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The non-degeneracy
of

the bilinear form of m-Quasi-Invariants

by
A. M. Garsia and N. Wallach

ABSTRACT

We give here a new proof of the non-degeneracy of the fundamental bilinear form
for Sn-m-Quasi-Invariants and for m-Quasi-Invariants of classical Weyl groups. We also
indicate how our approach can be extended to other Coxeter groups. This bilinear form
plays a crucial role in the original proof [6] that m-Quasi-Invariants are a free module over
the invariants as well as in all subsequent proofs [3], [11]. However, in previous literature this
non-degeneracy was stated and used without proof with reference to some deep results of
Opdam [15] on shift-differential operators. This result hinges on the validity of a deceptively
simple identity on Dunkl operators which, at least in the Sn case, begs for an elementary
painless proof. An elementary but by all means not painless proof of this identity can be
found in a paper of Dunkl and Hanlon [5]. Our proof here is not elementary but hopefully
it should be painless and informative.

Introduction
In the present context the Sn Dunkl operator ∇i(m) is written in the form

∇i(m) = ∂xi
− m

n∑
j=1,j �=i

1
xi−xj

(1 − sij) I.1

where “∂xi
” is ordinary partial differentiation with respect to xi and “sij” denotes the transposition that

interchanges xi and xj . These operators as well as their analogous counterpart for other reflection groups have
truly remarkable properties. In fact, they have a surprising variety of properties in common with ordinary
differentiation. In particular, they act on polynomials in x1, x2, . . . , xn and statisfy the commutativity
relations

∇i(m)∇j(m) = ∇j(m)∇i(m) ( ∀ 1 ≤ i < i ≤ n) I.2

That means that for any polynomial P (x1, x2, . . . , xn) the operator

P
(
∇(m)

)
= P

(
∇1(m),∇2(m), . . . ,∇n(m)

)
I.3

is well defined. The following identity is part of the collection of identities for Coxeter groups that are the
main object of this paper:

Πn

(
∇(m)

)
Πn(x) = n!(−1)(

n
2)

∏
1≤i<j≤n

(mj − i) I.4

where
Πn(x) =

∏
1≤i<j≤n

(xi − xj) I.5
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is the familiar Vandermonde determinant. Although I.4 can be easily conjectured by computer experi-
mentation, efforts at producing an elementary proof of it quickly lead to surprising technical difficulties.
Nevertheless Dunkl and Hanlon in [5] were able to provide a brute force derivation of I.4 as well as a con-
siderably more general version of it. Our attempts at deciphering the Dunkl-Hanlon proof persuaded us to
seek for other paths. In doing so we quickly learned that I.4 may be also derived from

(1) the Theory of Double Affine Hecke Algebras,

(2) the Theory of Macdonald polynomials,

(3) the Theory of Jack polynomials.

For (1), (2) and (3) we are respectively grateful to I. Cherednik, I. M. Macdonald and Luc Lapointe who
personally provided us with a surprisingly detailed outline of the arguments. It develops that in each case I.4
quickly follows from basic identities of each theory. However, in each case, the effort at developing the basics
of the corresponding theory, although certainly worthwhile from a general education standpoint, turned out
to be quite disproportionate to our ultimate goal.

The breakthrough that led us to a more economical path to I.4 came from a paper of Zeilberger [16]
whose principal goal was an attempt at a WZ evaluation of the classical Mehta integral. In this attempt
Zeilberger unwittigly ties up his evaluation to a very simple identity implicitely involving Dunkl operators.
Our basic contribution here is to show that the Zeilberger identity is in fact equivalent to I.4. thus obtaining
I.4 as an elementary consequence of the Mehta integral.

Our presentation consists of five sections. In the first section we rederive the Zeilberger identity and
show its equivalence to I.4. This section uses a number of identities that may be well known to experts in
the area. For them the resulting proof of I.4 may be complete. However, our presentation is aimed at a more
general audience. Since detailed proofs of many of these identities are difficult to find in the literature, we
feel compelled to include additional sections to cover what is customarily omitted or briefly sketched. This
given, in the second section we derive all the needed basic identities on Dunkl operators. We carry this out
in the general Weyl group setting and show how the arguments of section 1 extend to this more general case.
The third section contains a complete proof of the Selberg integral itself including many usually omitted
details. In the forth section we give a detailed derivation of the Mehta integral from the Selberg integral.
We also include there a proof of the Macdonald-Metha identities for Bn and Dn. These identities were first
proved by Regev [14] who derived them from the Selberg integral. Our proof follows the same path. In the
fifth and final section we show how I.4 and its Weyl group analogues yield the non degeneracy of the bilinear
form for m-Quasi-Invariants.

We should again emphasize that the contents of this writing should be considered semi-expository
in that many of the results we prove are well known to the expert in the subject. Our goal throughout has
been to make the material accessible to beginners in the subject in the least painful manner. In fact most
of our work here is simply a detailed presentation of some of the contents of a graduate topic course on the
theory of m-quasi-invariants given at UCSD in the academic year 2003 − 2004. Readers who may wish to
learn more about m-quasi-invariants may consult the expository works in [7] and [10].
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.
1. Dunkl operators and the Mehta integral

Our point of departure here is the Mehta identity

1

(2π)
n
2

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
e−(x2

1+x2
2+···+x2

n)/2
∏

1≤i<j≤n

(xi − xj)2kdx1dx2 · · · dxn =
n∏

j=1

jk!
k!

. 1.1

Zeilberger in [16] attempts a WZ evaluation of this integral by seeking for a polynomial P (z) which yields
1.1 as a consequence of the simple identity

n∑
i=1

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
∂xi

(
(∂xi

P )e−|x|2/2Πn(x)2k
)dx1dx2 · · · dxn

(2π)n/2
= 0 . 1.2

where for convenience we have set

|x|2 = x2
1 + x2

2 + · · · + x2
n = p2(x) . 1.3

This idea leads him to a discovery which may be best expressed by the following

Proposition 1.1
For any polynomial P (x) we have

n∑
i=1

∂xi

(
(∂xiP )e−|x|2/2Π(x)2k

)
=

(
∆kP −

n∑
i=1

xi∂xiP
)
e−|x|2/2Π(x)2k . 1.4

where

∆k = ∆ + 2k
∑

1≤i<j≤n

1
xi−xj

(∂xi
− ∂xj

) 1.5

with ∆ =
∑n

i=1 ∂2
xi

the ordinary Laplacian.

