗ (which is clearly preserved by
conjugation by s12) and a remainder B12. More precisely, we have

(B1B2)∗ =
n∑

i=3

n∑
j=3

χ(i �= j)
(x1 − xi)(x2 − xj)

(1 − s1i)(1 − s2j) 1.21

and

B12 =
n∑

i=3

1
(x1 − xi)

(1 − s1i)
1

(x2 − xi)
(1 − s2i)

=
n∑

i=3

1
(x1 − xi)

1
(x2 − xi)

(1 − s2i) −
n∑

i=3

1
(x1 − xi)

1
(x2 − x1)

(1 − s21)s1i

1.22
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Note that we may write

1
(x1 − xi)

1
(x2 − xi)

=
1

(x1 − x2)

( 1
x2 − xi

− 1
x1 − xi

)
.

Using this identity in 1.20 and 1.22 we now have

A1B2 =
1

x1 − x2

n∑
i=3

1
x2 − xi

(1 − s2i) − 1
x1 − x2

n∑
i=3

1
x1 − xi

(1 − s1i)s12 , 1.23

B1A2 =
1

x1 − x2

(
−

n∑
i=3

1
x1 − xi

(1 − s21) −
n∑

i=3

( 1
x2 − xi

− 1
x1 − xi

)
(1 − s2i)s1i

)
, 1.24

B12 =
1

x1 − x2

( n∑
i=3

( 1
x2 − xi

− 1
x1 − xi

)
(1 − s2i) +

n∑
i=3

1
x1 − xi

(1 − s21)s1i

)
. 1.25

Combining 1.17, 1.23,1.24 and 1.25 we get

θ1θ2 − (B1B2)∗ =

1
x1 − x2

( n∑
i=3

1
x1 − xi

(
− (1 − s1i)s12 − (1 − s21) − (1 − s2i) + (1 − s2i)s1i + (1 − s21)s1i

))

+
1

x1 − x2

( n∑
i=3

1
x2 − xi

(
(1 − s2i) − (1 − s2i)s1i + (1 − s2i)

))
.

Carrying out the simplifications we finally obtain

θ1θ2 = (B1B2)∗ +
1

x1 − x2

( n∑
i=3

1
x1 − xi

(
− 2 + 2s1i + s2i − (1, i, 2)

))

+
1

x1 − x2

( n∑
i=3

1
x2 − xi

(
2 − 2s2i − s1i + (1, 2, i)

))

where (1, i, 2) and (1, 2, i) customarily represent 3-cycles. The expression on the right hand side of this
identity makes it quite obvious that conjugation by s12 preserves θ1θ2. This proves 1.9 b) and completes our
proof.

The commutativity in 1.10 makes it unambiguous the evaluation of a polynomial P (x1, x2, . . . , xn)
at the operators ∇1,∇2, . . . ,∇n. The result is an operator we denote by P (∇1,∇2, . . . ,∇n) or simply P (∇).
We may also write P

(
∇(m)

)
if the dependence on m is an issue. It will be convenient to refer to P (∇) as

the “Dunklized P ”. The operators P (∇) belong to a family of operators which combine differentiation and
Sn action which we call “Shift-Differential operators ”. Our study of m-quasi-invariantss requires the use a
variety of these operators. In the next section we give definitions and derive some of the basic properties.
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2. Basics on Shift-Differential operators
Here and after we let Rn the field of rational functions in x1, x2, . . . , xn. In symbols

Rn = {a = N(x)/D(x) : N(x), D(x) ∈ Q[Xn]}

It will also be convenient to denote by SRn(x), the ring generated by the variables xi together with the
fractions 1/(xi − xj). In symbols

SRn(x) = Q
[
xi,

1
xi−xj

: 1 ≤ i ≤ n , 1 ≤ i < j ≤ n
]

Similarly, we shall also set

SRn(y) = Q
[
yi,

1
yi−yj

: 1 ≤ i ≤ n , 1 ≤ i < j ≤ n
]
.

Clearly, every rational function in f(x) ∈ SRn(x) has an expansion of the form

f(x) =
∑

q={qij}
aq(x) =

∑
q={qij}

Pq(x)∏
1≤i<j≤n(xi − xj)qij

, 2.1

where each Pq(x) is a polynomial. A term

aq(x) =
Pq(x)∏

1≤i<j≤n(xi − xj)qij

with Pq(x) a homogeneous polynomial is called “homogeneous ” and its degree is simply taken to be

deg(ap) = deg(Pq) −
∑
ij

qij 2.2

Accordingly we shall say that f(x) is homogeneous of degree d if each term aq(x) is homogeneous of degree d.
It is easily seen that this gives SRn(x) the structure of a graded algebra. That is, denoting by Hd(SRn(x))
the subspace of elements of SRn(x) of degree d we have the relations

Hd1(SRn(x))Hd2(SRn(x)) ⊆ Hd1+d2(SRn(x))

and the direct sum decomposition

SRn(x) =
+∞⊕

d=−∞
Hd(SRn(x)) .

The differential operators we shall work with will be of the form

a(x, ∂x) =
∑

p

ap(x)∂p
x ( with ∂p

x = ∂p1
x1

∂p2
x2

· · · ∂pn
xn

) 2.3
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with each ap(x) ∈ SRn(x). The family of these operators will be denoted “Dn”. The notion of degree
defined by 2.2 makes also Dn into a graded algebra. We shall say that a(x, ∂x), as a differential operator,
has degree d if each coefficient ap(x) is homogeneous and we have

deg(ap) = |p| − d.

Note that for any σ ∈ Sn and any a(x, ∂x) as in 2.3 we have

σ a(x, ∂x)σ−1 =
∑

|p|≤N

ap(xσ1 , xσ2 , . . . , xσ2) ∂p1
xσ1

∂p2
xσ2

· · · ∂pn
xσn

.

Thus Sn acts on Dn by conjugation. Accordingly we shall call an operator a(x, ∂x) ∈ Dn “Sn-invariant ” or
simply ”symmetric ” if

σ a(x, ∂x)σ−1 = a(x, ∂x) (∀ σ ∈ Sn )

When a(x, ∂x) is not known to be symmetric it is convenient to set

σ a(x, ∂x) σ−1 = σa(x, ∂x). 2.4

A “shift-differential operator ” is an operator A acting SRn(x) which can be expressed in the form

A =
∑

α∈Sn

aα(x, ∂x)α (with each aα(x, ∂x) ∈ Dn ) 2.5

The family of shift-differential operators will be denoted “SDn”. It is easily seen that SDn is a ring. Indeed
if A is as in 2.5 and

B =
∑

β∈Sn

bβ(x, ∂x)β 2.6

then we may write
AB =

∑
α∈Sn

aα(x, ∂x)α
∑

β∈Sn

bβ(x, ∂x)β

=
∑

α∈Sn

∑
β∈Sn

aα(x, ∂x)
(
α bβ(x, ∂x)α−1

)
αβ

=
∑

α∈Sn

∑
β∈Sn

aα(x, ∂x) αbβ(x, ∂x) αβ

=
∑

γ∈Sn

( ∑
αβ=γ

aα(x, ∂x) αbβ(x, ∂x)
)

γ .

2.7

A shift-differential operator A as in 2.5 is called “symmetric ” if and only if

σAσ−1 = A (for all σ ∈ Sn)

Note that this requires that

∑
α∈Sn

σaα(x, ∂x)σασ−1 =
∑

α∈Sn

aα(x, ∂x)α 2.8
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or equivalently ∑
α∈Sn

σaσ−1ασ(x, ∂x)α =
∑

α∈Sn

aα(x, ∂x)α .

There is a natural map Γ : SDn→Dn we call the ”Forgetting Map” that is simply obtained by setting

ΓA = Γ
∑

α∈Sn

aα(x, ∂x)α =
∑

α∈Sn

aα(x, ∂x) . 2.9

It is important to note that
Proposition 2.1

ΓA is symmetric if and only if

∑
α∈Sn

σaα(x, ∂x) =
∑

α∈Sn

aα(x, ∂x) (for all σ ∈ Sn) 2.10

In particular if A is symmetric then ΓA is symmetric

Proof
From 2.9 we see that

σ ΓA σ−1 = A

if and only if ∑
α∈Sn

σ aα(x, ∂x)σ−1 =
∑

α∈Sn

aα(x, ∂x) (for all σ ∈ Sn)

and this is 2.10. Finally, if A is symmetric then applying Γ to both sides of 2.8 gives 2.10 and completes our
proof.

The map Γ is clearly linear but is not multiplicative. Yet it is so in a variety of special cases, an
instance in point is given by the following basic fact

Theorem 2.1
If A, B ∈ SDn and ΓB is symmetric then

ΓAB = (ΓA)(ΓB) . 2.11

In particular 2.11 will hold true if B itself is symmetric

Proof
Assuming that A and B are given by 2.5 and 2.6 from 2.7 we derive that

ΓAB =
∑

α∈Sn

∑
β∈Sn

aα(x, ∂x) αbβ(x, ∂x) =
∑

α∈Sn

aα(x, ∂x)
∑

β∈Sn

αbβ(x, ∂x)

Thus the assertions are immediate consequences of Proposition 2.1 .

Remark 2.1
We must note that there is a certain asymmetry in this result. In fact, as we shall see 2.11 may fail

if only ΓA is known to be symmetric. Much grief can ensue by a use of 2.11 when ΓA is not symmetric.
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There is a powerful way of deriving differential operators identities specially when it concerns the
action of operators ΓA with A ∈ SDn. To present it we need some auxiliary facts and observations concerning
the action of differential operators on rational functions.

To begin note that in the case of a single variable x, our operators may be written in the form

P
(
x, d

dx

)
=

d∑
k=0

Pk(x)
xqk

( d
dx )k

with Pk(x) a polynomial. We thus see that algebra D1 is generated by d
dx and multiplication by x and 1

x .
In the same vein we see that Dn is generated by ∂x1 , ∂x2 , . . . , ∂xn

and multiplication by

x1, x2, . . . , xn and
{

1
xi−xj

}
1≤i<j≤n

.

For convenience, here and after the operator multiplication by a rational function f(x) will be simply denoted
“f(x)”. We this notation we can state the following basic operator identity.

Theorem 2.2
In the case of a single variable x, if f(x) is a rational functions and P (x) is a polynomial, then

P ( d
dx )f(x) − f(x)P ( d

dx ) =
∑
r≥1

1
r!

f (r)(x)P (r)( d
dx ) 2.12

where

f (r)(x) = ( d
dx )rf(x) and P (r)(y) = ( d

dy )rP (y) .

.

Proof
We need only verify 2.12 for P (x) = xk. This given, let g(x) be any rational function and note that

the Leibnitz formula gives

( d
dx )kf(x)g(x) =

k∑
r=0

(
k

r

)(
( d

dx )rf(x)
)(

( d
dx )k−rg(x)

)
Thus

( d
dx )kf(x)g(x) − f(x)( d

dx )kg(x) =
k∑

r=1

(
k

r

)(
( d

dx )rf(x)
)(

( d
dx )k−rg(x)

)

=
k∑

r=1

1
r!

f (r)(x)k(k − 1) · · · (k − r + 1)( d
dx )k−rg(x)

)
and this is simply another way of writing 2.12 with P (x) = xk.

We are now in a position to prove the following surprising fact.
Theorem 2.3

If two differential operators in Dn

A(x, ∂x) =
∑
|p|≤d

ap(x)∂p
x and B(x, ∂x) =

∑
|p|≤d

bp(x)∂p
x

agree on symmetric polynomials they necessarily agree on all polynomials



On Shift Differential Operators October 8, 2004 12

Proof
We need only show that if

A(x, ∂x) f(x) =
∑
|p|≤d

ap(x)∂p
x f(x) = 0 2.13

for all symmetric f(x) then the polynomial

A(x, y ) =
∑
|p|≤d

ap(x)yp

vanishes identically. There is nothing to prove if A(x, y) is of degree 0 in y. So we may proceed by induction
on the y degree of A(x, y). So let us suppose that the Theorem is true for all A(x, y ) of y-degree less than
d and suppose A satisfies 2.13 for all symmetric f with

∑
|p|=d

ap(x)yp �= 0 (for some d ≥ 1 ) . 2.14

Note that for any symmetric polynomial P (x) then also the operator

A(x, ∂x)P (x) − P (x)A(x, ∂x)

will kill all symmetric polynomials. Now Theorem 2.2 gives that for all 1 ≤ i ≤ n we have

A(x, ∂x)xk
i − xk

i A(x, ∂x) =
∑
r≥1

(k)r

r!
xk−r

i A
(r)
i (x, ∂x) 2.15

where for convenience we have set
A

(r)
i (x, y) = ∂r

yi
A(x, y) .

Thus if we set
B(x, ∂x) = A(x, ∂x)pk(x) − pk(x)A(x, ∂x)

where pk(x) =
∑n

i=1 xk
i , then it follows from 2.15 that the component of highest y-degree of B(x, y) is

k

n∑
i=1

xk−1
i ∂yi

( ∑
|p|=d

ap(x)yp
)

.

Since the inductive hypothesis forces B(x, y) = 0 we necessarily must have

n∑
i=1

xk−1
i ∂yi

( ∑
|p|=d

ap(x)yp
)

= 0 (for k = 1, 2, . . . , n )

and this forces
∂yi

( ∑
|p|=d

ap(x)yp
)

= 0 (for i = 1, 2, . . . , n )
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which is in plain contraddiction with 2.14. So there can’t be a non vanishing operator A(x, ∂x) which satisfies
2.13 for all symmetric f as asserted.

Theorem 2.3 yields us a crucial tool for identifying the images of Γ.

Theorem 2.4
For A =

∑
α∈Sn

aα(x, ∂x)α ∈ An and B(x, ∂x) ∈ Dn we have

ΓA = B(x, ∂x) 2.16

if and only if the equality

Af(x) = B(x, ∂x)f(x) 2.17

holds true for all symmetric f(x)
Proof

Theorem 2.3 assures that we have 2.16 if and only if for all symmetric f(x) we have

ΓAf(x) = B(x, ∂x)f(x) 2.18

but when f(x) is symmetric

Af(x) =
∑

α∈Sn

aα(x, ∂x)αf

=
∑

α∈Sn

aα(x, ∂x) f = ΓA f(x) .

Thus 2.17 is equivalent to 2.18 and 2.16 is forced.

Theorem 2.4 immediately yields the following important identity

Theorem 2.5
For all m ≥ 0 we have

Γ
(
∇2

1(m) + ∇2
2(m) + · · · + ∇2

n(m)
)

= ∆2 − 2m
∑

1≤i<j≤n

1
xi − xj

(∂xi
− ∂xj

) 2.19

where ∆2 denotes the ordinary Laplacian

∆2 = ∂2
x1

+ ∂2
x2

+ · · · + ∂2
xn

.

Proof
When f(x) is symmetric, the definitions in 2.3 and 2.4 give

∇2
i (m)f(x) = ∇i(m)∂xif(x)

= ∂2
xi

f(x) − m θi∂xi
f(x)

but again the symmetry of f(x) yields that for any j �= i we have

(1 − sij)∂xi
f(x) = ∂xi

f(x) − sij∂xi
sijf(x) = ∂xi

f(x) − ∂xj
f(x)
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and 2.4 gives

∇2
i (m)f(x) = ∂2

xi
f(x) − m

n∑
j=1

(i) 1
xi − xj

(∂xi
− ∂xj

)f(x) .

Summing these identities we get

n∑
i=1

∇2
i (m)f(x) =

n∑
i=1

∂2
xi

f(x) − m

n∑
i=1

n∑
j=1

(i) 1
xi − xj

(∂xi − ∂xj )f(x) ,

and Theorem 2.4 guarantees the identity

Γ
n∑

i=1

∇2
i (m) = ∆2 − m

n∑
i=1

n∑
j=1

(i) 1
xi − xj

(∂xi
− ∂xj

) ,

But this is simply another way of writing 2.19.

Here and after we shall set
Lm = ∆2 − 2 mFn 2.20

with
Fn =

∑
1≤i<j≤n

1
xi − xj

(∂xi − ∂xj ) , 2.21

Theorem 2.6
If P is any symmetric polynomial then P (∇) and ΓP (∇) are necessarily also symmetric. Thus it

follows that if both P and Q are symmetric then we also have the commutativity relation

(
ΓP (∇)

)(
ΓQ(∇)

)
=

(
ΓQ(∇)

)(
ΓP (∇)

)
2.22

in particular (
ΓP (∇)

)
Lm = Lm

(
ΓP (∇)

)
2.23

holds true for all symmetric P .

Proof
The identity in 1.8 b) states that for all σ ∈ Sn we have

σ ∇i σ−1 = ∇σi

This gives
σP (∇1,∇2, . . . ,∇n)σ−1 = P (∇σ1∇σ2 , · · · ,∇σn))

but if P is symmetric, we also have

P (∇σ1∇σ2 , · · · ,∇σn
)) = P (∇1,∇2, . . . ,∇n)

combining these two relations proves that P (∇) is symmetric.
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Thus if both P an Q are symmetric then

(by Theorem 2.1 )
(
ΓP (∇)

)(
ΓQ(∇)

)
= Γ

(
P (∇)Q(∇)

)
(by commutativity of the Dunkl operators ) = Γ

(
Q(∇)P (∇)

)
(by Theorem 2.1 ) =

(
ΓQ(∇)

)(
ΓP (∇)

)
This proves 2.22 and the identity in 2.23 then follows from Theorem 2.5.

We are now ready to deal with one of the most important actors in the study of the m-quasi-invariants
of Sn. This is the “Opdam” shift-differential operator

Om = ΓΠ
(
∇(m)

)
Π(x) 2.24

with Π(x) the Vandermonde determinant

Π(x) =
∏

1≤i<j≤n

(xi − xj) .

We should note that this operator does not change the degree and that it is symmetric. In fact the operator
Π

(
∇(m)

)
Π(x) itself is symmetric. Indeed, the anti-symmetry of the Vandermonde determinant gives that

for all σ ∈ Sn we have

σ Π
(
∇(m)

)
Π(x)σ−1 = σ Π

(
∇(m)

)
σ−1σ Π(x)σ−1 = (−1)2Π

(
∇(m)

)
Π(x) = Π

(
∇(m)

)
Π(x) 2.25

Crudely speaking, the importance of Om, is due to the fact that it converts Lm−1 into Lm. It then
follows that successive applications of O1, O2, . . . , Om convert the Laplacian into Lm. In ultimate analysis,
this enables us to obtain crucial information about the ring QIm[Xn] of m-quasi-invariants from well known
properties of the ordinary polynomial ring QI0[Xn] = Q[Xn]. It will take a few sections to make all this
precise and transparent. For the moment we begin by establishing the remarkable identity that makes all of
this possible

Proposition 2.2
For all symmetric polynomials f(x) we have

p2

(
∇(m)

)
Π(x)f(x) = Π(x) p2

(
∇(m − 1)

)
f(x) 2.26

Proof
To show this note that from 1.6 we derive that

p2

(
∇(m)

)
Π(x)f(x) =

n∑
i=1

(
∂2

xi
− m θi∂xi − m ∂xiθi + m2θ2

i

)
Π(x)f(x)

= A − m B − m C + m2D

2.27

where for convenience we have set

A =
n∑

i=1

∂2
xi

Π(x)f(x) , B =
n∑

i=1

θi∂xi Π(x)f(x) , C =
n∑

i=1

∂xiθi Π(x)f(x) , D =
n∑

i=1

θ2
i Π(x)f(x) . 2.28
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We claim that we have
A = 2Π(x)Fnf(x) + Π(x)∆2f(x)

B = 0

C = 2Π(x)Fnf(x)

D = 0

2.29

Acccepting for a moment these relations, from 2.27 we derive that

p2

(
∇(m)

)
Π(x)f(x) = 2Π(x)Fnf(x) + Π(x)∆2f(x) − 2mΠ(x)Fnf(x)

= Π(x)
(
∆2 − 2(m − 1)Fn

)
f(x)

= Π(x)Lm−1f(x) = Π(x)p2(∇(m − 1))f(x)

and this is 2.26.
To complete our proof we need to establish the relations in 2.29. To begin, note that

A =
(
∆2 Π(x)

)
f(x) + 2

n∑
i=1

(
(∂xi

Π(x)
)
∂xi

f(x) + Π(x)∆2 f(x) . 2.30

Now
n∑

i=1

(
∂xiΠ(x)

)
∂xif(x) = Π(x)

n∑
i=1

∂xi
Π(x)

Π(x) ∂xif(x)

= Π(x)
n∑

i=1

(
∂xi

logΠ(x)
)
∂xi

f(x)

= Π(x)
∑

1≤r<s≤n

n∑
i=1

∂xi
(xr−xs)

(xr−xs) ∂xif(x)

= Π(x)
∑

1≤r<s≤n

∂xr f(x)−∂xs f(x)
(xr−xs) = Π(x)Fn f(x)

On the other hand, ∆2 Π(x) must necessariy vanish since it is alternating and has degree <
(
n
2

)
, and 2.30

reduces to
A = 2 Π(x)Fn f(x) + Π(x)∆2 f(x)

This proves the first of 2.29.
Next we derive

B =
n∑

i=1

θi∂xi Π(x)f(x)

=
n∑

i=1

n∑
j=1

(i) 1
xi − xj

(1 − sij)∂xi Π(x)f(x)

=
n∑

i=1

n∑
j=1

(i) 1
xi − xj

(∂xi Π(x)f(x) + sij∂xisij Π(x)f(x)

=
∑
i �=j

1
xi − xj

(∂xi
Π(x)f(x) + ∂xj

Π(x)f(x)) = 0

2.31
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since for any polynomial Q(x) we have∑
i �=j

1
xi − xj

(∂xiQ + ∂xj Q) =
∑
j �=i

1
xj − xi

(∂xj Q + ∂xj Q) = −
∑
i �=j

1
xi − xj

(∂xiQ + ∂xj Q).

This proves the second of 2.29.
Next note that the symmetry of f(x) yields that for any polynomial Q(x)

1
xi − xj

(1 − sij)Q(x)f(x) = f(x)
1

xi − xj
(1 − sij)Q(x))

in particular we must also have
θiQ(x)f(x) = f(x)θiQ(x) . 2.32

This given

C =
n∑

i=1

∂xi
θi Π(x)f(x) =

n∑
i=1

∂xi
f(x)θi Π(x)

=
n∑

i=1

(∂xif(x))θi Π(x) + f(x)
n∑

i=1

∂xiθi Π(x)

2.33

Now the last term vanishes here since
n∑

i=1

∂xi
θi Π(x) =

n∑
i=1

∂xi

n∑
j=1

(i) 1
xi − xj

(1 − sij)Π(x) = 2
n∑

i=1

∂xi

n∑
j=1

(i) 1
xi − xj

Π(x)

and the latter is an alternating polynomial of degree <
(
n
2

)
. Now for the remaing term in 2.33 we have

n∑
i=1

(∂xi
f(x))θi Π(x) =

n∑
i=1

(∂xi
f(x))

n∑
j=1

(i) 1
xi − xj

(1 − sij) Π(x)

= 2Π(x)
n∑

i=1

(∂xif(x))
n∑

j=1

(i) 1
xi − xj

= 2Π(x)
n∑

i=1

n∑
j=1

(i) ∂xi
f(x)

xi − xj

= 2Π(x)
∑
i<j

∂xi
f(x) − ∂xj

f(x)
xi − xj

= 2Π(x)Fnf(x)

Using these two facts in 2.33 proves the third relation in 2.29.
Finally for D, using 2.32, we get

D =
n∑

i=1

θ2
i Π(x)f(x) = f(x)

n∑
i=1

θ2
i Π(x) . 2.35

But
n∑

i=1

θ2
i Π(x) =

n∑
i=1

n∑
a=1

(i) 1
xi − xa

(1 − sia)
n∑

b=1

(i) 1
xi − xb

(1 − sib)Π(x)

=
n∑

i=1

n∑
a=1

(i) 1
xi − xa

(1 − sia)
n∑

b=1

(i) 2Π(x)
xi − xb

=
n∑

i=1

n∑
a=1

(i) 1
xi − xa

(1 − sia)
2Π(x)
xi − xa

+
∑

a�=b �=i

1
xi − xa

(1 − sia)
2Π(x)
xi − xb
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Now the first term vanishes since the ratio 2Π(x)/(xi − xa) is invariant under sia. This gives

n∑
i=1

θ2
i Π(x) =

∑
a�=b �=i

1
xi − xa

(1 − sia)
2Π(x)
xi − xb

=
∑

a�=b �=i

2Π(x)
(xi − xa)(xi − xb)

+
∑

a�=b �=i

2Π(x)
(xi − xa)(xa − xb)

and this term must also vanish since it is an alternating polynomial of degree <
(
n
2

)
. This gives

D = 0 .

Thus all the relations in 2.29 have been established and the proof of 2.26 is now complete.

We shall later see that 2.26 implies a variety of symmetric function identities. But here we must be
contented with the following immediate corollary of Proposition 2.2.

Theorem 2.7

Lm Om = Om Lm−1 2.36

Proof

Using 2.19 and 2.24 and setting p2(x) =
∑n

i=1 x2
i , we start by rewriting 2.36 in the form

(
Γp2

(
∇(m)

))
ΓΠ

(
∇(m)

)
Π(x) =

(
ΓΠ

(
∇(m)

)
Π(x)

)
Γp2

(
∇(m − 1)

)
.

Thus from the symmetry of ΓΠ
(
∇

)
Π(x), we derive that

(
Γp2

(
∇(m)

))
Γ Π

(
∇(m)

)
Π(x) = Γ p2

(
∇(m)

)
Π

(
∇(m)

)
Π(x)

= Γ Π
(
∇(m)

)
p2

(
∇(m)

)
Π(x)

In the same manner, the symmetry of p2

(
∇(m − 1)

)
gives

(
ΓΠ

(
∇(m)

)
Π(x)

)
Γp2

(
∇(m − 1)

)
= Γ Π

(
∇(m)

)
Π(x) p2

(
∇(m − 1)

)

Thus to prove 2.36 we need only verify that for all symmetric polynomials f(x) we have

Π
(
∇(m)

)
p2

(
∇(m)

)
Π(x)f(x) = Π

(
∇(m)

)
Π(x) p2

(
∇(m − 1)

)
f(x).

but this is simply obtained by applying the operator Π(∇(m)) to both sides of 2.26.
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Remark 2.2
Companion to Om is the operator Õm defined by setting

Õm = Γ Π(x)−1Π(∇(m)) . 2.37

We should note that Õm is well defined since for any symmetric polynomial f(x) the polynomial Π(∇(m))f(x)
is alternating and therefore divisible by Π(x). Now the identity in 2.26 immmediately yields that we also
have

Lm−1Õm = Õm Lm 2.38

In fact, to show 2.38 we only need to verify that for all symmetric f(x) we have

p2(∇(m − 1))Π(x)−1Π(∇(m))f(x) = Π(x)−1Π(∇(m))p2(∇(m))f(x), . 2.39

Setting for a moment
Π(∇(m))f(x) = Π(x)A(x) (with A ∈ ←n ) , 2.40

we derive that

p2(∇(m − 1))Π(x)−1Π(∇(m))f(x) = p2(∇(m − 1))Π(x)−1Π(x)A(x)

= Π(x)−1Π(x) p2(∇(m − 1))A(x)

(by 2.26 ) = Π(x)−1p2(∇(m))Π(x) A(x)

(by 2.40 ) = Π(x)−1p2(∇(m))Π(∇(m))f(x)

This proves 2.39 and 2.38.

The operators Lm and Om have remarkable properties and we will need to dedicate an entire section
to them to begin to understand their action on the rational functions in SRn(x).

3. The operators Lm, Om and Ωm = OmOm−1 · · ·O1

Our ultimate goal in this section is to derive some of the basic properties of the fundamental operator

Ωm = OmOm−1 · · ·O1

and its relation to m-quasi-invariants. To carry this out we need to prove a few auxiliary results.
To begin there is a useful multivariate version of Leibnitz rule which will play an important role in

the study of our operators. It may be stated as follows.

Proposition 3.1
For any f, g ∈ SRn(x) and any multi-exponent p = (p1, p2, . . . , pn) we have

∂p
xf(x)g(x) =

∑
α+β=p

p!
α! β!

∂α
x f(x)∂β

xg(x) 3.1

Proof
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The ordinary Leibnitz rule for the variable xi gives

∂pi
xi

f(x)g(x) =
∑

αi+βi=pi

pi!
αi! βi!

∂αi
x f(x)∂βi

x g(x) 3.2

from which it immediately follows that

( n∏
i=1

∂pi
xi

)
f(x)g(x) =

∑
α1+β1=p1

∑
α2+β2=p2

· · ·
∑

αn+β1=pn

( n∏
i=1

pi!
αi! βi!

)
∂αi

x

)( n∏
i=1

∂αi
x f(x)

)( n∏
i=1

∂βi
x g(x)

)

and 3.1 is is simply a compact way of writing this identity.

It is good to see right on the onset the uses we shall make of this identity. Basically, when we
compose two differential operators, we have the problem of rewriting the result in the standard form of
differentiations followed by multiplications. One of the basic uses we make of 3.1 is to determine what effect
this rewriting has on the leading term of the resulting operator. An instance in point is given by the following
identity.

Proposition 3.2
The product c(x, ∂x) of two differential operators

a(x, ∂x) = f(x)P (∂x) +
∑

|p|<d1

fp(x) ∂p
x , b(x, ∂x) = g(x)Q(∂x) +

∑
|q|<d2

gq(x) ∂q
x

with P (y),Q(y) homogeneous polynomials of degree d1 and d2 respectively may be written in the form

c(x, ∂x) = f(x)g(x)P (∂x)Q(∂x) +
∑

|r|<d1+d2

hr(x) ∂r
x 3.3

Proof
Of course we have for any F (x) ∈ SRn(x)

c(x, ∂x)F (x) = f(x)P (∂x)g(x)Q(∂x)F (x) +
∑

|q|<d2

f(x)P (∂x) gq(x) ∂q
xF (x) +

+
∑

|p|<d1

fp(x) ∂p
xg(x)Q(∂x)F (x) +

∑
|p|<d1

∑
|q|<d2

fp(x) ∂p
x gq(x) ∂q

xF (x)

Now we immediately see that after carrying out all differentiations the three last terms in this expression
can only contribute to the last term in 3.3 since the amount by which F (x) gets differentiated remains less
than d1 + d2. So we need only study the term

f(x)P (∂x)g(x)Q(∂x)F (x)

Now if
P (y) =

∑
|p|=d1

ap∂
p
x , Q(y) =

∑
|q|=d2

bq ∂q
x
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then we may write

f(x)P (∂x)g(x)Q(∂x)F (x) =
∑

|p|=d1

∑
|q|=d2

apbq f(x) ∂p
x

(
g(x) ∂q

xF (x)
)

and 3.1 gives that f(x)∂p
x

(
g(x) ∂q

xF (x)
)

is a Z-linear combintion of terms of the form

f(x)
(
∂α

x g(x)
)
∂β+q

x F (x)

with α + β = p. This implies that the highest amount of differentiation on F (x) is provided by the term

f(x)g(x)∂p+q
x F (x)

This gives that

f(x)P (∂x)g(x)Q(∂x)F (x) = f(x)g(x)
∑

|p|=d1

∑
|q|=d2

apbq ∂p+q
x F (x)

+ (terms in which F (x) is differentiated less than d1 + d2 times )

This proves that the leading differentiating term in the product of these two operators is precisely as asserted
in 3.3.

The following result reveals the nature of the operators ΓP (∇(m)) and provides a useful tool for
their final identification.
Proposition 3.3

If P (x) is a homogeneous polynomial of degree d then

ΓP (∇(m)) = P (∂x) +
∑
|q|<d

fq(x) ∂q
x 3.4

where each fq(x) is of the form

fq(x) =
∑

|p|=d−|q|

cpq∏
rs(xr − xs)prs

with scalar coefficients cpq. Thus, if Q is any homogeneous element of SRn(x) of degree dQ then ΓP (∇(m))Q ∈
SRn(x) and is homogeneous of degree dQ − d. In particular if ΓP (∇(m))Q ∈ Q[Xn] then it vanishes when

dQ < d.

Proof
Clearly it is sufficient to deal with case P (x) = xp with |p| = d. To begin we should note that

since each Dunkl operator decreases the degree by 1 the last assertion is immediate for monomials in
∇1,∇2, . . . ,∇n. As for 3.4 it is trivially true for d = 1 since for each i we have

Γ∇(m)i = ∂xi
.