Proof
Note that for any P (x) we have

∂xi

(
(∂xiP )e−|x|2/2Π(x)2k

)
= (∂2

xi
P )e−|x|2/2Π(x)2k − xi(∂xiP )e−|x|2/2Π(x)2k . + (∂xiP )e−|x|2/2∂xiΠ(x)2k

But

∂xiΠ(x)2k = Π(x)2k∂xi log
(
Π(x)2k

)
= 2kΠ(x)2k

∑
1≤r<s≤n

∂xi
(xr − xs)

xr − xs)

thus
n∑

i=1

∂xi

(
(∂xiP )e−|x|2/2Π(x)2k

)
= (∆P )e−|x|2/2Π(x)2k

−
( n∑

i=1

xi∂xi
P

)
e−|x|2/2Π(x)2k 1.6

+
(

2k

n∑
i=1

(∂xi
P )

∑
1≤r<s≤n

∂xi(xr − xs)
xr − xs)

)
e−|x|2/2Π(x)2k .



A. M. Garsia & A. Wallach October 22, 2005 4

Since
n∑

i=1

(∂xi
P )

∑
1≤r<s≤n

∂xi
(xr − xs)
xr − xs

=
∑

1≤r<s≤n

1
xr − xs

(∂xr
− ∂xs

)P

we see that 1.6 may be simply written as 1.4.

Proposition 1.2

If Ik denotes the Mehta integral in the left hand side of 1.1, then

1
2dd!

∆(n
2)

k Π(x)2 Ik = Ik+1. 1.7

Proof

Zeilberger manages to accomplish this in one stroke by setting in 1.4

P (x) =
d−1∑
r=0

∆r
k Π(x)2

2r+1d(d − 1) · · · (d − r)
(with d =

(
n
2

)
) 1.8

Indeed, with this choice of P (x), we derive that

∆kP −
n∑

i=1

xi∂xi
P =

d−1∑
r=0

∆r+1
k Π(x)2

2r+1d(d − 1) · · · (d − r)
−

d−1∑
r=0

2(d − r)∆r
k Π(x)2

2r+1d(d − 1) · · · (d − r)

=
d∑

r=1

∆r
k Π(x)2

2rd(d − 1) · · · (d − r + 1)
−

d−1∑
r=0

∆r
k Π(x)2

2rd(d − 1) · · · (d − r + 1)

=
1

2dd!
∆d

k Π(x)2 − Π(x)2

1.9

Since the operator ∆k decreases degrees by 2 we see that ∆d
k Π(x)2 is none other than a scalar, keeping in

mind this fact, the identities in 1.9 and 1.4 combined with 1.2 give

0 =
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞

( 1
2dd!

∆d
k Π(x)2 − Π(x)2

)
e−|x|2/2Π(x)2k

)dx1dx2 · · · dxn

(2π)n/2

=
1

2dd!
∆d

k Π(x)2 Ik − Ik+1

proving 1.7.

Assuming the Mehta identity we immediately derive that

Theorem 1.1
1

2dd!
∆d

k Π(x)2 = n!
∏

1≤i<j≤n

(kj + i) 1.10

Proof
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From 1.7 and 1.1 we get

1
2dd!

∆d
k Π(x)2 =

n∏
j=1

(kj + j)!k!
kj!(k + 1)!

=
1

(k + 1)n

n∏
j=1

(kj + j)(kj + j − 1) · · · (kj + 1)

=
( n∏

j=1

(kj + j)
(k + 1)

) n∏
j=1

(kj + j − 1) · · · (kj + 1)

= n!
∏

1≤i<j≤n

(kj + i)

1.11

proving 1.10.

To translate 1.10 into a Dunkl operator identity we only need the following revealing fact.

Proposition 1.3
The actions of the operators

∆k = ∆ + 2k
∑

1≤i<j≤n

1
xi−xj

(∂xi
− ∂xj

) and p2(∇(−k)) = ∇1(−k)2 + ∇2(−k)2 + · · · + ∇n(−k)2

on symmetric polynomials are identical.

Proof
Note that if f(x1, x2, . . . , xn) is symmetric then for any 1 ≤ i ≤ n from I.1 we get

∇i(−k)f(x) = ∂xif(x)

This gives that

∇i(−k)2f(x) = ∂2
xi

f(x) + k

n∑
j=1,j �=i

1
xi−xj

(1 − sij)∂xi
f(x)

= ∂2
xi

f(x) + k

n∑
j=1,j �=i

1
xi−xj

(
∂xif(x) − ∂xj sijf(x)

)

= ∂2
xi

f(x) + k

n∑
j=1,j �=i

1
xi−xj

(
∂xi

− ∂xj

)
f(x)

Thus summing over i gives

p2(∇(−k))f(x) = ∆f(x) + k

n∑
i=1

n∑
j=1,j �=i

1
xi−xj

(
∂xi

− ∂xj

)
f(x) = ∆kf(x)

proving our assertion.

We can thus derive



A. M. Garsia & A. Wallach October 22, 2005 6

Theorem 1.2
1

2dd!
p2

(
∇(m)

)d Π(x)2 = n!(−1)(
n
2)

∏
1≤i<j≤n

(mj − i) 1.12

Proof
Since Π(x)2k is a symmetric polynomial we can use Proposition 1.3 and derive from 1.10 that

1
2dd!

p2

(
∇(−k)

)d Π(x)2 = n!
∏

1≤i<j≤n

(kj + i) . 1.13

Since both sides of this identity are polynomials in k, it follows that the equality in 1.13 for all integers k

implies that these two polynomials are one and the same. This allows us to make the replacecement k→−m

in 1.13 and get 1.12 precisely as asserted

To convert 1.12 into our desired identity we need but only one more Dunkl operator identity. Namely,
the following remarkable fact

Proposition 1.4
For any homogeneous polynomial P (x1, x2, . . . , xn) we have the operator identity

P
(
∇(m)

)
=

1
2dd!

d∑
r=0

(d

r

)
(−1)rp2(∇(m))rP (x)p2(∇(m))d−r 1.14

where d = degree(P ) and “P (x)” denotes the operator “multiplication by P”.

The proof of 1.14 is given in the next section where it will established for all Weyl groups. This
given we are in a position to obtain

Theorem 1.3

Πn

(
∇(m)

)
Πn(x) = n!(−1)(

n
2)

∏
1≤i<j≤n

(mj − i) 1.15

Proof
Using 1.14 with P (x) = Πn(x) gives, for d =

(
n
2

)
, the operator identity

Πn

(
∇(m)

)
=

1
2dd!

d∑
r=0

(d

r

)
(−1)rp2(∇(m))rΠn(x)p2(∇(m))d−r . 1.16

Now note that applying both sides of this identity to Πn(x) gives

Πn

(
∇(m)

)
Πn(x) =

1
2dd!

d∑
r=0

(d

r

)
(−1)rp2(∇(m))rΠn(x)p2(∇(m))d−rΠn(x). 1.17

However, we see that for r < d the term

p2(∇(m))d−rΠn(x)
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must identically vanish since it is an alternating polynomial of degree <
(
n
2

)
. It follows that 1.17 reduces to

none other than
Πn

(
∇(m)

)
Πn(x) =

1
2dd!

p2(∇(m))dΠn(x)2

and thus 1.15 follows from Theorem 1.2.

Remark 1.1
We should note that in [16] Zeilberger asks for a direct elementary proof of 1.12 to complete his WZ

derivation of the Mehta identity. Such a derivation is in fact contained in the Dunkl-Hanlon paper. Thus a
combination of the results in [16] and [5] may be said to provide a completely elementary proof of the Mehta
identity. However, one may wish for a simpler argument than the one provided in [5]. Moreover such an
argument should be carried out in the general setting of Weyl groups and thereby also obtain an elementary
proof of the general form of 1.15

2. Basics on Dunkl operators
Let Φ be a root system contained in Rn and let Φ+ a system of positive roots in Φ. For

α = (α1, α2, . . . αn) and x = (x1, x2, . . . xn)

we set
(α, x) = α1x1 + α2x2 + · · · + αnxn

As customary we shall denote by “sα” the the reflection across the hyperplane (α, x) = 0. That is for any
v ∈ Rn we set

sαv = v − 2 (α,v)
(α,α) α , 2.1

and denote by W the Weyl group generated by the {sα}α∈Φ. For an element σ ∈ W we shall denote
by Aσ the matrix yielding the action of σ on the basis x1, x2, . . . , xn. This given, for any polynomial
P (x) = P (x1, x2, . . . , xn) we set

σP (x) = P (xAσ) 2.2

where xAσ denotes ordinary multiplication of a row n-vector by an n × n matrix.

The Dunkl operators are simply defined by setting for any v ∈ Rn

∇v(m) = ∂v − m
∑

α∈Φ+

(α,v)
(α,x) (1 − sα) 2.3

where ∂v =
∑n

i=1 vi∂xi is the directional derivative corresponding to v. Since it is well known and easy to
show that for any polynomial P (x) the polynomial (1 − sα)P (x) is divisible by (α, x) we see from 2.3 that
∇v(m) is a well defined polynomial operator. Our goal in this section is to provide a self contained derivation
of some basic properties of Dunkl operators. The readers familiar with this material may skip to the next
section.

Our first task is to establish the commutativity relations

∇u(m)∇v(m) = ∇v(m)∇v(m) (for all u, v ∈ Rn). 2.4
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To this end it is convenient to set

a) θv =
∑

α∈Φ+

(α,v)
(α,x) (1 − sα), b) Tv =

∑
α∈Φ+

(α,v)
(α,x)sα 2.5

and rewrite 2.3 as
∇v(m) = ∂v − m θv . 2.6

It will also be good to keep in mind that

Proposition 2.1

For any v ∈ Rn, α ∈ Φ and σ ∈ W we have

a) σ∂vσ−1 = ∂σv b) σsασ−1 = sσα b) σθvσ−1 = θσv d) σTvσ−1 = Tσv 2.7

in particular 2.6 gives

σ∇v(m)σ−1 = ∇σv(m) 2.8

Proof
Note first that for any polynomal P (x) from 2.1 we derive that

sα∂xi
sαP (x) = sα

(
∂xi

P
(
x − 2(α,x)

(α,α) α
))

= sα

(
Pxi(sαx) − 2

n∑
j=1

Pxj (sαx) αiαj

(α,α)

)

=
(
∂ei

P (x) − 2 (α,ei)
(α,α) ∂αP (x)

)
= ∂sαei

P (x)

where ei denotes the ith coordinate vector. Thus by linearity it follows that for any v ∈ Rn we have

sα∂vsα = ∂sαv

and then we must also have 2.7 a) for all σ ∈ W . Note next that, again from 2.1, it follows that

σsασ−1v = σ
(
σ−1v − 2 (α,σ−1v)

(α,α) α
)

= v − 2 (σα,v)
(σα,σα) σα = sσαv

this proves 2.7 b). This given, we have

σθvσ−1 = σ
( ∑

α∈Φ+

(α,v)
(α,x) (1 − sα)

)
σ−1 =

∑
α∈Φ+

(α,v)
(α,σ−1x) (1 − sσα)

=
∑

α∈Φ+

(σα,σv)
(σα,x) (1 − sσα) =

∑
α∈Φ+

(α,σv)
(α,x) (1 − sα) = θσv

Here we have used the fact that

(−α.u)
(−α, x)

(1 − s−α) =
(α.u)
(α, x)

(1 − sα)
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This proves 2.7 c). Similarly we see that

σ Tvσ−1 =
∑

α∈Φ+

(σα,σv)
(σα,x) sσα = Tσv

This completes our proof of the proposition.

Now note that we can write

∇u(m)∇v(m) = (∂u − m θu)(∂v − m θv) = ∂u∂v − m ∂uθv − m θu∂v + m2θuθv

and similarly we get

∇v(m)∇u(m) = (∂v − m θv)(∂u − m θu) = ∂v∂u − m ∂vθu − m θv∂u + m2θvθu

Thus we see that in order for 2.4 to be valid for all m it is necessary and sufficient that we have

Proposition 2.2

For any u, v ∈ Rn

a) ∂uθv − θv∂u = ∂vθu − θu∂v and c) θuθv = θvθu 2.9

Proof
To begin note that 2.5 gives

∂uθv − θv∂u = ∂u

( ∑
α∈Φ+

(α,v)
(α,x) (1 − sα)

)
−

∑
α∈Φ+

(α,v)
(α,x) (1 − sα)∂u

= −
∑

α∈Φ+

(α,v)(α,u)
(α,x)2 (1 − sα) +

∑
α∈Φ+

(α,v)
(α,x) (sα∂u − ∂usα)

However, since 2.7 a) gives
sα∂usα = ∂sαu = ∂u − 2 (α,u)

(α,α)∂α

we see that
sα∂u − ∂usα = −2 (α,u)

(α,α)∂αsα.