Proceeding by induction on d, let us assume 3.4 to be true for monomials of degree ≤ d − 1. Now let
|p| = d − 1 and set

Γ∇p = Γ∇p1
1 ∇p2

2 · · · ∇pn
n = ∂p

x +
∑
|q|<d

fq(x) ∂q
x . 3.5
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Now note that for any symmetric polynomial Q we have

∇(m)i∇pQ = ∇(m)iΓ∇pQ = ∂xi
∂p

xQ +
∑
|q|<d

∂xi
fq(x) ∂q

xQ − m θi∂
p
xQ − m

∑
|q|<d

θi fq(x) ∂q
xQ 3.6

Now we immediately see that the first term is of the desired form since the order of the differential operator
given by the additional terms cannot exceed d. To complete our argument we shall deal individually with each
of the remaining terms. To begin note that the induction hypothesis asserts that fq is a linear combination
of terms of the form ∏

1≤r<s≤n

1
(xr − xs)prs

(with
∑

1≤r<s≤n = d − 1 − |q| )

since

∂xi

∏
1≤r<s≤n

1
(xr − xs)prs

= −
∑

1≤a<b≤n

pab∂xi
(xa − xb)

(xa − xb)pab+1

( ∏
1≤r<s≤n

(r,s) �=(a,b)

1
(xr − xs)prs

)

and
∂xifq(x) ∂q

xQ =
(
(∂xifq(x)) ∂q

x + fq(x) ∂xi∂
q
x

)
Q

we see that the first sum has the correct form. Next from the definition in 2.4 we get

θi∂
p
xQ =

n∑
j=1

(i) 1
xi − xj

(1 − sij)∂p
xQ

=
( n∑

j=1

(i) 1
xi − xj

(∂p
x − sij∂

p
xsij)

)
Q

we see that the third term has the correct form.
Finally, using 2.4 again the last term expands to

θi fq(x) ∂q
xQ =

n∑
j=1

(i) 1
xi − xj

(1 − sij)fq(x) ∂q
xQ

=
( n∑

j=1

(i) 1
xi − xj

(fq(x) ∂q
x − (sijfq(x)) sij∂

q
xsij

)
Q

which is easily seen to be of the correct form as well. A use of Theorem 2.4 proves 3.4 for the monomials
xix

p and completes the induction.
We have a similar result for the operator Om. It may be stated as follows

Proposition 3.4

Om = Π(x)Π(∂x) +
∑

|q|<(n
2)

aq(x;m) ∂q
x 3.7

where each aq(x;m) is a homogeneous element of SRn(x) and

deg(aq) = |q| (for all q) 3.8
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Proof
For a symmetric polynomial f(x) we have, by definition

Omf(x) = Π(∇(m))Π(x)f(x)

and by expansion of the first Vandermonde determinant we get

Omf(x) =
∑

σ∈Sn

sign(σ)∇n−σ1
1 (m)∇n−σ2

2 (m) · · ·∇n−σn
n (m)Π(x)f(x)

Thus 3.7 is established if we prove that for every multi-exponent p = (p1, p2, . . . , pn) we have

∇p1
1 (m)∇p2

2 (m) · · ·∇pn
n (m)Π(x)f(x) = Π(x)∂p1

x1
∂p2

x2
· · · ∂pn

xn
f(x) +

∑
|q|<(n

2)
b(p)
q (x;m) ∂q

xf(x) 3.9

with the b
(p)
q (x;m) polynomials in m with coefficients in SRn(x) and

deg(b(p)
q (x;m)) = |q| − |p| +

(
n
2

)
(for all q) 3.10

Note that for any i = 1, 2, . . . , n we have

∇i(m)Π(x)f(x) =
(
∂xi − m

n∑
j=1

(i) 1
xi−xj

(1 − sij)
)
Π(x)f(x)

= ∂xi

(
Π(x)f(x)

)
− m

n∑
j=1

(i) 1
xi−xj

(1 − sij)Π(x)f(x)

= (Π(x)∂xif(x) +
(
∂xiΠ(x)

)
f(x)

)
− m

n∑
j=1

(i) 1
xi−xj

2 Π(x)f(x)

= Π(x)∂xif(x) +
(
∂xiΠ(x) − 2m

n∑
j=1

(i) Π(x)
xi−xj

)
f(x)

and we clearly see that both 3.9 and 3.10 are trivially satisfied in this case. So proceeding by induction
on the size of |p| let us assume 3.9 and 3.10 true for |p| = d. Thus for any i = 1, 2, . . . , n we get (by the
commutativity of the Dunkl operators)

∇p1
1 (m) · · ·∇pi+1

i (m) · · ·∇pn
n (m)Π(x)f(x) = ∇i(m)Π(x)∂p

xf(x) +
∑

|q|<(n
2)
∇i(m)b(p)

q (x;m) ∂q
xf(x)

Now the first term is

∇i(m)Π(x)∂p
xf(x) =

(
∂xi

− m

n∑
j=1

(i) 1
xi−xj

(1 − sij)
)
Π(x)∂p

xf(x)

= ∂xi

(
Π(x)∂p

xf(x)
)
− m

n∑
j=1

(i) Π(x)
xi−xj

∂p
xf(x) − m

n∑
j=1

(i) 1
xi−xj

Π(x)sij∂
p
xf(x)

= Π(x)∂xi∂
p
xf(x) +

(
∂xiΠ(x)

)
∂p

xf(x) − m

n∑
j=1

(i) Π(x)
xi−xj

(
∂p

x + sij∂
p
xsij

)
f(x)
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and we see that is of the desired form. Now for the summand in the second term at the right hand side of
3.9 we have

∇i(m)b(p)
q (x;m) ∂q

xf(x) =
(
∂xi − m

n∑
j=1

(i) 1
xi−xj

(1 − sij)
)
b(p)
q (x;m) ∂q

xf(x)

= b(p)
q (x;m) ∂xi

∂q
xf(x) +

(
∂xi

b(p)
q (x;m)

)
∂q

xf(x)

−
(
m

n∑
j=1

(i) b(p)
q (x;m)

xi−xj

)
∂q

xf(x)

+
(
m

n∑
j=1

(i) sijb(p)
q (x;m)

xi−xj
sij∂

q
xsij

)
f(x)

Note that these sumands are of the proper form since differentiation by xi of a homogeneous element of
degree r in SRn(x) yields a homogeneous element of degree d − 1. Note further that since |q| < d the
amount of differentiation on f(x) remains below d + 1 in all of these terms. This completes the induction
and the proof.

Proposition 3.4 yields us a first glimpse at the nature of the operator Ωm. We shall later see that
this result can be improved considerably.

Proposition 3.5
Recalling that, by definition, Ωm = OmOm−1 · · ·O1 we have

Lm Ωm = Ωm ∆2 3.11

and

Ωm = Π(x)m Π(∂x)m +
∑

|q|<m(n
2)

aq(x;m) ∂q
x 3.12

where each aq(x;m) is a homogeneous element of SRn(x) and

deg(aq) = |q| (for all q) 3.13

Proof
The identity in 3.11 follows by a recursive application of Theorem 2.7 and then noting that for m = 0

the operator Lm reduces to the laplacian ∆2.
Similarly the expansion in 3.12 together with 3.13 are immediately obtained by recursive applications

of Propositions 3.2 and 3.4.

Our next task is a close study of the action of Lm on QIm[Xn] but before we can do that we need
some notation and some auxiliary identities. To begin, recall that we have set

SRn(x) = Q
[
xi,

1
(xi−xj)

: 1 ≤ i ≤ n ; 1 ≤ i < j ≤ n
]

Now it will be convenient to denote by SRn(x)r,s the subalgebra

Rr,s = Q
[
xi,

1
(xi−xj)

: 1 ≤ i ≤ n ; 1 ≤ i < j ≤ n ; (i, j) �= (r, s)
]
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In the rest of this section we shall work with Lm in the form given by Theorem 2.5. Namely, we will use the
expansion

Lm = ∆2 − 2mFn 3.14

with
Fn =

∑
1≤i<j≤n

1
xi − xj

(∂xi − ∂xj ) 3.15

Proposition 3.6
For any two rational functions f, g ∈ SRn(x) we have

∆2 f g = (∆2f) g + 2
n∑

i=1

(∂xi
f)(∂xi

g) + f ∆2g , 3.16

in particular

Lm (f g) = (Lmf) g + 2
n∑

i=1

(∂xif)(∂xig) + f Lmg . 3.17

Proof
Note that for any index i we have

∂2
xi

(fg) = (∂2
xi

f) g + 2(∂xif)(∂xig) + f∂2
xi

g

and 3.16 is obtained by summing on i. Since the operators ∂xi − ∂xj satisfy the Leibnitz rule, from 3.15 we
derive that

Fn(f g) = (Fnf) g + f Fng

Thus 3.14 gives

Lm (f g) = ∆2(f g) − 2m(Fnf) g − 2m f Fng

(by 3.16) = (∆2f) g + 2
n∑

i=1

(∂xi
f)(∂xi

g) + f ∆2 g − 2m(Fnf) g − 2m f Fng

and this is 3.17.

We shall make multiple use of the following identity
Proposition 3.7

For any exponent −∞ < a < +∞ we have

Lm(xr − xs)a = 2a(a − 1 − 2m)(xr − xs)a−2 − 2m a(xr − xs)a
n∑

j=1

(r,s) 1
(xr−xj)(xs−xj)

3.18

this implies that for any R ∈ Rrs we have

Lm(xr − xs)aR = 2a(a − 1 − 2m)(xr − xs)a−2R + (xr − xs)a−1A 3.19

with A ∈ Rrs
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Proof
To begin note that

∆2(xr − xs)a =
n∑

i=1

∂2
xi

(xr − xs)a = 2a(a − 1)(xr − xs)a−2 3.20

moreover from 3.15 we get

Fn (xr − xs)a = a(xr − xs)a−1
∑

1≤i<j≤n

1
xi − xj

(∂xi
− ∂xj

)(xr − xs)

= a(xr − xs)a−1
∑

1≤i<j≤n

1
xi − xj

(
χ(i = r) − (χ(i = s) − (χ(j = r) + (χ(j = s)

) 3.21

But ∑
1≤i<j≤n

1
xi − xj

(
χ(i = r) − (χ(i = s) − (χ(j = r) + (χ(j = s)

)

=
∑

r<j ≤n

1
xr − xj

−
∑

s<j ≤n

1
xs − xj

−
∑

1≤i<r

1
xi − xr

+
∑

1≤i<s

1
xi − xs

=
∑

r<j ≤n

1
xr − xj

−
∑

s<j ≤n

1
xs − xj

+
∑

1≤j<r

1
xr − xj

−
∑

1≤j<s

1
xs − xj

=
n∑

j=1

(r) 1
xr − xj

−
n∑

j=1

(s) 1
xs − xj

=
2

xr − xs
+

n∑
j=1

(r,s)
( 1

xr − xj
− 1

xs − xj

)

=
2

xr − xs
−

n∑
j=1

(r,s) xr − xs

(xr − xj)(xs − xj)

Using this in 3.21 we get

Fn (xr − xs)a = 2a(xr − xs)a−2 − a(xr − xs)a−1
n∑

j=1

(r,s) xr−xs

(xr−xj)(xs−xj)
3.22

Thus combining 3.14, 3.20 and 3.22 we finally obtain

Lm (xr − xs)a = 2a(a − 1)(xr − xs)a−2 − 2m2a(xr − xs)a−2 + 2ma(xr − xs)a−1
n∑

j=1

(r,s) xr−xs

(xr−xj)(xs−xj)

This proves 3.18.
Now 3.17 gives

Lm(xr − xs)aR =
(
Lm(xr − xs)a

)
R + 2

n∑
i=1

(
∂xi(xr − xs)a

)(
∂xiR

)
+ (xr − xs)aLmR

= 2a(a − 1 − 2m)(xr − xs)a−2R − 2m a(xr − xs)a−1
n∑

j=1

(r,s) (xr−xs)
(xr−xj)(xs−xj)

R

+ 2a(xr − xs)a−1(∂xr
R − ∂xs

R) + (xr − xs)a−1(xr − xs)LmR
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This proves 3.19 with

A = −2ma

n∑
j=1

(r,s) xr−xs

(xr−xj)(xs−xj)
R + 2a(∂xrR − ∂xsR) + (xr − xs)LmR

Since it is easily seen that A ∈ SRrs our proof is now complete.

Proposition 3.8
If for some P ∈ R we have

Lm P = Q ∈ Q[Xn] 3.23

then

P ∈ Q[Xn]

Proof
Let it be possible that we can write

P =
R

(xr − xs)k
3.24

with k ≥ 1 minimal and R ∈ Rrs then from Proposition 3.7 with a→− k we get for some A ∈ Rrs

LmP = Lm(xr − xs)−kR

= 2k(k + 1 + 2m)(xr − xs)−k−2R + (xr − xs)−k−1A

Multiplying both sides by (xr − xs)k+2 and using 3.23 we derive that

(xr − xs)k+2Q = 2k(k + 1 + 2m)R + (xr − xs)A . 3.25

Extracting R from 3.25 and placing it in 3.24 we derive that P can be rewritten in the form

P =
R′

(xr − xs)k−1

with R′ ∈ Rrs contraddicting the minimality of k. Thus P can’t be as in 3.26 with k ≥ 1. Since this must
be so for any pair (r, s) the only remaining possibility is that P ∈ Q[Xn].

We are now finally in a position to establish the following truly remarkable result

Theorem 3.1
If P ∈ SRn(x) and

Lm P = Q 3.26

with Q a polynomial in QIm[Xn] then

P ∈ QIm[Xn] 3.27

Proof



On Shift Differential Operators October 8, 2004 28

Since Lm is a symmetric operator then

(1 − srs)LmP = Lm(1 − srs)P

Since we know from Proposition 3.8 that P must be a polynomial then for some integer k ≥ 0 we must have

(1 − srs)P = (xr − xs)2k+1P ′ 3.28

with a suitable polynomial P ′. We claim that we must have k ≥ m. So suppose if possible that k < m and
that k is maximal. This given, from 3.26 we get that

(1 − srs)Q = Lm (xi − xj)2k+1P ′

But then the m-quasi-invariance of Q gives that for some polynomial Q′ we have

(xr − xs)2m+1Q′ = Lm (xi − xj)2k+1P ′

Now using 3.19 with a = 2k + 1, for a suitable A ∈ SRn(x)rs we get

(xr − xs)2m+1Q′ = 2(2k + 1)(2k − 2m)(xr − xs)2k−1P ′ + (xr − xs)2kA

This gives

P ′ =
xr − xs

2(2k + 1)(2k − 2m)

(
(xr − xs)2m−2k+1Q′ − A

)
Since A ∈ SRn(x)rs we can clear denominators in this relation upon multiplication by a factor of the form

∏
1≤i<j≤n

(i,j) �=(r,s)

(xi − xj)pij 3.29

We thus obtain the totally polynomial equation

P ′
∏

1≤i<j≤n

(i,j) �=(r,s)

(xi−xj)pij =
xr − xs

2(2k + 1)(2k − 2m)

(
(xr−xs)2m−2k+1Q′

∏
1≤i<j≤n

(i,j) �=(r,s)

(xi−xj)pij −A
∏

1≤i<j≤n

(i,j) �=(r,s)

(xi−xj)pij

)

Since the factor in 3.29 is prime with xr − xs, we derive from this that the polynomial P ′ must be divisible
by xr − xs. Setting P ′ = (xr − xs)P ′′ the identity in 3.28 becomes

(1 − srs)P = (xr − xs)2k+2P ′′

but we have seen that when we apply (1− srs) to a polynomial, an odd power of (xr − xs) must factor out.
This forces P ′′ itself to be divisible by (xr − xs). Thus we must have yet a third polynomial P ′′′ giving

(1 − srs)P = (xr − xs)2k+3P ′′′
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But this contraddicts the maximality of k. So we must have k ≥ m as desired. The arbitrarity of r, s in this
argument shows P must be m-quasi-invariant and our proof is complete.

But there is yet another surprising fact: Theorem 3.1 has a converse.

Theorem 3.2
If P ∈ QIm[Xn] and

Lm P = Q 3.30

then

Q ∈ QIm[Xn] 3.31

Proof
We will closely follow the argument given in []. We first show that Q is a polynomial and then

show that Q is m-quasi-invariant. Now, for a pair 1 ≤ r < s ≤ n, the m-quasi-invariance of P yields the
factorization

(1 − srs)P = (xr − xs)2m+1P ′

with P ′ a suitable polynomial. This given, using the symmetry of Lm, we derive from 3.30 that

(1 − srs)Q = Lm

(
(xr − xs)2m+1P ′)

(by 3.17) =
(
Lm(xr − xs)2m+1

)
P ′

+ 2
n∑

i=1

(
∂xi

(xr − xs)2m+1
)(

∂xi
P ′) + (xr − xs)2m+1LmP ′

=
(
Lm(xr − xs)2m+1

)
P ′

+ 2(2m + 1)(xr − xs)2m
(
∂xrP

′ − ∂xsP
′) + (xr − xs)2m+1LmP ′

3.32

Now recall from 3.18 that we have

Lm(xr − xs)a = 2a(a − 1 − 2m)(xr − xs)a−2 − 2m a(xr − xs)a
n∑

j=1

(r,s) 1
(xr−xj)(xs−xj)

and this, for a = 2m + 1, reduces to

Lm(xr − xs)2m+1 = −2m (2m + 1)(xr − xs)2m+1
n∑

j=1

(r,s) 1
(xr−xj)(xs−xj)

Thus 3.32 may be rewritten as

(1 − srs)Q = −2m (2m + 1)(xr − xs)2m+1
n∑

j=1

(r,s) 1
(xr−xj)(xs−xj)

P ′

+ 2(2m + 1)(xr − xs)2m
(
∂xr

P ′ − ∂xs
P ′) + (xr − xs)2m+1LmP ′

3.33

It is evident that all denominators which occur in the right-hand side of this identity are cleared upon
multiplication by the Vandermonde determinant Π(x). In fact, since both

n∑
j=1

(r,s) Π(x)
(xr−xj)(xs−xj)

P ′ and Π(x)LmP ′
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are polynomials we derive from 3.33 that we have

Π(x)Q + srs Π(x)Q = Π(x)(1 − srs)Q = (xr − xs)2m+1R 3.34

with R a polynomial. On the other hand 3.30 implies that also

Π(x)Q = Π(x)LmP

is polynomial. We are thus assured that for some polynomial R′ we have

Π(x)Q − srs Π(x)Q = (1 − srs)Π(x)Q = (xr − xs)R′ 3.35

Now 3.34 and 3.35 yield the identity

Π(x)Q = 1
2 (xr − xs)2m+1R + 1

2 (xr − xs)R′

which plainly shows that the polynomial Π(x)Q is divisible by (xr − xs). Since this must hold true for all
pairs 1 ≤ r < s ≤ n and the factors of Π(x) are relatively prime, we are forced to conclude that Q itself
must be a polynomial. In particular the factor

(1 − srs)Q

in 3.34 must itself a polynomial. But then the second equality in 3.34 forces (1 − srs)Q to be divisible by
(xr − xs)2m. Since for a polynomial Q the maximal power of (xr − xs) that divides (1− srs)Q must be odd,
we see that (1 − srs)Q must be divisible by (xr − xs)2m+1 as well. Since this must hold true for all pairs
1 ≤ r < s ≤ n we have thus established that Q is m-quasi-invariant and completed our proof.

We are now ready to study the action of Ωm on the polynomial ring Q[Xn]. We find here another
quite surprising development.

Theorem 3.3
For any monomial xp we have

Ωmxp ∈ QIm[Xn] . 3.36

In particular the image by Ωm of any polynomial in Q[Xn] is necessarily m−quasi-invariant.

Proof
The identity in 3.11 gives that

LmΩmxp = Ωm∆2x
p

This may also be written as
LmΩmxp =

∑
pi≥2

pi(pi − 1) Ωm xp/x2
i 3.37

Now when |p| < 2 we clearly have
LmΩmxp = 0
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since 0 is obviously in QIm[Xn] Theorem 3.1 assures us that the assertion is true for all monomials of degree
less than 2. This given we can proceed by induction and assume that 3.36 is true for all |p| < d. Now let
|p| = d and note from 3.37 that the inductive hypothesis assures that

LmΩmxp ∈ QIm[Xn]

but then again from Theorem 3.1 we derive that Ωmxp is a polynomial and moreover that

Ωmxp ∈ QIm[Xn] .

This completes the induction and the proof.

We are now able to provide a remarkable improvement upon the assertion in 3.12 regarding the
nature of Ωm as a differential operator. The basic idea rests on a “Generating Function Argument ” and the
generating function happens to be the Baker-Akhiezer function. This is the formal power series Ψm(x, y) in
two sets of variables x1, x2, . . . , xn and y1, y2, . . . , yn defined by setting

Ψm(x, y) = Ωm e(x,y) 3.38

with
(x, y) = x1y1 + x2y2 + · · · + xnyn .

Note that applying Ωm to the power expansion

e(x,y) =
∑

p

1
p! xpyp 3.39

we derive that Ψm(x, y) has the expansion

Ψm(x, y) =
∑

p

yp

p! Ωmxp 3.40

Thus Ψm(x, y) may be viewed as the generating function of the polynomials Ωmxp.
The importance of Ψm(x, y) in the study of m-quasi-invariants will appear be quite clear in the next

section. For the moment we use it to prove the following remarkable result.

Theorem 3.4
The operator Ωm has the form

Ωm = Π(x)mΠ(∂x)m +
∑

|q|<m(n
2)

Pq(x;m)∂q
x 3.41

with Pq(x;m) a polynomial in x1, x2, . . . , xn and m, homogeneous in x1, x2, . . . , xn of x-degree

deg(Pq) = |q| (for all q) 3.42

In particular it follows that

Ψm(x, y) = Pm(x, y)e(x,y) 3.43

with

Pm(x, y) = Π(x)mΠ(y)m +
∑

|q|<m(n
2)

Pq(x;m) yq 3.44
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Proof
The polynomiality in m is quite evident from the definitions of Ωm and Om. What is not obvious

from the arguments used in the proof of Proposition 3.4 is the x-polynomiality of the coefficients aq(x;m)
occurring in 3.7 and ultimately in 3.12. Yet this polynomiality is an immediate consequence of Theorem 3.3.
To see this we apply Ωm to the expansion

e(x,y) =
∑
k≥0

1
k! (x, y)k 3.45

and obtain the identity
Ψm(x, y) =

∑
k≥0

1
k! Ωm(x, y)k 3.46

Theorem 3.3 assures that the terms Ωm(x, y)k are polynomials and infact the degree preserving property of
Ωm assures that Ωm(x, y)k is doubly homogeneous and of degree k in both x1, x2, . . . , xn and y1, y2, . . . , yn.
Now from 3.12 it follows that

Ψm(x, y) =
(
Π(x)mΠ(∂x)m +

∑
|q|<m(n

2)
aq(x;m) ∂q

x

)
e(x,y)

= Pm(x, y)e(x,y)

3.47

with
Pm(x, y) = Π(x)mΠ(y)m +

∑
|q|<m(n

2)
aq(x;m) yq 3.48

We may thus combine 3.47, 3.45 an 3.46 and obtain another expression for Pm(x, y). Namely we have

Pm(x, y) = e−(x,y)
∑
k≥0

1
k! Ωm(x, y)k

=
( ∑

h≥0

(−1)h

h! (x, y)h
)( ∑

k≥0

1
k! Ωm(x, y)k

)

Since we know that Pm(x, y) is a polynomial in y1, y2, . . . , yn of degree dm = m
(
n
2

)
all terms of y-degree

larger than dm, on the right hand side of this identity, must necessarily cancel out. Thus we must have that

Pm(x, y) =
dm∑
r=0

∑
h+k=r

(−1)h

h!k! (x, y)hΩm(x, y)k 3.49

This remarkable formula makes quite obvious all the stated properties of Pm(x, y) and completes the proof
of the Theorem.

Remark 3.1
We should point out that comparing 3.50 with 3.48 we derive the surprising identity

Π(x)mΠ(y)m =
∑

h+k=m(n
2)

(−1)h

h!k! (x, y)hΩm(x, y)k 3.50
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The operator Lm has an alternate expression which will play a crucial role in the study of the
Baker-Akhiezer function. It is worth deriving it here before continuing with our developments.

Theorem 3.5
For any function F (x) we have

Lm F (x) = Π[Xn]m∆2 Π(x)−m F (x) − 2(m2 + m)
∑

1≤i<j≤n

1
(xi − xj)2

F (x) . 3.51

Proof
Note that 3.16 gives

∆2 Π(x)−m F (x) =
(
∆2 Π(x)−m

)
Q(x) + 2

n∑
i=1

(
∂xi

Π(x)−m
)
∂xi

F (x) + Π(x)−m∆2Q(x) .

Thus

Π(x)m∆2 Π(x)−m F (x) =
(
Π(x)m∆2 Π(x)−m

)
Q(x) + 2

n∑
i=1

(
Π(x)m∂xiΠ(x)−m

)
∂xiQ(x) + ∆2Q(x) . 3.52

Now for any 1 ≤ r ≤ n we get

Π(x)m∂xr
Π(x)−m = ∂xr

log
(
Π(x)−m

)
= −m

∑
1≤i<j≤n

∂xr log(xi − xj)

= −m
∑

1≤i<j≤n

∂xr
(xi − xj)

(xi − xj)

= −m
( ∑

1≤i<r

−1
(xi − xr)

+
∑

r<j≤n

1
(xr − xj)

)
,

In conclusion we have shown that
Π(x)m∂xrΠ(x)−m = −m Ur 3.53

where for convenience we have set

Ur =
n∑

i=1

1
(xr − xi)

χ(i �= r) . 3.54

Thus we have

Π(x)m∆2Π(x)−m =
n∑

r=1

(
Π(x)m∂xrΠ(x)−m

)(
Π(x)m∂xrΠ(x)−m

)

= −m

n∑
r=1

Π(x)m∂xrΠ(x)−m Ur

= −m

n∑
r=1

(
Π(x)m

((
∂xrΠ(x)−m

)
Ur + Π(x)−m

(
∂xrUr

))

= −m

n∑
r=1

(
− m U2

r + ∂xrUr

)
= m2

n∑
r=1

U2
r − m

n∑
r=1

∂xrUr .

3.55
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But from 3.54 we derive that

∂xrUr = −
n∑

i=1

1
(xr − xi)2

χ(i �= r) .

from which it immediately follows that

n∑
r=1

∂xr
Ur = −2

∑
1≤i<j≤n

1
(xi − xj)2

. 3.56

On the other hand, again from 3.54 we get

n∑
r=1

U2
r =

n∑
r=1

n∑
i=1

n∑
j=1

1
(xr − xi)(xr − xj)

χ(i �= r)χ(j �= r)

= 2
∑

1≤i<j≤n

1
(xi − xj)2

+
n∑

r=1

n∑
i=1

n∑
j=1

χ(i �= j)
(xr − xi)(xr − xj)

χ(i �= r)χ(j �= r) .

Clearly the left-hand side of this equality is a symmetric function of x1, x2, . . . , xn, and so is the first term
on the right-hand side. Thus also the second term on right hand side is necessarily symmetric. This
fact immediately implies that this term must vanish identically. The reason is simple, if it didn’t vanish,
multiplication of this term by Π(x) would yield an alternating polynomial of degree less than

(
n
2

)
and we

know that there aren’t any. In conclusion we derive that

n∑
r=1

U2
r = 2

∑
1≤i<j≤n

1
(xi − xj)2

. 3.57

Substituting 3.56 and 3.55 in 3.54 gives

Π(x)m∆2Π(x)−m = 2(m2 + m)
∑

1≤i<j≤n

1
(xi − xj)2

. 3.58

To complete our proof we need to evaluate the second term on the right-hand side of 3.52. To this end note
that we have (using 3.53)

2
n∑

r=1

(
Π(x)m∂xr

Π(x)−m
)
∂xr

F (x) = −2m

n∑
r=1

( n∑
i=1

1
xr − xi

χ(i �= r)
)
∂xr

F (x)

= −2m
( n∑

r=1

r−1∑
i=1

1
xr − xi

∂xrQ(x) +
n∑

r=1

n∑
i=r+1

1
xr − xi

∂xrF (x)
)

= −2m
( n∑

j=1

j−1∑
i=1

−1
xi − xj

∂xj
Q(x) +

n∑
i=1

n∑
j=i+1

1
xi − xj

∂xi
F (x)

)

= −2m
( ∑

1≤i<j≤n

1
xi − xj

(∂xi − ∂xj )Q(x)
)
.
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Using this and 3.58 in 3.52 we finally obtain the identity

Π(x)m∆2[Π(x)−mF (x) = 2(m2 + m)
∑

1≤i<j≤n

F (x)
(xi − xj)2

− 2m
∑

1≤i<j≤n

1
xi − xj

(∂xi − ∂xj )F (x) + ∆2F (x)

which (given the definition in 3.14) is simply another way of writing 3.51. This completes our proof.
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4. The Baker-Akhieser functions for Sn

The goal of this section is to obtain the basic properties of Ψm(x, y) which intimately connect it to
the theory of m-quasi-invariants. Recall that we have defined it by setting

Ψm(x, y) = Ωme(x,y) = OmOm−1 · · ·O1e
(x,y) 4.1

with
(x, y) = x1y1 + x2y2 + · · · + xnyn . 4.2

We begin with two fundamental properties of the Baker-Akhieser function which, as we will see, completely
characterize it

Theorem 4.1
a) 	LmΨm(x, y) = (y, y)Ψm(x, y) 4.3

and
Ψm(x, y) = Pm(x, y)e(x,y) 4.4

with

b) Pm(x, y) = Π(x)mΠ(y)m +
∑

0≤k<m(n
2)

ak(x, y) 4.5

where ak(x, y) is homogeneous in x1, x2, . . . , xn and y1, y2, . . . , yn, and of degree k in both variables. Moreover,

Ψm(x, y) is m-quasi-invariant as a function of x.

Proof
The definition in 4.11 and 3.11 give

LmΨm(x, y) = LmΩme(x,y) = Ωm∆2e
(x,y) = Ωm(y, y)e(x,y) = (y, y)Ωme(x,y) = (y, y)Ψm(x, y) .

This proves 4.3. Property b) is essentially the contents of Theorem 3.4. and it is best expressed by the
identities in 3.49 and 3.50. The quasi-invariance of Φ(x, y) is an immediate consequence of 3.36 and the
definition in 3.38

For a deeper understanding of the Baker-Akhiezer function we need to enlarge the algebra of func-
tions we work with. To this end we shall here and after call SRn(x, y) the ring generated by the variables
x1, x2, . . . , xn ; y1, y2, . . . , yn and all the fractions 1

xi−xj
, 1

yi−yj
. In symbols

SRn(x, y) = Q

[
xi, yi, i = 1, . . . , n ; 1

xi−xj
, 1

yi−yj
; 1 ≤ i < j ≤ n

]
This ring has a natural bigrading which decomposes it into bihomogeneous subspaces yielding the direct sum
decomposition

SRn(x, y) =
+∞⊕

r=−∞

+∞⊕
s=−∞

Hr,s

(
SRn(x, y)

)

Where Hr,s

(
SRn(x, y)

)
is spanned by rational function of the form

fr,s(x, y) =
xp1

1 xp2
2 · · ·xpn

n yq1
1 yq2

2 · · · yqn
n∏

1≤i<j≤n(xi − xj)pij
∏

1≤i<j≤n(yi − yj)qij
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with
n∑

i=1

pi −
∑

1≤i<j≤n

pij = r and
n∑

i=1

qi −
∑

1≤i<j≤n

qij = s .

We call the elements of Hr,s

(
SRn(x, y)

)
bihomogeneous of bidegree (r, s). Clearly, each f ∈ SRn(x, y) has

a unique decomposition of the form

f =
r2∑

r=−r1

s2∑
s=−s1

fr,s (with fr,s ∈ Hr,s

(
SRn(x, y)

)
) .

We call the summands fr,s(x, y) the “bihomogeneous components ” of f .

This given, we also need to deal with the family of special functions Φ(x, y) of the form

Φ(x, y) = F (x, y)e(x,y) with F (x, y) ∈ SRn(x, y)

It will be convenient here and after to denote this family by SFR(x, y).

Proposition 4.1
For any special function Φ(x, y) = F (x, y)e(x,y) ∈ SFR(x, y) we have

e−(x,y)Π(x)−mΠ(y)−m
(
LmΦ(x, y)−(y, y)Φ(x, y)

)
=

= 2
n∑

i=1

yi ∂xif(x, y) + ∆2f(x, y) − 2(m + m2)f(x, y)
∑

1≤i<j≤n

1
(xi−xj)2

.
4.6

where for convenience we have set

f(x, y) =
F (x, y)

Π(x)mΠ(y)m
4.7

It then follows that Φ(x, y) satisfies the identity

LmΦ(x, y) = (y, y) Φ(x, y) 4.8

if and only if the function f(x, y) is a solution of the differential equation

2
n∑

i=1

yi ∂xi
f(x, y) = −∆2f(x, y) + 2(m + m2)f(x, y)

∑
1≤i<j≤n

1
(xi−xj)2

. 4.9

Proof
Using the identity in 3.51 we derive that

Lm Φ(x, y) = Π(x)m∆2Π(x)−mF (x, y)e(x,y) − 2(m + m2)F (x, y)e(x,y)
∑

1≤i<j≤n

1
(xi−xj)2

dividing by Π(x)mΠ(y)m and using 4.7 we get

Π(x)−mΠ(y)−mLm Φ(x, y) = ∆2f(x, y)e(x,y) − 2(m + m2)f(x, y)e(x,y)
∑

1≤i<j≤n

1
(xi−xj)2
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Now the identity in 3.16 gives

Π(x)−mΠ(y)−mLm Φ(x, y) = (∆2f(x, y))e(x,y) + 2
n∑

i=1

∂xi
f(x, y)∂xi

e(x,y) + f(x, y)(y, y)e(x,y)

− 2(m + m2)f(x, y)e(x,y)
∑

1≤i<j≤n

1
(xi−xj)2

or better

Π(x)−mΠ(y)−m
(
Lm Φ(x, y) − (y, y)Φ(x, y)

)
= e(x,y)∆2f(x, y) + 2e(x,y)

n∑
i=1

yi∂xi
f(x, y)

− 2(m + m2)f(x, y)e(x,y)
∑

1≤i<j≤n

1
(xi−xj)2

dividing both sides by e(x,y) gives 4.6 precisely as asserted. Thus 4.8 is equivalent to 4.9, and our argument
is complete.

To proceed we need a technical result concerning the polarization operator
∑n

i=1 yi∂xi
.

Proposition 4.2
Let f(x, y) be a rational function of the form

f(x, y) =
∑
|p|=d

ap(x)yp 4.14

with d > 0 and ap(x) ∈ SRn(x). Then the equation

n∑
i=1

yi∂xiφ(x, y) = 0 4.15

forces all the coefficients ap(x) to be polynomials.

Proof
Denote by

m1(y), m2(y), · · · , mN (y), 4.16

the monomials yp with |p| = d arranged in the lex order corresponding to the total order y1 < y2 < · · · < yn.
This given we can rewrite 4.14 in the form

f(x, y) =
N∑

r=1

ar(x)mr(y)

and 4.15 becomes

N∑
r=1

∂x1ar(x) y1mr(y) +
N∑

r=1

∂x2ar(x) y2mr(y) + · · · +
N∑

r=1

∂xnar(x) ynmr(y) = 0 4.17
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Since, when i > 1 or r > 1, all the monomials yimr(y) are lexicographically larger than y1m1(y) = yd+1
1 , the

latter monomial can only occur once in this sum. Thus 4.14 forces

∂x1a1(x) = 0.