Using this we get

∂uθv − θv∂u = −
∑

α∈Φ+

(α,v)(α,u)
(α,x)2 (1 − sα) − 2

∑
α∈Φ+

(α,v)(α,u)
(α,x)(α,α)∂αsα

which an expression entirely symmetric in u, v. This proves 2.9 a).
Next note that from 2.5 a) and b) we get

θuθv =
( ∑

α∈Φ+

(α,u)
(α,x) (1 − sα)

)( ∑
β∈Φ+

(β,v)
(β,x) (1 − sβ)

)

=
∑

α,β∈Φ+

(α,u)(β,v)
(α,x)(β,x) −

∑
α,β∈Φ+

(α,u)
(α,x) sα

(β,v)
(β,x) −

∑
α∈Φ+

(α,u)
(α,x) Tv + Tu Tv

=
∑

α,β∈Φ+

(α,u)(β,v)
(α,x)(β,x) −

∑
α,β∈Φ+

(α,u)
(α,x)

(β,sαv)
(β,x) sα −

∑
α∈Φ+

(α,u)
(α,x) Tv + Tu Tv

=
∑

α,β∈Φ+

(α,u)(β,v)
(α,x)(β,x) −

∑
β∈Φ+

(β,v)
(β,x) Tu + 2

∑
α,β∈Φ+

(α,u)(α,v)(α,β)
(α,x)(β,x)(α,α) −

∑
α∈Φ+

(α,u)
(α,x) Tv + Tu Tv = Γ(u, v) + TuTv
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Since Γ(u, v) is symmetric in u, v we see that to show 2.9 c) we need only verify that

TuTv = TvTu 2.10

To this end note that 2.7 d) gives

TuTv =
∑

α∈Φ+

(α,u)
(α,x)sαTv =

∑
α∈Φ+

(α,u)
(α,x) Tsαvsα

=
∑

α∈Φ+

(α,u)
(α,x)

∑
β∈Φ+

(β,sαv)
(β,x) sβsα

and since (β, sαv) = (β, v) − 2 (α,v)
(α,α) (β, α) we get

TuTv =
∑

α,β∈Φ+

(α,u)
(
(β,v)−2

(α,v)
(α,α) (β,α)

)
(α,x)(β,x) sβ sα

=
∑

α,β∈Φ+

(α,u)(β,v)
(α,x)(β,x) sβ sα − 2

∑
α,β∈Φ+

(α,u)(α,v)(β,α)
)

(α,x)(β,x)(α,α) sβ sα

Since the last term is symmetric in u and v, we have thus reduced 2.9 c) to proving the following identity
∑

α,β∈Φ+

(α,u)(α,v)
(α,x)(β,x)

(
sβ sα − sα sβ

)
= 0 , (for all u, v )

as an operator on the rational functions in x.
This follows from the following identity

∑
α,β∈Φ+

(α,u)(α,v)
(α,z)(β,z)

(
sβ sα − sα sβ

)
= 0 , 2.11

as a rational function in the variables u, v, z with values in the group algebra of W .
The verification of this identity requires auxiliary material. We will use as reference J. Humphreys,

“Reflection groups and Coxeter groups” [13].

Let W be a finite reflection group acting on Rn. Let Φ be a choice of a set of roots for W and Φ+

a choice of positive roots (sections 1.2,1.3 of [13]). If α, β ∈ Φ+ are such that (α, β) < 0 we set

Φα,β = (Rα + Rβ) ∩ Φ.

Obviously Φα,β = Φβ,α. We will therefore write Φ{α,β} = Φα,β . Let Σ denote the set of {α, β} with (α, β) < 0
such that {α, β} is a system of simple roots (section 1.3 of [13]) for Φ+

{α.β} = Φ{α,β} ∩ Φ+.

Lemma 2.1.
If γ, δ ∈ Φ+ are distinct and (γ, δ) �= 0 then there is a unique element (α, β) ∈ Σ such that γ, δ ∈ Φ+

{α,β}.

Proof.
Set Ψ = (Rγ + Rδ)∩Φ. Then the group generated by the reflections corresponding to the elements

of Ψ is a subgroup of W hence finite and Ψ is a corresponding set of roots. Let {α, β} be a simple system
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for Ψ ∩ Φ+ (Theorem 1.3 (b) of [13]). Then Φ{α,β} = Ψ. Thus {α, β} ∈ Σ. This proves existence, to prove
uniqueness note that if {µ, ν} ∈ Σ and γ, δ ∈ Φ{µ,ν} then γ, δ is a basis of Rµ + Rν. This implies that
Φ+

{µ,ν} = Ψ ∩ Φ+ = Φ+
{α,β} . But since there is exactly one simple system for Ψ ∩ Φ+ (Theorem 1.3 (b) of

[13]) we must have {µ, ν} = {α, β}. This completes the proof of the Lemma..
Lemma 2.2.

For all u, v and all x such that (α, z) �= 0 when α ∈ Φ+ we have the identity

∑
α,β∈Φ+

(α, u)(β, v)
(α, z)(β, z)

(sαsβ − sβsα) =
∑

{α,β}∈Σ

∑
γ,δ∈Φ+

{α,β}

(γ, u)(δ, v)
(γ, z(δ, z)

(sγsδ − sδsγ)

in the group algebra of W .

Proof
We note that if (α, β) = 0 or α = β then sαsβ = sβsα. We may therefore assume that the sum

on the left is over α, β with α �= β and (α, β) �= 0. This given, Lemma 2.1 assures us that the collections{
Φ+

{α,β}
}
{α,β}∈Σ

give a decomposition of the set of pairs α, β ∈ Φ+ into disjoint subsets. The stated identity
is thus an immediate consequence of this fact.

Lemma 2.2 reduces the proof of 2.11 for finite reflection groups to the case of rank 2 finite reflection
groups. To complete our proof of 2.11 we will show that for any rank 2 finite reflection group W , the
expression

Q(u, v, z) =
∑

α.β∈Φ+

(α, u)
(α, z)

(α, v)
(α, z)

(
sαsβ − sβsα

)

vanishes identically, for all vectors u = (u1, u2), v = (v1, v2), z = (z1, z2), as an element of the group algebra
of W . Note that we have been using z (instead of x) here to emphasize that, in our arguments, the reflections
sα and sβ will not act on the denominators (α, z) and (β, z). With this proviso, setting

Tu =
∑

α∈Φ+

(α, u)
(α, z)

sα , Tv =
∑

β∈Φ+

(β, v)
(β, z)

sβ

we may write
Q(u, v, z) = TuTv − TvTu

Now we clearly have
Q(u, v, z) = u1Q1(v, z) + u2Q2(v, z)

with
Q1(v, z) = v1Q11(z) + v2Q12(z)

and
Q2(v, z) = v1Q21(z) + v2Q22(z)

Note next that setting u = cz for some scalar c �= 0 we get

Tcz = c
∑

α∈Φ+

sα
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Since the latter is a central element of the group algebra of W , it follows that

Q(cz, v, z) = TczTv − TvTcz = 0

This gives

c
(
z1Q1(v, z) + z2Q2(v, z)

)
= 0

forcing

Q2(v, z) = − z1
z2

Q1(v, z)

Thus it follows that

v1Q21(z) + v2Q22(z) = − z1
z2

(
v1Q11(z) + v2Q12(z)

)

and this gives

Q21(z) = − z1
z2

Q11(z) and Q22(z) = − z1
z2

Q12(z)

However we clearly also have

Q(u, v, z) = −Q(v, u, z)

that is

u1Q1(v, z) + u2Q2(v, z) = −
(
v1Q1(u, z) + v2Q2(u, z)

)

and this expands to

u1

(
v1Q11(z) + v2Q12(z)

)
− u2

z1
z2

(
v1Q11(z) + v2Q12(z)

)
=

− v1

(
u1Q11(z) + u2Q12(z)

)
− v2

z1
z2

(
u1Q11(z) + u2Q12(z)

)

yielding the equalities

Q11(z) = −Q11(z) and − Q12(z) = Q12(z)

which force the desired vanishing of Q(u, v, z).
This establishes 2.11 and completes the proof of Proposition 2.9.

Our next goal is the establishment of Proposition 1.4 in the general Weyl group setting. To carry
this out we need to establish a few auxiliary results.

Proposition 2.3
For any two vectors u, v ∈ Rn we have the operator identity

∇u(m)(x, v) − (x, v)∇u(m) = (u, v)I − 2m
∑

α∈Φ+

(α,u)(α,v)
(α,α) sα 2.12

where “(x, v)” denotes the operator “multiplication by (x, v)”.

Proof
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Note first that for any polynomial P we have

∇u(m)(x, v)P =
(
∂u − m

∑
α∈Φ+

(α,u)
(α,x) (1 − sα)

)
(x, v)P

= (u, v)P + (x, v)∂uP − m(x, v)
∑

α∈Φ+

(α,u)
(α,x) P + m

∑
α∈Φ+

(α,u)
(α,x) (sαx, v)sαP

= (u, v)P + (x, v)∂uP − m(x, v)
∑

α∈Φ+

(α,u)
(α,x) P + m

∑
α∈Φ+

(α,u)
(α,x) (x − 2 (α,x)

(α,α)α, v)sαP

= (u, v)P + (x, v)∇uP − 2m
∑

α∈Φ+

(α,u)(α,v)
(α,α) sαP

This proves 2.12.

As in the Sn case we shall set

∇i(m) = ∇ei(m) = ∂xi − m
∑

α∈Φ+

(α,ei)
(α,α) (1 − sα) 2.13

where ei is the ith coordinate vector. This given, note that 2.12 specialized at u = ej and v = ei gives

∇j(m)xi − xi∇j(m) = −2m
∑

α∈Φ+

αjαi

(α,α) sα (for all i �= j) 2.14

On the other hand for u = ej and v = ej 2.12 gives

∇i(m)xi − xi∇i(m) = I − 2m
∑

α∈Φ+

αiαi

(α,α) sα (for all j) 2.15

These two identities yield the following beautiful commutation relation.

Proposition 2.4
p2

(
∇(m)

)
xi − xi p2

(
∇(m)

)
= 2∇i(m) (for all i) 2.16

Proof
Note first that for i �= j we have

∇j(m)2xi − xi∇j(m)2 = ∇j(m)
(
∇j(m)xi − xi∇j(m)

)
+

(
∇j(m)xi − xi∇j(m)

)
∇j(m)

(using 2.14) = ∇j(m)
(
− 2m

∑
α∈Φ+

αjαi

(α,α) sα

)
+

(
− 2m

∑
α∈Φ+

αjαi

(α,α) sα

)
∇j(m)

= −2m
∑

α∈Φ+

αjαi

(α,α)

(
∇j(m)sα + sα∇j(m)

)
2.17

Similarly for j = i we get

∇i(m)2xi − xi∇i(m)2 = ∇i(m)
(
∇i(m)xi − xi∇i(m)

)
+

(
∇i(m)xi − xi∇i(m)

)
∇i(m)

(using 2.15) = ∇i(m)
(
I − 2m

∑
α∈Φ+

αiαi

(α,α) sα

)
+

(
I − 2m

∑
α∈Φ+

αiαi

(α,α) sα

)
∇i(m)

= 2∇i(m) − 2m
∑

α∈Φ+

αiαi

(α,α)

(
∇i(m)sα + sα∇i(m)

)
2.18



A. M. Garsia & A. Wallach October 22, 2005 14

Now, for a fixed i summing 2.17 for all j �= i and adding 2.18 gives

p2

(
∇(m)

)
xi − xip2

(
∇(m)

)
= 2∇i(m) − 2m

∑
α∈Φ+

αi

(α,α)

n∑
j=1

αj

(
∇j(m)sα + sα∇j(m)

)

= 2∇i(m) − 2m
∑

α∈Φ+

αi

(α,α)

(
∇α(m)sα + sα∇α(m)

) 2.19

But 2.8 gives
sα∇α(m) = ∇−α(m)sα = −∇α(m)sα

Using this in 2.19 reduces it to 2.16 completing our proof.

To derive our next identities we need some notation. To begin, given two operators A, B we shall
set

DAB = [A, B] = AB − BA

It is easily seen that for any operators A, B1, B2 we have

DAB1B2 = (DAB1)B2 + B1DAB2

Thus “DA” acts as differentiation on the algebra of operators. More generally we have the Leibnitz identity

Dd
AB1B2 · · ·Br =

∑
a1+a2+···+ar=d

d!
a1!a2! · · · ar!

(Da1
A B1)(Da2

A B2) · · · (Dar

A Br) 2.20

To simplify our notation let us set

E = p2

(
∇(m)

)
/2 and Ti = ∇i(m)

so that 2.16 may be simply rewritten as
DE xi = Ti . 2.21

This brings us to

Proposition 2.5
For all positive integers a we have

Da
Exa

i = a!T a
i for i = 1, 2, . . . , n . 2.22

Proof
For a = 1 2.22 is simply 2.21. We can thus proceed by induction on a. So assume 2.22 true for all

integers less or equal to a. Now note that 2.20 gives

Da+1
E xa+1

i =
∑

a1+a2=a+1

(a + 1)!
a1!a2!

(Da1
E xa

i )(Da2
E xi) 2.23
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Now, since E commutes with all Ti, the inductive hypothesis immediately implies that

Dr
E xs

i = 0 ∀ s ≤ a & r > s . 2.24

But this forces all the summands in 2.23 to vanish except the one corresponding to a1 = a. Thus 2.23 reduces
to

Da+1
E xa+1

i =
(a + 1)!

a!
(Da

Exa
i )(DExi) 2.25

and the inductive hypothesis gives

Da+1
E xa+1

i =
(a + 1)!

a!
a!T a

i Ti = (a + 1)!T a+1
i .

This completes the induction and the proof.

The identity in 2.22 has the following immediate corollary.

Proposition 2.6
For any exponent vector p = (p1, p2, . . . , pn) we have, setting d = p1 + p2 + · · · + pn

Dd
E xp1

1 xp2
2 · · ·xpn

n = d! T p1
1 T p2

2 · · ·T pn
n 2.26

Proof
This is another application of 2.20. Indeed using 2.20 we get

Dd
E xp1

1 xp2
2 · · ·xpn

n =
∑

a1+a2+···+an=d

d!
a1!a2! · · · an!