We can thus proceed by induction and suppose that we have shown that

∂x1a1(x) = ∂2
x1

a2(x) = · · · = ∂s−1
x1

as−1(x) = 0

This given, applying ∂s−1
x1

to 4.17 we derive that

N∑
r=s

∂s
x1

ar(x) y1mr(y) +
N∑

r=s

∂x2∂
s−1
x1

ar(x) y2mr(y) + · · · +
N∑

r=s

∂xn
∂s−1

x1
ar(x) ynmr(y) = 0 4.18

but now, for the same reason as before, the monomial y1ms(y) can only occur once in 4.18, this forces

∂s
x1

as(x) = 0

and completes the induction, proving that

∂x1a1(x) = ∂2
x1

a2(x) = · · · = ∂N
x1

aN (x) = 0 .

Now the same argument based on an order of y1, y2, . . . , yn, where the variable yi is first, would prove

∂xi
aσ1(x) = ∂2

xi
aσ2(x) = · · · = ∂N

xi
aσN

(x) = 0 .

when

mσ1(y), mσ2(y), . . . , mσN
(y) .

are in the corresponding lex order. We can then be assured that for all i we have

∂N
xi

a1(x) = ∂N
xi

a2(x) = · · · = ∂N
xi

aN (x) = 0 .

Thus a1(x), a2(x), . . . , aN (x) must be polynomials precisely as asserted.

To identify the family of special fuctions Φ(x, y) = F (x, y)ex,y ∈ SFR(x, y) which satisfy the
equation

LmΦ(x, y) = (y, y)Φ(x, y)

we need the following corollary of Proposition 4.1.
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Proposition 4.3
Let f ∈ SRn(x, y) and suppose that it has a bigraded decomposition of the form

f(x, y) =
∑

r1≤r≤r2

∑
s1≤s≤s2

fr,s 4.19

Then, for r2 < 0, the equation
n∑

i=1

yi∂xi
f(x, y) = 0 4.20

forces

f(x, y) = 0 4.21

in particular, when r2 < 0, the equation

n∑
i=1

yi∂xif(x, y) = g(x, y) 4.22

has at most one solution, of the form given in 4.19.

On the other hand, for r2 = 0, the equation in 4.22 forces f(x, y) to be of the form

f(x, y) = g(y) with g(y) ∈ SR(y) . 4.23

Proof
The bihomogeneity of the equation in 4.20 forces all the components of f(x, y) to satisfy the same

equation. So it is sufficient to prove 4.21 for a bihomogeneous f . So suppose that f = frs is bihomogeneous of
bidegree (r, s). This given, construct a factor D(y) =

∏
1≤i<j≤n(yi−yj)qij which clears all the y denominators

occurring in frs. We shall then have an expansion of the form

D(y)frs =
∑
|q|=d

aq(x)yq
(
with d = s +

∑
1≤i<j≤n pij

)

and each aq(x) ∈ SR(x) homogeneous of degree r. Thus we can apply Proposition 4.2 to the rational
function g(x, y) = D(y)frs(x, y) and conclude that the coefficients aq(x) must be polynomials in x. But for
r < 0 this can only hold true when each of them vanishes identically, this proves frs = 0 and 4.21 necessarily
follows. Now when r = 0 the only possibility is that each ap(x) is a homogeneous polynomial of degree 0 in
x, i.e. a constant. Thus in this case we must have scalars aq giving the expansion

g(x, y) =
∑

q

aqy
q

in particular we derive that

frs(x, y) =
∑

q

aq
yq∏

1≤r<s≤n(yr − ys)qrs
∈ SRn(y)
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In conclusion, we see that when r2 = 0, the equation in 4.20 forces fr,s = 0 when r < 0 yielding the equality

f(x, y) =
∑

s1≤s≤s2

fo,s(y)

with each fo,s(y) ∈ SRn(y). This proves 4.23. Finally if 4.22 had two solutions f ′(x, y) and f ′′(x, y) then
the difference f(x, y) = f ′(x, y) − f ′′(x, y) would be a solution of 4.20 and for r2 < 0 it would necessarily
vanish identically.

Theorem 4.2
Let Φ(x, y) = F (x, y)e(x,y) ∈ SFR(x, y) and suppose that Φ(x, y) satisfies the equation

LmΦ(x, y) − (y, y)Φ(x, y) = 0. 4.24

Suppose further that we have the bigraded decomposition

F =
∑

r1≤r≤r2

∑
s1≤s≤s2

Fr,s 4.25

Then

r2 < dm = m

(
m

2

)
=⇒ Φ(x, y) = 0 . 4.26

In particular the Baker-Akhiezer function Ψm(x, y) is the unique element of SFR(x, y) which satisfies 4.24

and whose multiplier F (x, y) has the form

F (x, y) = Π(x)mΠ(y)m + {terms of degree less than dm in x1, x2, . . . , xn} 4.27

Proof
Proposition 4.1 gives that the function

f =
∑

r1≤r≤r2

∑
s1≤s≤s2

Fr,s(x, y)
Π(x)mΠ(y)m

4.28

satisfies the equation

2
n∑

i=1

yi ∂xif(x, y) = −∆2f(x, y) + 2(m + m2)f(x, y)
∑

1≤i<j≤n

1
(xi−xj)2

. 4.29

Setting

ri = ri − dm and si = si − dm (for i = 1, 2 )

we can rewrite 4.28 in the form

f(x, y) =
∑

r1≤r≤r2

∑
s1≤s≤s2

fr,s(x, y) with fr,s ∈ Hr,s

(
SRn(x, y)

)
. 4.30
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and then the bihomogeneity of the equation in 4.29 forces the recursions

2
n∑

i=1

yi ∂xi
fr,s(x, y) = −∆2fr+1,s+1(x, y) + 2(m + m2)fr+1,s+1(x, y)

∑
1≤i<j≤n

1
(xi−xj)2

(∀ r < r2) 4.31

as well as the equality

2
n∑

i=1

yi ∂xi
fr2,s(x, y) = 0 . (∀ s1 ≤ s ≤ s2) 4.32

However, note that for r2 < dm, we have r2 < 0, so we can apply Proposition 4.3 and conclude that

fr2,s(x, y) = 0 . (∀ s1 ≤ s ≤ s2)

But now 4.31 for r = r2 − 1 reduces to

2
n∑

i=1

yi ∂xi
fr2−1,s(x, y) = 0 (∀ s1 ≤ s ≤ s2) 4.33

and here again Proposition 4.2 can be applied to yield

frx−1,s(x, y) = 0 . (∀ s1 ≤ s ≤ s2)

Obviously this argument can be repeated and recursively obtain that 4.32 forces the vanishing of all the
components fr,s(x, y) and ultimately the vanishing of F (x, y) as well as Φ(x, y). This proves the implication
in 4.26.

Finally, note that if F (x, y) is as given in 4.27 then the difference

Φ1(x, y) = Φ(x, y) − Ψm(x, y)

will be an element of SFR(x, y) of the form

Φ1(x, y) =
( ∑

r1≤r≤r2

∑
s1≤s≤s2

ar,s(x, y)
)
e(x,y)

with r2 < dm. Thus we can apply 4.26 to it and derive that it must identically vanish. This proves the
equality

Φ(x, y) = Ψm(x, y)

and completes our argument.

To continue with our developents we need further notation. We will use operators which act
on y1, y2, . . . , yn in the same manner as some of the operators introduced in previous sections acted on
x1, x2, . . . , xn. To do this we will use the same symbols as before and simply append a superscript “x” or
“y” to indicate whether they act on x1, x2, . . . , xn or y1, y2, . . . , yn. For instance, with this convention we
have

Lx
m = ∆x

2 − 2
∑

1≤i<j≤n

1
xi−xj

(∂xi − ∂xj ) with ∆x
2 =

n∑
i=1

∂2
xi
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and

Ly
m = ∆y

2 − 2
∑

1≤i<j≤n

1
yi−yj

(∂yi
− ∂yj

) with ∆y
2 =

n∑
i=1

∂2
yi

.

Similarly, for the Euler operators in x1, x2, . . . , xn and y1, y2, . . . , yn we set

Ex =
n∑

i=1

xi∂xi
and Ey =

n∑
i=1

yi∂yi

We should also note that a simple calculation, based on 3.17, yields the commutator relations

a) Lx
m (x, x) − (x, x) Lx

m = c I + 4Ex and b) Ly
m (y, y) − (y, y)Ly

m = c I + 4Ey 4.34

with I the identity operator and
c = 2n − 4m

(
n
2

)
. 4.35

This given, we are in a position to state and prove the following remarkable fact

Proposition 4.4
Setting

Φm(x, y) = Ly
mΨm(x, y) − (x, x)Ψm(x, y) 4.36

we have

Lx
mΦm(x, y) = (y, y)Φm(x, y) 4.37

Proof
To begin note that since Ωx

m preserves homogeneity and x-degree it will necessarily commute with
the Euler operator Ex. On the other hand Ey and Ωx commute as well since they act on different sets of
variables. This gives

EyΨm(x, y) = EyΩx
me(x,y)

= Ωx
mEye(x,y)

= Ωx
m(x, y)e(x,y)

= Ωx
mExe(x,y)

= ExΩx
me(x,y) = ExΨm(x, y)

and 4.34 a) immediately gives that we also have

(
Lx

m(x, x) − (x, x)Lx
m

)
Ψm(x, y) =

(
Ly

m(y, y) − (y, y)Ly
m

)
Ψm(x, y) . 4.38

Now, from 4.36 we derive that the left-hand side of 4.37 can be rewritten as

LHS = Lx
m

(
Ly

mΨm(x, y) − (x, x)Ψm(x, y)
)

= Ly
mLx

mΨm(x, y) − Lx
m(x, x)Ψm(x, y)

(by 4.3) = Ly
m(y, y)Ψm(x, y) − Lx

m(x, x)Ψm(x, y)
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and for the right-hand side we have

RHS = (y, y)
(
Ly

mΨm(x, y) − (x, x)Ψm(x, y)
)

= (y, y)Ly
mΨm(x, y) − (y, y)(x, x)Ψm(x, y)

(by 4.3 again ) = (y, y)Ly
mΨm(x, y) − (x, x)Lx

mΨm(x, y)

and the two are equal if and only if

Ly
m(y, y)Ψm(x, y) − Lx

m(x, x)Ψm(x, y) = (y, y)Ly
mΨm(x, y) − (x, x)Lx

mΨm(x, y)

but this simply another way of writing the identity in 4.38. This proves 4.37 and completes our argument.

An immediate corollary of Proposition 4.3 is the following basic identity satisfied by the Baker-
Akhiezer function

Theorem 4.3

Ly
mΨm(x, y) = (x, x)Ψm(x, y) 4.39

Proof
Since Ψm(x, y) = Pm(x, y)e(x,y) with Pm(x, y) a polynomial in x and y we can apply the identity

in 4.6 with the role of x and y reversed and obtain that the function Φm(x, y) defined by 4.36 is of the form

Φm(x, y) = Gm(x, y)e(x,y) 4.40

with

Gm(x, y) = Π(y)mΠ(x)m
(
2

n∑
i=1

xi ∂yi
fm(x, y) + ∆y

2fm(x, y) − 2(m + m2)fm(x, y)
∑

1≤i<j≤n

1
(yi−yj)2

)
4.41

and

fm(x, y) =
Pm(x, y)

Π(y)mΠ(x)m
4.42

It is easily seen that the rational function defined by 4.41 lies in SRn(x, y) thus 4.40 gives that Φm(x, y) ∈
SFR(x, y). Since Proposition 4.4 assures that we have

Lx
mΦm(x, y) = (y, y)Φm(x, y)

we shall be able to derive that Φm(x, y) vanishes identically and prove 4.39, as soon as we derive that
Gm(x, y) has a bigraded expansion of the form

Gm(x, y) =
∑

r1≤r≤r2

∑
s1≤s≤s2

Gr,s(x, y)

with r2 < dm. Or, equivalently that the rational function

gm(x, y) = 2
n∑

i=1

xi ∂yifm(x, y) + ∆y
2fm(x, y) − 2(m + m2)fm(x, y)

∑
1≤i<j≤n

1
(yi−yj)2

4.43
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has a a bigraded expansion of the form

gm(x, y) =
∑

r1≤r≤r2

∑
s1≤s≤s2

gr,s(x, y) with r2 < 0. 4.44

Now note that from 4.5 and 4.42 it follows that fm(x, y) has a bigraded expansion of the form

fm(x, y) =
∑

−dm≤r≤0

fr,r(x, y) 4.45

Thus using this in 4.43 we immediately derive that we must have

gr,s = 2
n∑

i=1

xi ∂yi
fm

∣∣
r−1,s+1

+ ∆y
2fm

∣∣
r,s+2

− 2(m + m2)fm

∣∣
r,s+2

∑
1≤i<j≤n

1
(yi−yj)2

where we have used the symbol “
∣∣
a,b

” for the operation of extracting a bigraded component of bidegree(a, b).
Now, in view of 4.45, in order for the right hand side not to vanish we must have the equality s = r − 2.
This gives

gr,s = 0 if s �= r − 2

and

gr+1,r−1 = 2
n∑

i=1

xi ∂yifr,r + ∆y
2fr+1,r+1 − 2(m + m2)fr+1,r+1

∑
1≤i<j≤n

1
(yi−yj)2

4.46

This means that the bihomogeneous component of gm(x, y) of highest x-degrees are

g1,−1 = 2
n∑

i=1

xi ∂yif0,0 4.47

and

g0,−2 = 2
n∑

i=1

xi ∂yi
f−1,−1 + ∆y

2f0,0 − 2(m + m2)f0,0

∑
1≤i<j≤n

1
(yi−yj)2

4.48

all the other components have negative x degrees. Thus to prove 4.44 we need only show that both g1,−1

and g0,−2 do vanish identically. However, from 4.5 it follows that f0,0 = 1 and 4.47 gives

g1,−1 = 0

as desired and from 4.48 we get

g0,−2 = 2
n∑

i=1

xi ∂yif−1,−1 − 2(m + m2)
∑

1≤i<j≤n

1
(yi−yj)2

. 4.49

So we are left to show that we have

n∑
i=1

xi ∂yif−1,−1 = (m + m2)
∑

1≤i<j≤n

1
(yi−yj)2

. 4.50
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To determine f−1,−1 we apply Proposition 4.1 to the Baker-Akhiezer function and derive from 4.3 that the
function in 4.45 must satisfy the differential equation

2
n∑

i=1

yi ∂xi
fm(x, y) = −∆x

2fm(x, y) + 2(m + m2)fm(x, y)
∑

1≤i<j≤n

1
(xi−xj)2

. 4.51

Now using 4.45 we deduce that the bihomoheneous components of fm(x, y) must satisfy the recursions

2
n∑

i=1

yi ∂xi
fr,r = −∆x

2fr+1,r+1 + 2(m + m2)fr+1,r+1

∑
1≤i<j≤n

1
(xi−xj)2

. 4.52

In particular setting r = −1 and using f0,0 = 1 we get that f−1,−1 satisfies the equation

n∑
i=1

yi ∂xif−1,−1 = (m + m2)
∑

1≤i<j≤n

1
(xi−xj)2

. 4.53

Now it is easily seen that we have

n∑
i=1

yi ∂xi

∑
1≤r<s≤n

1
(xr−xs)(yr−ys) = −

∑
1≤i<j≤n

1
(xi−xj)2

.

Thus a solution of 4.53 is given by the function

f−1,−1 = −(m + m2)
∑

1≤r<s≤n

1
(xr−xs)(yr−ys) 4.54

However, since f−1,−1 is of negative x degree, we can use the uniqueness part of Proposition 4.3 and conclude
that this is the only solution. This given we derive that

n∑
i=1

xi ∂yi
f−1,−1 = −(m + m2)

n∑
i=1

xi ∂yi

∑
1≤r<s≤n

1
(xr−xs)(yr−ys)

= −(m + m2)
∑

1≤r<s≤n

−(xr−xs)
(xr−xs)(yr−ys)2 .

and this is simply another way of writing 4.50. This proves that Φm(x, y) identically vanishes and 4.39 must
hold true precisely as asserted.

This brings us to one of the crucial properties of the Baker-Akhiezer function.

Theorem 4.4

Ψm(x, y) = Ψm(y, x) 4.55

Proof
Note that from 4.5 we derive that

Ψm(y, x) = Pm(y, x)e(x,y)
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with
Pm(y, x) = Π(x)mΠ(y)m +

∑
0≤k<m(n

2)
ak(y, x) 4.56

where ak(y, x) is homogeneous in x1, x2, . . . , xn and y1, y2, . . . , yn, and of degree k in both variables.
Now interchanging x and y in 4.39 we derive that

Lx
mΨm(y, x) = (y, y)Ψm(y, x)

and this together with 4.56 puts us in a position to use the uniqueness part of Theorem 4.2 and thereby
conclude that Ψm(y, x) and the Baker-Akhiezer function must be one and the same, proving 4.55.

Theorem 4.2 has a windfall of consequences as we shall soon see. In particular we may deduce from
it an extensive generalisation of the identity in 4.3.