Da1
E xp1

1 Da2
E xp2

2 · · ·Dan

E xpn
n

But, now again since E commutes with all Ti, the identity in 2.22 forces this sum to reduce to the single
term where each ai = pi. Thus

Dd
E xp1

1 xp2
2 · · ·xpn

n =
d!

p1!p2! · · · pn!
Dp1

E xp1
1 Dp2

E xp2
2 · · ·Dpn

E xpn
n

and an application of 2.22 to each of the factors on the right yields 2.26 precisely as asserted.

We are now finally in a position to prove Proposition 1.3, which we restate as

Theorem 2.1
For any homogeneous polynomial P (x1, x2, . . . , xn) we have the operator identity

1
2d

d∑
r=0

(d

r

)
(−1)r

(∑n
i=1 T 2

i

)d−r
P (x)

(∑n
i=1 T 2

i

)r = d! P
(
T1, T2, . . . , Tn

)
2.27

where d = degree(P ) and “P (x)” denotes the operator “multiplication by P”.
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Proof
If our polynomial P (x1, x2, . . . , xn) has the expansion

P (x1, x2, . . . , xn) =
∑

p

cpx
p1
1 xp2

2 · · ·xpn
n

where the sum is over all monomials of degree d then by linearity from 2.26 we derive that

Dd
EP (x) = d! P

(
T1, T2, . . . , Tn

)
2.28

on the other hand a straightforward induction argument yields that for any two operators A, B we
have

Dd
AB =

d∑
r=0

(d

r

)
(−1)rAd−rBAr. 2.29

Since
E = 1

2

∑n
i=1 T 2

i

we see that 2.29 with A = E and B = P (x) reduces to the left hand side of 2.27. This given 2.27 is an
immediate consequence of 2.28. This completes our proof of 2.27.

We terminate this section by showing that what we did in for Sn section 1 can be carried out almost
verbatim for all reflection groups as long as we are in possession of the corresponding analogue of the Mehta
integral. In fact it was conjectured by Macdonald in [14] that for a Coxeter group W of isometries of Rn we
have

1

(2π)
n
2

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
e−|x|2/2ΠW (x)2k dx1dx2 · · · dxn =

n∏
i=1

(kdi)!
k!

2.30

with d1, d2, . . . , dn are the degrees of the fundamental invariants of W , and

ΠW (x) =
∏

α∈Φ+

(α, x), 2.31

here we denote by Φ+ a complete collection of reflecting vectors of W normalized by the requirement that
(α, α) = 2 ∀α ∈ Φ+. We should mention that 2.30 for Bn and Dn was first proved by Regev [14] who showed
that also in these cases it is a consequence of the Selberg integral. Accordingly, we will prove 2.30 here only
for Sn, Bn and Dn. For the other Coxeter groups we shall assume it to be true and refer to the original
papers for a proof.

This given we begin by noting that we have a complete analogue of the Zeilberger identity of
Proposition 1.1.

Proposition 2.7
For any polynomial P (x) we have

n∑
i=1

∂xi

(
(∂xiP )e−|x|2/2ΠW (x)2k

)
=

(
∆W,kP −

n∑
i=1

xi∂xiP
)
e−|x|2/2ΠW (x)2k . 2.32
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where

∆W,k = ∆ + 2k
∑

α∈Φ+

1
(α,x) ∂α 2.33

with ∆ =
∑n

i=1 ∂2
xi

the ordinary Laplacian.

Proof
Note that for any P (x) we have

∂xi

(
(∂xi

P )e−|x|2/2ΠW (x)2k
)

= (∂2
xi

P )e−|x|2/2ΠW (x)2k −xi(∂xi
P )e−|x|2/2ΠW (x)2k + (∂xi

P )e−|x|2/2∂xi
ΠW (x)2k

But
∂xi

ΠW (x)2k = ΠW (x)2k∂xi
log

(
ΠW (x)2k

)
= 2kΠW (x)2k

∑
α∈Φ+

∂xi
(α,x)

(α,x)

thus

n∑
i=1

∂xi

(
(∂xi

P )e−|x|2/2ΠW (x)2k
)

= (∆P )e−|x|2/2ΠW (x)2k

−
( n∑

i=1

xi∂xiP
)
e−|x|2/2ΠW (x)2k 2.34

+
(

2k

n∑
i=1

(∂xiP )
∑

α∈Φ+

αi

(α,x)

)
e−|x|2/2ΠW (x)2k

and since

2k

n∑
i=1

(∂xi
P )

∑
α∈Φ+

αi

(α,x) = 2k
∑

α∈Φ+

1
(α,x)∂αP

we see that 2.34 may be simply written as 2.32.

As in section 1 it follows from this that

Proposition 2.8
If Ik denotes the Macdonald-Mehta integral in the left hand side of 2.30, then with d =

∑n
i=1(di − 1)

we have
1

2dd!
∆d

W,k Π(x)2 Ik = Ik+1. 2.35

Proof
Here again we simply set

P (x) =
d−1∑
r=0

∆r
W,k ΠW (x)2

2r+1d(d − 1) · · · (d − r)
2.36

and derive 2.32 by the same identical steps we carried out in the proof of Proposition 1.2.

Assuming the Macdonald-Mehta identity, as before, we immediately derive that
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Theorem 2.2
1

2dd!
∆d

W,k ΠW (x)2 = d1d2 · · · dn

n∏
j=1

∏
1≤i<dj

(kdj + i) 2.37

Proof
From 2.30 and 2.35 we get

1
2dd!

∆d
W,k ΠW (x)2 =

n∏
j=1

(kdj + dj)!k!
kdj !(k + 1)!

=
1

(k + 1)n

n∏
j=1

(kdj + dj)(kdj + dj − 1) · · · (kdj + 1)

=
( n∏

j=1

(kdj + dj)
(k + 1)

) n∏
j=1

(kdj + dj − 1) · · · (kdj + 1)

=
n∏

j=1

dj

n∏
j=1

∏
1≤i<dj

(kdj + i)

2.38

proving 2.37

Again we can translate 2.37 into a Dunkl operator identity using the following analogue of Proposition
1.3.

Proposition 2.9
The actions of the operators

∆W,k = ∆ + 2k
∑

α∈Φ+

1
(α,x)∂α and p2(∇(−k)) = ∇1(−k)2 + ∇2(−k)2 + · · · + ∇n(−k)2

on W -invariant polynomials are identical.