Theorem 4.5
For any symmetric polynomial P (x) set

γp(m) = Γp
(
∇1(m),∇1(m), . . . ,∇n(m)

)
4.57

This given, we have
a) γx

p (m)Ψm(x, y) = p(y)Ψm(x, y)

b) γy
p (m)Ψm(x, y) = p(x)Ψm(x, y)

4.58

Proof
Clearly 4.58 b) follows from 4.58 a) by interchanging x and y and using 4.55. Moreover, it is sufficient

to establish 4.47 for p homogeous. So assuming that p is of degree d > 0 it follows from Proposition 3.4 that
γx

p (m) is of the form

γx
p (m) = p(∂x) +

∑
|q|<d

fq(x) ∂q
x 4.59

where for some scalar coefficients cpq we have

fq(x) =
∑

|p|=d−|q|

cpq∏
rs(xr − xs)prs

. 4.60

Recall that we also have Ψm(x, y) = Pm(x, y)e(x,y) with

Pm(x, y) = Π(x)mΠ(y)m +
∑

0≤k<m(n
2)

ak(x, y) 4.61

This given set
Φ(x, y) = γx

p (m)Ψm(x, y) − p(y)Ψm(x, y) 4.62

Now it is easily seen from 4.59,4.60 and 4.61 that

Φ ∈ SFR(x, y) , 4.63
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and it follows from 2.23 and 4.3 that we have

Lx
mΦ(x, y) = Lx

mγx
p (m)Ψm(x, y) − Lx

mp(y)Ψm(x, y)

= γx
p (m)Lx

mΨm(x, y) − p(y)Lx
mΨm(x, y)

= γx
p (m)(y, y)Ψm(x, y) − p(y)(y, y)Ψm(x, y)

= (y, y)
(
γx

p (m)Ψm(x, y) − p(y)Ψm(x, y)
)

= (y, y)Φ(x, y) .

We are thus again in the realm of Theorem 4.2. So to prove the vanishing of Φ and thereby establishing 4.58
a) we need only check that Φ(x, y) = F (x, y)e(x,y) with F having a bigraded decomposition of the form

F (x, y) =
∑

r1≤r<dm

∑
s1≤s≤s2

Fr,s . 4.64

Briefly we only need to show that F (x, y) has no terms of degree dm = m
(
n
2

)
in x. Now from 4.59.4.61 and

4.62 it follows that

F (x, y) = e−(x,y)
(
p(∂x)Π(x)mΠ(y)me(x,y) − p(y)Π(x)mΠ(y)m −

∑
0≤k<m(n

2)
p(y)ak(x, y)e(x,y)

+
∑

0≤k<m(n
2)

p(∂x)ak(x, y)e(x,y)

+
∑
|q|<d

fq(x) ∂q
x Π(x)mΠ(y)me(x,y)

+
∑
|q|<d

∑
0≤k<m(n

2)
fq(x) ∂q

x ak(x, y)e(x,y)
)

All the terms that involve differentiations here are easily handled by means of the identity in 3.1. This given,
we immediately see that the only way that we can produce an x-degree dm term from the first summand in the
first line of the above display is to let p(∂x) act entirely on e(x,y) but this produces the term p(y)Π(x)mΠ(y)m

which is immediately cancelled out by the next summand. Since each summand ak(x, y) in 4.5 is of degree
k < dm we see that all the remaining summands in the first line are of x-degree less than dm. The same
reasoning applies to the terms produced by the second line of the display, even if let p(∂x) act entirely on
e(x,y). Since we see from 4.60 that all the factors fq(x) are of negative x-degree, there is no way a term of
x-degree less than dm can be produced by any of the summands in the last two lines, even if we let ∂q

x act
entirely on e(x,y). This proves 4.64 and completes our argument.

Remarkably, it was shown by Chalykh and Veselov in [] that an operator γp(m) satisfying the
identities in 4.58 can be constructed also for every m-quasi-invariant. Our next task here is to give this
construction. But before proceeding with it we need to establish another truly surprising auxiliary result
also due to Chalykh and Veselov.
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Theorem 4.6
Let Φ(x, y) be a formal power series of the form

Φ(x, y) = P (x, y)e(x,y) 4.65

with P (x, y) a polynomial in y of degree d, with coefficients in SRn(x). Suppose further that, as a function

of y, Φ(x, y) is y-m-quasi-invariant. In symbols

Φ(x, y) ∈ QIm[Yn] .

Then the homogeneous component of y-degree d − i in P (x, y) is necessarily divisible by Π(y)m−i. More

precisely if

P (x, y) = P (0)(x, y) + P (1)(x, y) + · · · + P (d)(x, y) 4.66

with P (r)(x, y) y-homogeneous of degree r then d ≥ m
(
n
2

)
and

P (d−i)(x, y) = Π(y)m−iQi(x, y) (for i = 0, 1, . . . , m − 1) 4.67

with Qi(x, y) a y-homogeneous polynomial of degree d − i − (m − i)
(
n
2

)
.

In particular Φ(x, y) must identically vanish if d < m
(
n
2

)
.

Proof
We shall begin with some observations. Combining 4.66 with the expansion of the exponential the

relation in 4.65 can be rewritten as
Φ(x, y) =

∑
k≥0

Φ(k)(x, y) 4.68

with
Φ(k)(x, y) =

∑
r+s=k

r≤d

Pr(x, y)(x, y)s/s! 4.69

Note that this is a polynomial in x, y and it gives the y-homogeneous component of y-degree k in Φ(x, y).
The assumption Φ(x, y) ∈ QIm[Yn] is to be interpreted as saying that we have

Φ(k)(x, y) ∈ QIm[Yn] (for all k ≥ 0)

Here and after we shall use the abreviations

u = (x1 − x2)/2 , u = (x1 + x2)/2 , v = y1 − y2 , v = (y1 + y2) 4.70

Since
x1y1 + x2y2 = 2u v + 2u v

we may write
e(x,y) = e2u ve2u v+

∑n

i=3
xiyi 4.71

here and after we shall set
e2u v+

∑n

i=3
xiyi = e(x,y)
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so 4.71 may be written as
e(x,y) = e2u ve(x,y) . 4.72

Observe next that the m y-quasi-invariance of Φ(k)(x, y) may be simply expressed by stating that

Φ(k)(x, y) = Φ(k)
0 (u, x, y) + Φ(k)

2 (u, x, y)v2 + · · · + Φ(k)
2m(u, x, y)v2m + v2m+1Ψ(k)(u, v, x, y)

where x = (u, x3, . . . xn) and y = (v, y3, . . . yn), we thus obtain the decomposition

Φ(x, y) = Φ0(u, x, y) + Φ2(u, x, y)v2 + · · · + Φ2m(u, x, y)v2m + v2m+1Ψ(u, v, x, y) 4.73

with
Φ2s(u, x, y) =

∑
k≥0

Φ(k)
2s (u, x, y) , Ψ(u, v, x, y) =

∑
k≥0

Ψ(k)(u, v, x, y) . 4.74

At the cost of adding denominators containing difffernces xi − xj we may also decompose P (s)(x, y) in the
form

P (s)(x, y) = P
(s)
0 (u, x, y) + P

(s)
1 (u, x, y)2u v + · · · + P

(s)
d (u, x, y)(2u v)d

where P
(s)
r (u, x, y) is a y-homogeneous polynomial of y-degree s−r. Of course some of the terms in this sum

could very well vanish (certainly P
(s)
r (u, x, y) for r > s) but we write it this way for notational convenience.

Setting

Pr(u, x, y) =
d∑

s=0

P (s)
r (u, x, y)

we may write
P (x, y) = P0(u, x, y) + P1(u, x, y)2u v + · · · + Pd(u, x, y)(2u v)d

Using this and 4.72 in 4.65 we obtain te expansion

Φ(x, y) = e(x,y)
( d∑

r=0

∑
s≥0

1
s! (2u v)r+sPr(u, x, y)

)
.

comparing with 4.73 gives the equations

∑
s+r=2k+1

1
s!Pr(u, x, y) = 0 (for k = 0, 1, · · · , m)

Since each of the y-homogeneous components of this polynomial must separately vanish, and P
(e+r)
r (u, x, y)

is a y-homogeneous polynomial of y-degree e,we get for any e

∑
s+r=2k+1

1
s!P

(e+r)
r (u, x, y) = 0 (for k = 0, 1, · · · , m) 4.75

Now for k = 0 this gives (omitting the dependence on u, x, y)

1
1!P

(e)
0 + 1

0!P
(e+r)
1 = 0 4.76
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Setting e = d reduces it to
P

(d)
0 = 0 . 4.77

The equation in 4.75 for k = 1 gives

1
3!P

(e)
0 + 1

2!P
(e+1)
1 + 1

1!P
(e+2)
2 + 1

0!P
(e+3)
3 = 0 4.78

and setting e = d − 1 in 4.76 and 4.78 gives the system

1
1!P

(d−1)
0 + 1

0!P
(d)
1 = 0

1
3!P

(d−1)
0 + 1

2!P
(d)
1 = 0

which forces
P

(d−1)
0 = 0 , P

(d)
1 = 0.

Now for k = 2 we get from 4.75

1
5!P

(e)
0 + 1

4!P
(e+1)
1 + 1

3!P
(e+2)
2 + 1

2!P
(e+3)
3 + 1

1!P
(e+4)
4 + 1

0!P
(e+5)
5 = 0 4.79

and setting e = d − 2 in 4.76, 4.78 and 4.79 we get

1
1!P

(d−2)
0 + 1

0!P
(d−1)
1 = 0

1
3!P

(d−2)
0 + 1

2!P
(d−1)
1 + 1

1!P
(d)
2

1
5!P

(d−2)
0 + 1

4!P
(d−1)
1 + 1

3!P
(d)
2

and since

det




1
1!

1
0! 0

1
3!

1
2!

1
1!

1
5!

1
4!

1
3!


 �= 0

It follows that we must have
P

(d−2)
0 = P

(d−1)
1 = P

(d)
2 = 0

Clearly we can continue in this manner, where at the kth step we have the system of k + 1 homogeneous
linear equations

k∑
s=0

1
(2i+1−s)!P

(d−k+s)
s = 0 (for i = 0, 1, · · · , k − 1)

with determinant
Dk = det

∥∥ 1
(2i+1−s)!

∥∥k

i,s=0
.

Now it is well known see Macdonald [] that Dk equals 1 over the product of the hooks of the k + 1-staircase
partition. This gives

Dk =
1

(2k + 1)!!(2k − 1)!! · · · 3!! 1!!
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where (2k + 1)!! = (2k + 1) · (2k − 1) · · · 3 · 1. At any rate what is important is that Dk �= 0. To derive that
at the kth step we obtain the equalitites

P
(d−k)
0 = P

(d−k+1)
1 = · · · = P

(d)
k = 0 .

Since we can carry this out up to k = m − 1, at the (m − 1)st step we get

P
(d−m+1)
0 = P

(d−m+2)
1 = · · · = P

(d−m+i)
i−1 = · · · = P

(d)
m−1 = 0 .

The result is that, for P d−m+i we obtain

P
(d−m+i)
0 = P

(d−m+i)
1 = · · ·P (d−m+i)

i−1 = 0.

This implies that P (d−m+i) is divisible by (x1−x2)i. Since the same argument applies to any pair of variables
xi, xj and the differences xi − xj are relatively prime, the inevitable conclusion is that P (d−m+i) is divisible
by Π(x)i. Or equivalently that P (d−j) is divisible by Π(x)m−j for j = 0, 1, . . . , m−1. This proves 4.67. Note
that if d < m

(
n
2

)
the divisibility of P (d) by Π(x)m forces P (d) = 0 contraddicting the hypothesis that P (x, y)

is a polynomial of degree d in y. So the only way to avoid contraddiction is that Φ(x, y) vanishes identically.
This completes our proof.

Before we can proceed to establish some remarkable consequences of Theorem 4.6 we need an aux-
iliary result which is of intrinsic interest.

Proposition 4.5
Let γ(x, ∂x) be an operator of the form

γ(x, ∂x) =
∑
|p|≤d

ap(x)∂p
x (with ap(x) ∈ SRn(x)) 4.80

and suppose further that we have

γ(x, ∂x)Φ(x, y) = 0 4.81

where Φ(x, y) = P (x, y)e(x,y) with P (x, y) a polynomial in x1, x2, . . . , xn and y1, y2, . . . , yn. Then

γ(x, y) =
∑
|p|≤d

ap(x)yp = 0 . 4.82

Proof
Assume, if possible that ∑

|p|=d

ap(x)yp �= 0 , 4.83

and let

P (x, y) =
k∑

r=0

P (r)(x, y) 4.84
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with P (r)(x, y) y-homogeneous of y-degree r and

P (k)(x, y) �= 0 4.85

. This given, from 4.80 and Proposition 3.1 we derive

γ(x, ∂x)Φ(x, y) =
k∑

r=0

∑
|p|≤d

ap(x)
∑

α+β=p

p!
α!β!

∂α
x e(x,y)∂β

xP (r)(x, y)

= e(x,y)
k∑

r=0

∑
|p|≤d

ap(x)
∑

α+β=p

p!
α!β!

yα∂β
xP (r)(x, y)

Thus 4.81 gives
k∑

r=0

∑
|p|≤d

ap(x)
∑

α+β=p

p!
α!β!

yα∂β
xP (r)(x, y) = 0. 4.86

Clearly, the y-homogeneous component of highest y-degree in the left-hand side of this equation is obtained
by taking r and |p| as large as possible and |β| as small as possible. But these choices give the polynomial∑

|p|=d

ap(x)ypP (k)(x, y)

Since this term cannot be cancelled out by any other term in 4.86, it must separately vanish. But then 4.85
forces ∑

|p|=d

ap(x)yp = 0 ,

which is plain contraddiction with 4.83. But the only way to avoid such a contraddiction is to accept that
the polynomial in 4.82 vanishes identically.

We are now ready to draw the consequences of Theorem 4.6.

Theorem 4.7
If Φ(x, y) is a formal power series of the form

Φ(x, y) = P (x, y)e(x,y) 4.87

with P (x, y) a polynomial in y of degree d ≥ m
(
n
2

)
, with coefficients in SRn(x) and suppose further that

Φ(x, y) ∈ QIm[Yn] .

Then there is a unique differential operator

γ(x, ∂x) =
∑

|p|≤d−m(n
2)

ap(x)∂p
y

(
with ap(x) ∈ SRn(x)

)
4.88

giving

Φ(x, y) = γ(x, ∂x)Ψm(x, y) 4.89
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Proof
If d = m

(
n
2

)
then Theorem 4.6 yields that P (x, y) must be of the form

P (x, y) = a(x)Π(y)m + · · · (terms of y-degree < m
(
n
2

)
)

with a(x) ∈ SRn(x). But in this case the difference

Φ′(x, y) = Φ(x, y) − a(x)
Π(x)m Ψm(x, y) 4.90

will satisfy the hypotheses of Theorem 4.6 as well. Infact, we have seen in Theorem 4.1 that Ψm(x, y) ∈
QIm[Xn]. But then the symmetry in 4.55 implies that Ψm(x, y) ∈ QIm[Yn]. On the other hand by
constructing the difference in 4.90 we have managed to cancel the term of y-degree m

(
n
2

)
in P (x, y) so that

the polynomial P ′(x, y) giving Φ′(x, y) = P ′(x, y)e(x,y), will necessarily have y-degree < m
(
n
2

)
. Thus

Theorem 4.6 will force the identity
Φ(x, y) = a(x)

Π(x)m Ψm(x, y) .

This proves 4.89 with γ the trivial multiplication operator

γ(x) =
a(x)

Π(x)m
.

We can thus proceed by induction on d. So suppose the theorem true up to a d − 1 ≥ m
(
n
2

)
. And suppose

that 4.87 holds true with P (x, y) of y-degree d. Then our hypotheses combined with Theorem 4.6 imply that

P (x, y) = a(x, y)Π(y)m + · · · (terms of y-degree d) .

with a(x, y) of y-degree d − m
(
n
2

)
. This given, note that from Theorem 4.1 it follows that

a(x, ∂x) 1
Π(x)m Ψm(x, y) = a(x, ∂x)

(
Π(y)m + · · · terms of y-degree < m

(
n
2

))
e(x,y)

=
(
a(x, y)Π(y)m + · · · terms of y-degree < d

)
e(x,y)

Thus the difference
Φ′(x, y) = Φ(x, y) − a(x, ∂x) 1

Π(x)m Ψm(x, y) 4.91

will satisfy the hypothesis of Theorem 4.6 with the multiplier P ′(x, y) giving Φ′(x, y) = P ′(x, y)e(x,y) of y

degree < d so by induction we know there is an operator β(x, ∂x) giving

Φ′(x, y) = β(x, ∂x)Ψm(x, y)

Combining this with 4.91 proves 4.89 with

γ(x, ∂x) = β(x, ∂x) + a(x, ∂x) 1
Π(x)m .