Proof
Note that if f(x) is W -invariant then for any 1 ≤ i ≤ n from 2.13 for m = −k we get

∇i(−k)f(x) = ∂xif(x)

Thus
∇i(−k)2f(x) = ∂2

xi
f(x) + k

∑
α∈Φ+

(α,ei)
(α,x) (1 − sα)∂xif(x)

= ∂2
xi

f(x) + k
∑

α∈Φ+

αi

(α,x)

(
∂xi − sα∂xisα

)
f(x)

2.39

But we can write
∂xi − sα∂xisα = ∂ei − sα∂eisα 2.40

and from 2.7 a) it follows that

∂ei
− sα∂ei

sα = ∂ei
−

(
∂ei

− 2(α,ei)
(α,α) ∂α

)
= 2(α,ei)

(α,α) ∂α
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Combining this with 2.40 and 2.39 gives

∇i(−k)2f(x) = ∂2
xi

f(x) + k
∑

α∈Φ+

1
(α,x)

2α2
i

(α,α) ∂αf(x)

Thus summing over i we get

n∑
i=1

∇i(−k)2f(x) = ∆f(x) + 2k
∑

α∈Φ+

1
(α,x) ∂αf(x)

This completes our proof.

This given we have

Theorem 2.3

ΠW

(
∇(m)

)
ΠW (x) = d1d2 · · · dn(−1)

∑
j=1

(dj−1)
n∏

j=1

∏
1≤i<dj

(mdj − i) 2.41

Proof
Again setting Ti = ∇i(−k) from Theorem 2.1 it follows that for d =

∑n
j=1(dj − 1) we have

1
2dd!

d∑
r=0

(d

r

)
(−1)r

(∑n
i=1 T 2

i

)d−rΠW (x)
(∑n

i=1 T 2
i

)rΠW (x) = ΠW

(
T1, T2, . . . , Tn

)
ΠW (x) 2.42

Since
∑n

i=1 T 2
i is a W -invariant operator, the polynomial

(∑n
i=1 T 2

i

)rΠW (x) is a W -alternant, and thus it
must necessarily identically vanish for any r > 0. Thus 2.42 reduces to

1
2dd!

( n∑
i=1

T 2
i

)dΠW (x)2 = ΠW

(
T1, T2, . . . , Tn

)
ΠW (x) 2.43

and since ΠW (x)2 is a W -invariant from Proposition 2.9 it follows that

1
2dd!

( n∑
i=1

T 2
i

)dΠW (x)2 =
1

2dd!
∆d

W,kΠW (x)2

and 2.43 becomes
ΠW

(
T1, T2, . . . , Tn

)
ΠW (x) =

1
2dd!

∆d
W,kΠW (x)2.

Thus 2.37 may be rewritten as

ΠW

(
∇i(−k),∇i(−k), . . . ,∇i(−k)

)
ΠW (x) = d1d2 · · · dn

n∏
j=1

∏
1≤i<dj

(kdj + i)

Since both sides are polynomials in k, the validity of this identity for all positive integers k forces the equality
of the two polynomials. This allows us to replace k by −m and obtain 2.41 precisely as stated.
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3. The Selberg integral

Our task in this section is to present the evaluation of the following multiple integral

Jn(x, y, k) =
∫ 1

0

∫ 1

0

· · ·
∫ 1

0

( n∏
i=1

tx−1
i (1 − ti)y−1

) ∏
1≤i<j≤n

(ti − tj)2kdt1dt2 · · · dtn 3.1

We shall establish the following fundamental identity due to Selberg

Theorem 3.1

Jn(x, y, k) =
n∏

j=1

Γ
(
x + (j − 1)k)Γ

(
y + (j − 1)k)

)
Γ
(
x + y + (n + j − 2)k

) n∏
j=1

Γ(1 + jk)
Γ(1 + k)

.

Our presentation follows very closely Selberg’ s original argument as presented by Andrews in [1]. The ideas
are very simple, in principle, yet as we shall see, when all the (usually skipped) details are included, it does
end up taking quite a few pages.

To begin we must recall the following well known identities satisfied by the Gamma function.

a) Γ(x + 1) = xΓ(x) , b) Γ(x)Γ(1 − x) =
π

sin πx
, c) Γ(1) = 1 3.2

and ∫ 1

0

tx−1(1 − t)y−1dt =
Γ(x)Γ(y)
Γ(x + y)

. 3.3

Note that it follows from 3.2 a) that for any integer n we have

Γ(x + n) = (x) ↑n Γ(x) 3.4

where for convenience we set

(x) ↑n = (x + n − 1)(x + n − 2) · · · (x + 1)

The crucial first step is a remarkably simple observation about the expansion of even powers of the Vander-
monde determinant

Π(t1, t2, . . . , tn) =
∏

1≤i<j≤n

(ti − tj) .
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Proposition 3.1
Let

Π(t1, t2, . . . , tn)2k =
∑
α

c(α) tα1
1 tα2

2 · · · tαn
n 3.5

then when α1 ≤ α2 ≤ · · · ≤ αn we have

(j − 1)k ≤ αj ≤ (n − 2)k + jk 3.6

Proof
Note that for any 1 ≤ j ≤ n we have

Π(t1, t2, . . . , tn)2k = Π(t1, t2, . . . , tj)2k
( ∏

1≤r≤j

∏
j<s≤n

(tr − ts)2k
)
Π(tj+1, . . . , tn)2k 3.7

Note further that for any term of the expansion

Π(t1, t2, . . . , tj)2k =
∑
α

c(α) tα1
1 tα2

2 · · · tαj

j 3.8

we shall necessarily have

j max
1≤i≤j

αi ≥ α1 + α2 + · · · + αj = 2 k

(
j

2

)
= k j(j − 1)

or better
max
1≤i≤j

αi ≥ k (j − 1)

and the left hand side of 3.6 immediately follows from the factorization in 3.7. To get the other side we use
the identity

Π(t1, t2, . . . , tn)2k = (−1)(
n
2)Π(t−1

1 , t−1
2 , . . . , t−1

n )(t1t2 · · · tn)n−1

and derive from 3.5 that

Π(t1, t2, . . . , tn)2k = (−1)(
n
2)

∑
α

c(α) t
2k(n−1)−α1
1 t

2k(n−1)−α2
2 · · · t2k(n−1)−αn

n

so for α1 ≤ α2 ≤ · · · ≤ αn we derive that

2k(n − 1) − α1 ≥ 2k(n − 1) − α2 ≥ · · · ≥ 2k(n − 1) − αn

and the left hand side of 3.6 gives

2k(n − 1) − αn+1−j ≥ (j − 1)k

or better
k(2n − j − 1) ≥ αn+1−j
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and this gives
k(2n − (n + 1 − j) − 1) ≥ αj

which is another way of writing the right hand side of (6).