The uniqueness of the desired operator is an immediate consequence of Proposition 4.5. In fact, if there were
two operators giving 4.89 than their difference would kill Ψm(x, y) and propositio 4.5 would assure that it
vanishe identically. This completes our proof.
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We are now ready to prove the following fundamental fact
Theorem 4.8

For every m-quasi-invariant q(x) of degree d there is a unique operator γq(x, ∂x) of the form

γq(x, ∂x) = q(∂x) +
∑
|p|<d

ap(x)∂p
x

(
with ap(x) ∈ SRn(x)

)
4.92

such that
a) γq(x, ∂x)Ψm(x, y) = q(y)Ψm(x, y) .

b) γq(y, ∂y)Ψm(x, y) = q(x)Ψm(x, y) .
4.93

Moreover we have the commutativity relations.

a) Lx
mγq(x, ∂x) = γq(x, ∂x)Lx

m ,

b) Ly
mγq(y, ∂y) = γq(y, ∂y)Ly

m .
4.94

Proof
Clearly 4.93 b) follows from 4.93 a) by means of the symmetry in 4.55. We can also assume without

loss that q is homogeneous. This given we see that, because of the m-y-quasi-invariance of both q(y) and
Ψm(x, y), the difference

Φ′(x, y) = q(y)Ψm(x, y) − q(∂x)Ψm(x, y) 4.95

satisfies the hypotheses of Theorem 4.6. Now from 4.5 we derive that

q(∂x)Ψm(x, y) = q(∂x)(Π(x)mΠ(y)m + · · · terms of y-degree < m
(
n
2

))
e(x,y)

= (q(y)Π(x)mΠ(y)m + · · · terms of y-degree < d + m
(
n
2

))
e(x,y)

It then follows from 4.5 again that the multiplier P ′(x, y) giving Φ′(x, y) = P ′(x, y)e(x,y) of y-degree less
than d + m

(
n
2

)
. This implies that the operator β(x, ∂x) which, according to Theorem 4.6, gives

Φ′(x, y) = β(x, ∂x)Ψm(x, y)

is of the form
β(x, ∂x) =

∑
|p|<d

ap(x)∂p
y

(
with ap(x) ∈ SRn(x)

)
But then from 4.95 we derive that we have

γ(x, ∂x)Ψm(x, y) = q(y)Ψm(x, y)

with
γ(x, ∂x) = q(∂x) +

∑
|p|<d

ap(x)∂p
y .

This proves 4.93 a) with 4.92.
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Finally, note that now 4.3 and 4.93 a) give

Lx
mγq(x, ∂x)Ψm(x, y) = q(y)(y, y)Ψm(x, y) = (y, y)q(y)Ψm(x, y) = γq(x, ∂x)Lx

mΨm(x, y) ,

that is (
Lx

mγq(x, ∂x) − γq(x, ∂x)Lx
m

)
Ψm(x, y) = 0 .

and Proposition 4.5 imediately gives the equality

Lx
mγq(x, ∂x) = γq(x, ∂x)Lx

m

proving 4.94 a). This given, 4.94 b) follows from the symmetry in 4.55. The uniqueness of γq(x, ∂x) follows
again from Proposition 4.5. This completes our proof.

We terminate this section with one final rather curious application of Theorem 4.7.

Theorem 4.9
There is a unique operator Um(x, ∂x) of the form

Um(x, ∂x) = Π(x)−1Π(∂x) +
∑

|p|<(n
2)

up(x)∂p
x 4.96

with up(x) ∈ SRn(x) giving

Um(x, ∂x)Ψm(x, y) = Π(y)2Ψm−1(x, y) 4.97

In particular we must also have

Um(x, ∂x)Ωx
m = Ωx

m−1Π(∂x)2 = ΓΠ(∇(m))2Ωx
m−1 4.98

Proof
Note that if Q(x) ∈ QIm−1[Xn] then Π(x)2Q(x) ∈ QIm[Xn]. Infact, for any pair 1 ≤ i < j ≤ n we

have
(1 − sij)Π(x)2Q(x) = Π(x)2 (1 − sij)Q(x)

and the m − 1-quasi-invariance of Q(x) gives (for a suitable Q′)

(1 − sij)Π(x)2Q(x) = Π(x)2(xi − xj)2m−1 Q′(x)

since Π(x)2 contains the factor (xi−xj)2 the m-quasi-invariance of Π(x)2Q(x) necessarily follows. Of course
all of this remains true with x1, x2, . . . , xn replaced by y1, y2, . . . , yn. In particular it follows that

Π(y)2Ψm−1(x, y) ∈ QIm[Yn] .

But, in view of 4.5, we see that this special function is of the form

Φ(x, y) =
(
Π(x)m−1Π(y)m+1 +

∑
0≤k<(m−1)(n

2)
ap(x, y)Π(y)2

)
e(x,y)

Thus the existence of the desired operator Um(x, ∂x) immeditely follows by applying Theorem 4,7 to the
difference

Π(y)2Ψm−1(x, y) − Π(x)−1Π(∂x)Ψm(x, y) .

Finally, both the identities in 4.98 are easily derived from 4.97 by means of Proposition 4.5. We leave this
last verification to the reader.
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5. Some remarkable actions of the Laplace operator.
This section is dedicated to the derivation of a number of useful of consequences the following

surprising operator identity

Theorem 5.1
For any polynomial P ∈ Q[Xn] homogeneous of degree d we have

1
2dd!

d∑
r=0

(
d

r

)
(−1)r∆d−r

2 P (x) ∆r
2 = P (∂x) . 5.1

Proof

Note that we have the expansion

et(a,x) =
∑
p1≥0

∑
p2≥0

· · ·
∑

pn≥0

tp1+p2+···pnxp1
1 xp2

2 · · ·xpn
n

ap1
1

p1!
ap2
2

p2!
· · · apn

n

pn!
.

Using the abreviation

xp1
1

p1!
xp2

2

p2!
· · · xpn

n

pn!
=

xp

p!

we may simply write this as

et(a,x) =
∑

p

t|p| xp ap

p!
. 5.2

Thus we may view the exponential et(a,x) as the generating function of the monomials in x1, x2, . . . , xn. In
this vein, since

∂p
xe(x,y) = yp e(x,y)

we can prove the identity in 5.1 by showing that for any exponent vector p, whose components add up to d,
we have

2dd! yp e(x,y) =
d∑

r=0

(
d

r

)
(−1)r∆d−r

2 xp ∆r
2 e(x,y) .

Using 5.2 we may also rewrite this as

2dd! yp e(x,y) =
d∑

r=0

(
d

r

)
(−1)r∆d−r

2 et(x,a)
∣∣∣
ap/p!

∣∣∣
td

∆r
2 e(x,y) . 5.3

Since we have

∆2 e(x,y) = (y, y)e(x,y)
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the identity in 5.13 is none other than

2dd! yp e(x,y) =
d∑

r=0

(
d

r

)
(−1)r∆d−r

2 et(x,a)(y, y)r e(x,y)
∣∣∣
ap/p!

∣∣∣
td

=
d∑

r=0

(
d

r

)
(−1)r∆d−r

2 e(x,t a+y)(y, y)r
∣∣∣
ap/p!

∣∣∣
td

=
d∑

r=0

(
d

r

)
(−1)r

(
(t a + y, t a + y)

)d−r(y, y)r e(x,t a+y)
∣∣∣
ap/p!

∣∣∣
td

=
(
(t a + y, t a + y) − (y, y)

)d

e(x,t a+y)
∣∣∣
ap/p!

∣∣∣
td

= td
(
(t (a, a) + 2(a, y)

)d

e(x,t a+y)
∣∣∣
ap/p!

∣∣∣
td

= 2d(a, y)d e(x,y)
∣∣∣
ap/p!

which reduces to a tautology because of the multinomial expansion

(a1y1 + a2y2 + · · · + an yn)d =
∑
|q|=d

d!
q!

aq yq .

This completes our proof.

The first consequence of Theorem 5.1 is an identity which is in some sense “ dual ” to 5.1
Theorem 5.2

For any polynomial P (x) ∈ Q[Xn] homogeneous of degree d we have

(−1)d

2dd!

d∑
r=0

(
d

r

)
(−1)rp2(x)d−rP (∂x) p2(x)r = P (x) . 5.4

where

p2(x) = x2
1 + x2

2 + · · · + x2
n

Proof
The identity in 5.1 gives

1
2dd!

d∑
r=0

(
d

r

)
(−1)r∆d−r

2 P (x) ∆r
2 e(x,y) = P (y)e(x,y) . 5.5

However we also have

1
2dd!

d∑
r=0

(
d

r

)
(−1)r∆d−r

2 P (x) ∆r
2 e(x,y) =

1
2dd!

d∑
r=0

(
d

r

)
(−1)rp2(y)r∆d−r

2 P (x) e(x,y)

(x and y derivatives commute) =
1

2dd!

d∑
r=0

(
d

r

)
(−1)rp2(y)rP (∂y) ∆d−r

2 e(x,y)

=
1

2dd!

d∑
r=0

(
d

r

)
(−1)rp2(y)rP (∂y) p2(y)d−r e(x,y)
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Combining this identity with 5.5 gives

1
2dd!

d∑
r=0

(
d

r

)
(−1)rp2(y)rP (∂y) p2(y)d−r e(x,y) = P (y)e(x,y)

and Proposition 4.5 gives the operator equality

1
2dd!

d∑
r=0

(
d

r

)
(−1)rp2(y)rP (∂y) p2(y)d−r = P (y)

which is 5.4 with x1, x2, . . . , xn replaced by y1, y2, . . . , yn.

To see where the left hand hand side of 5.1 comes from we need a few preliminary observations.
Given a vector space V let us denote by L[V ] the vector space of all linear operators on V . Note that for
A, B ∈ L[V ] it is customary to set

[A, B ] = AB − BA .

For a given C ∈ L[V ] we define DC to be the linear operator on L[V ] defined by setting for any A ∈ L[V ]

DC A = [C, A] . 5.6

It develops that DC acts as a differentiation on L[V ].

Proposition 5.1
For any C ∈ L[V ] we have the Leibnitz formula

DC (A B) = (DCA)B + A DCB
(
∀ A, B ∈ L[V ]

)
. 5.7

In particular it follows that

Dm
C (A B) =

m∑
r=0

(
m

r

)(
Dm−r

C A
)(

Dr
CB

)
. 5.8

Proof
Note that by definition

DC (A B) = C A B − A B C

and this can be rewritten as

DC (A B) = (C A − A C)B + A (CB − B C) .

This proves 5.7. Note further that 5.8 reduces to 5.7 for m = 1. So to prove 5.8 we may proceed by induction.
This given, assuming 5.4 to be true for m we derive from 5.7

Dm+1
C (AB) =

m∑
r=0

(
m

r

)((
Dm−r+1

C A
)(

Dr
CB

)
+

(
Dm−r

C A
)(

Dr+1
C B

))

=
m∑

r=0

(
m

r

) (
Dm+1−r

C A
)(

Dr
CB

)
+

m+1∑
r=1

(
m

r − 1

)(
Dm+1−r

C A
)(

Dr
CB

))

=
m+1∑
r=0

(
m + 1

r

) (
Dm+1−r

C A
)(

Dr
CB

)
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where the last equality follows from the binomial identities(
m + 1

r

)
=

(
m

r

)
+

(
m

r − 1

)
. 5.9

This completes the induction and our proof.

In the same manner we derive.

Proposition 5.2
For any C, A ∈ L[V ]

Dm
C A =

m∑
r=0

(
m

r

)
(−1)r Cm−rA Cr . 5.10

Proof
Note that the case m = 1 of 5.10 is simply the definition of DC . So we may again proceed by

induction and assume 5.10 to be true for m. This given, from 5.7 we derive that

Dm+1
C A =

m∑
r=0

(
m

r

)
(−1)r

(
Cn+1−rA Cr − Cn−rA Cr+1

)

=
m∑

r=0

(
m

r

)
(−1)r Cm+1−rA Cr +

m+1∑
r=1

(
m

r − 1

)
(−1)r Cm+1−rA Cr

)

and 5.10 again follows from the binomial identities in 5.9.

To set formula 5.1 in the present context, we should take V = Q[Xn], C = ∆2, and A = P (x). Thus
in this notation formula 5.1 is none other than

1
2dd!

Dd
∆2

P (x) = P (∂x) . 5.11

In the same vein formula 5.4 becomes

(−1)d

2dd!
Dd

p2(x) P (∂x) = P (x) . 5.12

This view point allows us to extend Theorem 5.2 to an even more surprising result

Theorem 5.3
For any polynomial P (x) ∈ Q[Xn] homogeneous of degree dP we have

d∑
r=0

(
d

r

)
(−1)rp2(x)d−r P (∂x) p2(x)r =




(−1)d2dd!P (x) if dP = d

0 if dP < d

5.13

Proof
The first case of 5.13 is formula 5.5. Now if dP < d we can still use 5.12 with d = dP and get

DdP

p2(x) P (∂x) = (−1)dP 2dP dP ! P (x) . 5.14
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But since the two multiplication operators p2(x) and P (x) commute we necessarily have

Dp
2
P (x) = 0

and 5.14 gives
Dd

p2(x) P (∂x) = (−1)dP 2dP dP ! Dd−dP

p2(x) P (x) = 0 .

as desired.

We are now ready to obtain some truly surprising new expressions (due to Berest []) for the operators
γq(x, ∂x) whose existence was established in the last section.

Theorem 5.4
For any polynomial q(x) ∈ QI[Xn] homogeneous of degree d we have

γq(x, ∂x) =
1

2dd!

d∑
r=0

(
d

r

)
(−1)rLd−r

m q(x)Lr
m 5.15

Proof
Note that from 4.3 we derive the sequence of equalities

1
2dd!

d∑
r=0

(
d

r

)
(−1)rLd−r

m q(x)Lr
mΨm(x, y) =

1
2dd!

d∑
r=0

(
d

r

)
(−1)rLd−r

m q(x)p2(y)rΨm(x, y)

(by 4.93) =
1

2dd!

d∑
r=0

(
d

r

)
(−1)rLd−r

m p2(y)rγ(y, ∂y)Ψm(x, y)

(x and y operators commute) =
1

2dd!

d∑
r=0

(
d

r

)
(−1)rp2(y)rγ(y, ∂y)Ld−r

m Ψm(x, y)

=
1

2dd!

d∑
r=0

(
d

r

)
(−1)rp2(y)rγ(y, ∂y)p2(y)d−rΨm(x, y)

5.16

Next using 4.92 with x1, x2, . . . , xn replaced by y1, y2, . . . , yn gives the operator identity

1
2dd!

d∑
r=0

(
d

r

)
(−1)rp2(y)rγ(y, ∂y)p2(y)d−r =

1
2dd!

d∑
r=0

(
d

r

)
(−1)rp2(y)rq(∂y)p2(y)d−r

+
∑
|p|<d

ap(y)
1

2dd!

d∑
r=0

(
d

r

)
(−1)rp2(y)r∂p

yp2(y)d−r

But now a double application of the identities in 5.13 with x1, x2, . . . , xn replaced by y1, y2, . . . , yn assures
that the first sum reduces to q(y) and the second sum vanishes identically. Using this in 5.15 yields

1
2dd!

d∑
r=0

(
d

r

)
(−1)rLd−r

m q(x)Lr
mΨm(x, y) = q(y)Ψm(x, y) = γ(x, ∂x)Ψm(x, y) ,
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and the operator identity in 5.14 immediately follows by another application of Proposition 4.5.

All this may appear quite mysterious at this point. Now it develops that the true nature of the
identities we have derived in this section can be best understood within their natural sl(2) setting. This will
be the primary goal of the next section.

6. sl[2] Theory as it applies to Q[Xn] and QIm[Xn]

Let V be a vector space and let as before L(V ) denote the space of linear operators on V . Let us
recall that three operators E, F, H ∈ L(V ) generate a representation of sl(2) if and only if

a) [E, F ] = H , b) [H, E] = 2E , c) [H, F ] = −2F . 6.1

These relations imply the following identities that will be needed in our arguments.

Proposition 6.1
i)1 HEm = Em(H + 2m I)

i)2 HFm = Fm(H − 2m I)

ii)1 FEm+1 = Em+1F − (m + 1)Em(H + m I)

ii)2 EFm+1 = Fm+1E + (m + 1)Fm(H − m I)

6.2

Proofs may be found in our sl(2) lecture notes [].

The next result is also well known but since it will play a crucial role in our development it will be
good give a proof here.

Proposition 6.2
For any u ∈ V we have

iii)1




a) Fu = 0

b) Hu = −du
=⇒ Fm Em u =

m!d!
(d − m)!

u for all 0 ≤ m ≤ d 6.31

iii)2




a) Eu = 0

b) Hu = du
=⇒ Em Fm u =

m!d!
(d − m)!

u for all 0 ≤ m ≤ d 6.32

Proof
Note that both iii)1 and iii)2 are trivial for m = 0. So we can proceed by induction on m. Now to

show iii)1 we use ii)1 and a) and b) of iii)1 and get

FEm+1u = −(m + 1)Em(−d + m)u ,

multiplying both sides by Fm then gives the recursion

Fm+1Em+1u = (m + 1)(d − m)FmEmu



On Shift Differential Operators 8, 2004 63

assuming iii)1 to be true for m, this gives

Fm+1Em+1u = (m + 1)(d − m)
m!d!

(d − m)!
u =

(m + 1)!d!
(d − m − 1)!

u

and this completes the induction. Note next that using ii)2 with iii)2 a) and b) we get

EFm+1u = (m + 1)Fm(d − m)u

and multiplication by Em gives the recursion

EmFm+1u = (m + 1)(d − m)EmFmu ,

from which iii)2 readily follows as in the previous argument.

We will also make use of the following basic fact.

Theorem 6.1
If E, F, H ∈ L(V ) satisfy a), b) and c) of 6.2 then we also have

a) [DE , DF ] = DH , b) [DH , DE ] = 2DE , a) [DH , DF ] = −2DF , 6.4

Thus DE , DF , DH generate an sl(2) representation on L(V ). In particular they will also satisfy the identities

i)1, i)2 , ii)1, ii)2 , and iii)1, iii)2 with E, F, H replaced by DE , DF , DH respectively.

Proof
It is sufficient to show that if A and B are any two elements of L(V ) then

[DA, DB ] = D[A,B ] . 6.5

Let Q ∈ L(V ), then the definition in 6.6 gives

[DA, DB ]Q = DADB Q − DBDA Q

= DA(BQ − QB) − DB(AQ − QA)

= A(BQ − QB) − (BQ − QB)A − B(AQ − QA) + (AQ − QA)B

= ABQ + QBA − BAQ − QAB .

6.6

On the other hand we have

D[A,B] Q = [A, B ]Q − Q [A, B ]

= (AB − BA)Q − Q (AB − BA)

= ABQ − BAQ − QAB + QBA

Comparing this with 6.6 proves 6.5 and completes our proof of the theorem.

Our study of the operators Lp(M) requires some sl(2)-results in the case that V is infinite dimen-
sional. This case is not considered in [] and we shall have to treat it in detail here. However, since our
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developments only require V = QIm[Xn] or V = Q[Xn]. We will carry out this extension in the presence of
some additional restrictions, which as we shall see are well satisfied in these two cases.

To begin we shall assume that V is a graded algebra over Q

A = Q ⊕H1(A) ⊕H2(A) ⊕ · · · ⊕ Hk(A) ⊕ · · · 6.7

with the usual requirement that
Hr(A) ×Hs(A) ⊆ Hr+s(A) . 6.8

We shall call the elemements of Hd(A) “homogeneous of degree d ” and we set deg(u) = d for all u ∈ Hd(A).
The operators E, F and H are also heavily restricted. To begin we shall require that H acts by a constant
on each Hd(A). More precisely we assume that for some scalar c we have for any homogeneous element of
A:

H u =
(
c − deg(u)

)
u . 6.9

Since A is an algebra, for any q ∈ A, the operator “multiplication by q ”, which we denote by “q ”, may also
be considered to be an element of L(A). This given we require that

F q = q F (for all q ∈ A) . 6.10

The final condition that E itself must satisfy is now forced by 6.9. More precisely we have

Proposition 6.3
The operator E sends a homogeneous element of degree d into a homogeneous element of degree

d − 2
Proof

Note first that 6.8 and 6.2 i)1 for m = 1 give, for a homogeneous q of degree d

HE q = (c − d + 2)E q 6.11

on the other hand the direct sum decomposition in 6.7 gives

E q =
∑
r≥0

E q
∣∣
r

where the symbol “E q
∣∣
r
” denotes the homogeneous component of degree r in E q. Applying 6.9 again we

now get
HE q =

∑
r≥0

(c − r)E q
∣∣
r
.

Comparing with 6.11, the uniqueness of decomposition forces

E q
∣∣
r

= 0 for c − r �= c − d + 2

This leaves r = d − 2 which gives
E q = E q

∣∣
d−2

.
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This proves our assertion.

Our next results concern the representation induced by the action of DE , DF and DH on L(A). To
begin we have

Proposition 6.4
For any homogeneous q ∈ A

DH q = −deg(q) q 6.12

Proof
Let P, q ∈ A be homogeneous . Then, by definition

DH q P = (Hq − qH)P

= HqP − q HP

(by 6.8 and 6.9) =
(
(c − deg(q) − deg(P )

)
qP −

(
c − deg(P )

)
qP = −deg(q) q P .

The validity of this for all homogeneous P yields 6.16.

We are now in a position to derive following basic results.

Theorem 6.2
Let q ∈ A be homogeneous of degree d then, either the sequence

q → DE q → D2
E q → D3

E q → . . . → Dk
E q → · · · . 6.13

has infinite length, or it terminates at k = d. That is we have

Dd+1
E q = 0 6.14

and q is the head of an sl(2)-string of length d + 1 which consists of q and the operators

DE q , D2
E q , D3

E q , . . . , Dd
E q . 6.15

which are all non vanishing. In any case, we have at least the commutativity relation

Dd+1
E q F = F Dd+1

E q 6.16

Proof
Note that from 6.12 and property 6.10 we get

a) DF q = 0 and b) DHq = −dq .

Thus we may apply iii)1 of Proposition 6.1 and obtain that

Dm
F Dm

E q =
m!d!

(d − m)!
q .

(
for 1 ≤ m ≤ d

)
6.17
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This shows that none of the elements in 6.15 vanishes. Next we are to show that if Dk
E q = 0 for some k > d

then 6.14 must also hold true. This given let ko be such that

a) Dko

E q �= 0 and b) Dko+1
E q = 0 . 6.18

To this end note that from 6.2 ii)1 with m = ko we get

DF Dko+1
E q = Dko+1

E DF q + (ko + 1)Dko

E

(
DH + ko I

)
q

(by 6.15) = (ko + 1)Dko

E

(
DH + ko I

)
q

(by 6.12) = (ko + 1)
(
− d + ko

)
Dko

E q .

This given 6.18 b) gives
0 = DF Dko+1

E q = (ko + 1)
(
− d + ko

)
Dko

E q

and 6.18 a) forces
k0 = d ,

as desired. In any case, we can certainly use the relation in ii)1 and derive (using properties a) and b) above)

DF Dd
E q = −(d + 1)Dm

E (−d + d)q = 0 .

But this is precisely the identity on 6.16. The proof is thus complete.

From here on we shall work under the additional assumption that our algebra A satisfies the extra
condition

For every q ∈ A the sequence {Dk
E q}k≥0 terminates. 6.19

The following result shows that we are not dealing with a vacuous notion and at the same time throws some
further light onto the nature of the identity in 6.14.

Theorem 6.3
Let A = Q[Xn], and take

E = −∆2/2 , F = p
2
/2 , H = [E, F ] , 6.20

with

p2 = x2
1 + x2

2 + · · · + x2
n . 6.21

Then

a) [H, E] = 2E , b) [H, F ] = −2F . 6.22

Moreover conditions 6.9, 6.10 and 6.19 old true as well.

Proof
We will begin by computing H. To this end note that for any polynomial Q(x) ∈ Q[Xn] we have

∆2 p2 Q =
(
∆2 p2

)
Q + 2

n∑
i=1

(∂xip2)(∂xiQ) + p2∆2Q . 6.23
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Since a simple computation shows that

∆2 p2 = 2n and
n∑

i=1

(∂xip2)(∂xiQ) = 2
n∑

i=1

xi∂xiQ ,

substituting these two identities in 6.23 gives

(∆2 p
2
− p

2
∆2)Q = 2n Q + 4

n∑
i=1

xi∂xi
Q ,

or, equivalently

[E, F ] = −n I/2 −
n∑

i=1

xi∂xi . 6.24

This gives

H = −n I/2 −
n∑

i=1

xi∂xi . 6.25

Since for any homogeneous polynomial Q we have

n∑
i=1

xi∂xi Q = deg(Q)Q , 6.26

the identity in 6.25 proves 6.9 with c = −n/2.
Note that 6.10 is trivially satisfied since for any q ∈ Q[Xn] we have

Fq − qF = p
2
q − q p

2
= 0 .

Note next that for any homogeneous P ∈ Q[Xn] we have

[H, E]P = HE P − EH P

= − 1
2

(
H∆2P − ∆2HP

)
= − 1

2

(
− deg(∆2P ) + deg(P )∆2P

)
= − 1

2

(
− deg(P ) + 2 + deg(P )

)
∆2P = −∆2P = 2EP .

this proves 6.22 a). Moreover, using 6.20 we get

[H, F ]P = 1
2

(
Hp2P − p2H)Q = 1

2

(
− deg(P ) − 2 + deg(P )

)
p2Q = −2F Q

and this proves 6.22 b).
Finally, note that the identity in 6.1, for q ∈ Hd

(
Q[Xn]

)
, gives

Dd
E q =

(−1)d

2d

d∑
r=0

(
d

2

)
(−1)r∆d−r

2 q∆r
2 = (−1)dd! q(∂x) .
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In particular this shows that Dd
E q commutes with ∆2. But this means that

Dd+1
E q = E Dd

E q − Dd
Eq E = 0 .

This proves the validity of 6.19 and completes the proof of the Theorem.

We have seen that in this particular case the operators Lq = 1
d!D

d
Eq reduce to q(∂x) when q ∈

Hd(Q[Xn]). Thus all these operators commute with each other and with ∆2. It develops that, in the
presence of condition 6.19, this commutativity property, holds true in general. To be precise we have

Theorem 6.4
Setting for a homogeneous q

Lq =
1

deg(q)!
D

deg(q)
E q , 6.27

under 6.19 we have the identities

E Lp = Lp E (for all homogeneous p ∈ A) 6.28

and

Lp Lq = Lp q (for all homogeneous p, q ∈ A) 6.29

Proof
The identity in 6.28 is simply

1
deg(q)!

D
deg(q)+1
E q = 0 ,

and we have seen that this is implied by 6.19. To show 6.29 let p ∈ Hd1(A), q ∈ Hd2(A) and set d = d1 +d2.
Then using Proposition 6.1 we derive that

1
d!

Dd
Epq =

1
d!

d∑
r=0

(
d

r

)(
Dd−r

E p
)(

Dr
Eq

)
. 6.30

However, 6.19 implies that Dk
Ep = 0 for k > d1 and Dk

Eq = 0 for k > d2 thus the summand
(
Dd−r

E p
)(

Dr
Eq

)
vanishes unless d1 + d2 − r ≤ d1 and r ≤ d2. This forces r = d2 and reduces 6.30 to the identity

1
d!

Dd
Epq =

1
d1!d2!

(
Dd1

E p
)(

Dd2
E q

)
. 6.31

which is simply another way of writing 6.29.
Our next goal is to show that all these results hold for A = QIm[Xn]. To be precise we have

Theorem 6.5
Let A = QIm[Xn] and set

E = −Lm/2 , F = p/2 , H = [E, F ] 6.32

Then

a) [H, F ] = 2E , b) [H, F ] = −2F . 6.33

Moreover conditions 6.9, 6.10 and 6.19 hold true as well.
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Proof
We will begin by computing H. To this end we use Proposition 3.6 and get, for any Q ∈ QIm[Xn]

L(m) (p2Q) =
(
L(m) p2

)
Q + 2

n∑
i=1

(∂xi
p2)(∂xi

Q) + p2

(
L(m)Q

)
. 6.34

Now note that we have

1
xi − xj

(∂xi
− ∂xj

)
n∑

r=1

x2
r =

1
xi − xj

(2xi − 2xj) = 2 .

Since we have seen in the proof of Theorem 6.3 that

∆2 p2 = 2n and
n∑

i=1

(∂xi
p2)(∂xi

Q) = 2
n∑

i=1

xi∂xi
Q ,

we immediately derive from 6.34 that

(
L(m)p

2
− p

2
L(m)

)
Q = 2n Q − 4m

(
n

2

)
Q + 4

n∑
i=1

xi∂xi
Q ,

consequently

[E, F ]Q = −n Q/2 + m

(
n

2

)
Q −

n∑
i=1

xi∂xiQ .

This gives

H = −n/2 + m

(
n

2

)
−

n∑
i=1

xi∂xi
,

which is property 6.9 with

c = −n/2 + m

(
n

2

)
. 6.35

Property 6.10 is again immediate, as in the proof of Theorem 6.3, since F = p
2
/2. We shall next verify 6.33

a) and b). To this end note that for a homogeneous Q ∈ QIm[Xn] we have (with c as in 6.35)

[H, E]Q = − 1
2

(
HL(m) − L(m)H

)
Q

(since L(m) lowers degrees by 2) = − 1
2

(
(c − deg(Q) + 2)L(m)Q − L(m)(c − deg(Q))Q

)
= −L(m) Q = 2E Q .

This proves 6.33 a). The identity in 6.33 b) is proved exactly as we did in the proof of Theorem 6.3 and we
need not repeat it here. We are left to verify that property 19 hold true as well. To this end let q ∈ QIm[Xn]
be homogeneous of degree d and let γp(x, ∂x) be the operator constructed from q according to the algorithm
given by Theorem 4.8. Now we have shown (Theorem 5.4) that γp(x, ∂x) may be also obtained from the
identity

γp(x, ∂x) =
1

2dd!

∑
i=1

(−1)d

(
d

r

)
(−1)rLd−r

m q Lr
m .
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In the present notation this may be rewritten as

γp(x, ∂x) =
(−1)d

d!
Dd

E q .

However, one of the assertions of Theorem 4.8 (see 4.94 a)) is that γp(x, ∂x) commutes with Lm. But in the
present notation this is simply

Dd+1
E q = 0 .

This proves that condition 5.19 holds true also in this case and completes our proof.

We can thus state.
Theorem 6.6

Let A = QIm[Xn] and E, F, H be in as in 6.32 and set for a homogeneous q ∈ QIm[Xn]

Lq =
1

deg(q)!
D

deg(q)
E q . 6.37

Then we have

L(m)Lp = Lp L(m) (for all homogeneous p ∈ QIm[Xn]) 6.38

and

Lp Lq = Lp q (for all homogeneous p, q ∈ QIm[Xn]) 6.39

Proof
This is an immediate corollary of Theorem 6.4.

By combining the results of the last two sections with some of the properties of the Bakerf-Akhiezer
functions Ψm(x, y), we can put together a remarkable tool kit for working with quasi-invariants. However,
for our presentation to be complete we need to show that Ψm(x, y) has a non vanishing constant term. More
precisely we have the following beautiful identity

Theorem 6.6 (Opdam [])

Π(∇(m))Π(x) 1 = (−1)(
n
2)n!

∏
1≤i<j≤n

(jm − i) . 6.40

In particular, the constant term of the polynomial Pm(x, y) in 4.5 is given by

m∏
r=1

(−1)(
r
2)r!

∏
1≤i<j≤n

(jr − i) 6.41

Proof
For the moment there no elementary simple proof of 6.40. An elementary but rather intricate

argument proving 6.40 was given by Dunkl and Hanlon in []. Thus we shall have to accept 6.40 as given at
this time and proceed with the rest of the argument. It is easily seen from 3.38, 4.4 and the definition of Ωm

that

Φm(0, 0) = Pm(0, 0) = Ωm 1 =
( n∏

r=1

Or

)
1
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But since 1 is certainly symmetric we see that we have

Or 1 =
(
ΓΠ(∇(r)Π(x)

)
· 1 = Π(∇(r)Π(x)) · 1 = Π(∇(r)Π(x))

and since each of these quantities is a scalar it follows that we must also have

Φm(0, 0) = Pm(0, 0) =
n∏

r=1

Π(∇(r)Π(x))

Thus the assertion in 6.41 follows from 6.40.

We can now collect a windfall of consequences of this result.

Theorem 6.7
For any m ≥ 1 we have

(1) The bilinear form defined by setting for any two polynomials in p, q ∈ QI[Xn]

(p , q)m = 1
c0

γp(x, ∂x)q(x)
∣∣
x=0

6.42

is non-degenerate.

(2) If
{
φ

(d)
k (x)

}Nd

k=1
is any complete orthonormal system for the homogeneous m-quasi-invariants

of degree d with respect to the form ( , )m, then

Ωm
(x,y)d

d! =
Nd∑
i=1

φ
(d)
k (x)φ(d)

k (y) 6.43

as well as

Ψm(x, y) = c0 +
∑
d≥1

Nd∑
i=1

φ
(d)
k (x)φ(d)

k (y) 6.44

where c0 is the constant given by 6.41.

(2) In particular Ψm(x, y) is the reproducing kernel for the form ( , )m.

Proof
Form 4.93 a) we derive that for any homogeneous m-quasi-invariant p(x) we get

∑
k≥0

γp(x, ∂x)Ωm
(x,y)k

k! = q(y)
∑
k≥0

Ωm
(x,y)k

k!

Now if p is of degree d, since the operator γp(x, ∂x) will then decrease x-degrees by d, then by equating
homgeneous components of equal degrees we get for k ≥ d

γp(x, ∂x)Ωm
(x,y)k

k! = q(y)Ωm
(x,y)k−d

(k−d)!

and setting k = d we obtain
γp(x, ∂x)Ωm

(x,y)d

d!

∣∣
x=0

= coq(y)
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In other words, we have shown that

(p(x) , Ωm
(x,y)d

d! )m = q(y) 6.45

This proves the non degeneracy of the form ( , )m. Replacing x1, x2, . . . , xn by z1, z2, . . . , zn and p(x) by
φ

(d)
k (z) in 6.45 gives

(φk(z)(d) , Ωm
(z,y)d

d! )m = φ
(d)
k (y) 6.46

multiplying both sides by φ
(d)
k (x), the completeness and orthonormality of the set

{
φ

(d)
k (x)

}Nd

k=1
gives

Nd∑
k=1

φ
(d)
k (x)φ(d)

k (y) = Ωm
(x,y)d

d!

this proves 6.43 and 6.44 immediately follows.
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