Now substituting the expansion in 3.5 in the definition of the Selbert integral we get using 3.3

Jn(x, y; k) =
∑
α

c(α)
n∏

i=1

Γ(x + αi) Γ(y)
Γ(x + y + αi)

3.9

Now when α1 ≤ α2 ≤ · · · ≤ αn from 3.6 and 3.4 we derive that

Γ(x + αj) = Γ(x + (j − 1)k)
(
x + (j − 1)k

)
↑αj−(j−1)k 3.10

similarly we also derive from 3.6 and 3.4

Γ(x + y + (n + j − 2)k) = Γ(x + y + αj)
(
x + y + αj) ↑(n+j−2)k−αj 3.11

In summary we can write, using 3.10 and 3.11

n∏
j=1

Γ(x + αj) Γ(y)
Γ(x + y + αj)

=
( n∏

j=1

Γ
(
x + (j − 1)k)Γ(y)

)
Γ
(
x + y + (n + j − 2)k

))
Pα(x, y; k) 3.12

where for convenience we have set

Pα(x, y; k) =
n∏

j=1

(
x + (j − 1)k

)
↑αj−(j−1)k

(
x + y + αj

)
↑(n+j−2)k−αj . 3.13

Now in view of the symmetry of this expression in α1, α2, . . . , αn and the invariance of the coefficients c(α)
under permutations of α1, α2, . . . , αn we can use 3.12 in every term of 3.9 and obtain

Jn(x, y; k) =
( n∏

j=1

Γ
(
x + (j − 1)k)Γ(y)

)
Γ
(
x + y + (n + j − 2)k

)) ∑
α

c(α)Pα(x, y; k) . 3.14

Our next task is to determine the polynomial

P (x, y; k) =
∑
α

c(α)Pα(x, y; k) . 3.15

To this end it is convenient to use the identity

Γ(y) =
Γ
(
y + (j − 1)k

)
(y) ↑(j−1)k

and rewrite 3.14 in the form

Jn(x, y; k) =
( n∏

j=1

Γ
(
x + (j − 1)k)Γ

(
y + (j − 1)k)

)
Γ
(
x + y + (n + j − 2)k

) ) P (x, y; k)∏n
j=1(y) ↑(j−1)k

. 3.16



A. M. Garsia & A. Wallach October 22, 2005 23

However note that the change of variables ti→1 − ti in 3.1 immediately proves that

Jn(x, y; k) = Jn(y, x; k)

Combining this with 3.16 shows that we must have

P (x, y; k)∏n
j=1(y) ↑(j−1)k

=
P (y, x; k)∏n

j=1(x) ↑(j−1)k

or better

P (x, y; k)
n∏

j=1

(x) ↑(j−1)k = P (y, x; k)
n∏

j=1

(y) ↑(j−1)k 3.17

Now it is easily seen from 3.13 and 3.5 that P (x, y; k) is a polynomial in y of degree at most

∑
j=1

(
(n + j − 2)k − αj

)
= n(n − 1)k + n(n − 1)k/2 − 2

(
n
2

)
k =

(
n
2

)
k

Since the degree in y of
∏n

j=1(y) ↑(j−1)k is also
(
n
2

)
k we immediately derive from 3.17 that for some polynomial

R(x, k) we must have

P (x, y; k) = R(x, k)
n∏

j=1

(y) ↑(j−1)k . 3.18

But we can interchange x, y in this relation and obtain that we must also have

P (y, x; k) = R(y, k)
n∏

j=1

(x) ↑(j−1)k . 3.19

Using 3.18 and 3.19 in 3.17 reduces it to

R(x, k)
n∏

j=1

(y) ↑(j−1)k
n∏

j=1

(x) ↑(j−1)k = R(y, k)
n∏

j=1

(x) ↑(j−1)k
n∏

j=1

(y) ↑(j−1)k

Cancelling the common factors yields
R(x, k) = R(y, k)

and this can only hold true when R(x; k) does not depend on x. In other words we can now conclude from
3.16 and 3.18 that for some polynomial Rn(k) we must have

Jn(x, y; k) = Rn(k)
n∏

j=1

Γ
(
x + (j − 1)k)Γ

(
y + (j − 1)k)

)
Γ
(
x + y + (n + j − 2)k

) . 3.20

The next step is to obtain a recursion for Rn(k).
To this end we begin by noting that the integrand in 3.1 is a symmetric function of t1, t2, . . . , tn.

This permits us to break up the integral into a sum of identical terms obtained by separately integrating
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over the images of the simplex 0 ≤ tn ≤ tn−1 ≤ · · · ≤ t1 ≤ 1 under the action of the symmetric group Sn.
Since these images decompose the unit n-dimensional cube into n! simplices we may write

Jn(x, y; k) = n!
∫ 1

0

∫ 1

tn

∫ 1

tn−1

· · ·
∫ 1

t2

n∏
i=1

tx−1
i (1 − ti)y−1

∏
1≤i<j≤n

(ti − tj)2kdt1dt2 · · · dtn−1dtn 3.21

Now let us set

f(tn, x) = (1 − tn)y−1×∫ 1

tn

∫ 1

tn−1

· · ·
∫ 1

t2

n−1∏
i=1

tx−1
i (1 − ti)y−1

n−1∏
i=1

(ti − tn)2k
∏

1≤i<j≤n−1

(ti − tj)2kdt1dt2 · · · dtn−1

3.22

so 3.21 becomes

Jn(x, y; k) = n!
∫ 1

0

tx−1
n f(tn, x) dtn .

An integration by parts then gives (for x, y > 0 )

xJn(x, y; k) = n!
(

txnf(tn, x)
∣∣1
0
−

∫ 1

0

txn∂tn
f(tn, x) dtn

)

= −n!
∫ 1

0

txn∂tnf(tn, x) dtn

= n!
∫ 1

0

(1 − txn)∂tnf(tn, x) dtn − n!
∫ 1

0

∂tnf(tn, x) dtn

= n!
∫ 1

0

(1 − txn)∂tn
f(tn, x) dtn − n!

(
f(1, x) − f(0, x)

)
.

Since the definition in 3.22 immediately gives that f(1, x) = 0 this reduces to

xJn(x, y; k) = n!
∫ 1

0

(1 − txn)∂tn
f(tn, x) dtn + n! f(0, x) . 3.23

We aim to take the limit in 3.23 as x→0. To begin note that 3.22 gives (for x > 0)

f(0, x) =
∫ 1

0

∫ 1

tn−1

· · ·
∫ 1

t2

n−1∏
i=1

tx+2k−1
i (1 − ti)y−1

∏
1≤i<j≤n−1

(ti − tj)2kdt1dt2 · · · dtn−1

and so for k ≥ 1 we have

lim
x→0

f(0, x) =
∫ 1

0

∫ 1

tn−1

· · ·
∫ 1

t2

n−1∏
i=1

t2k−1
i (1 − ti)y−1

∏
1≤i<j≤n−1

(ti − tj)2kdt1dt2 · · · dtn−1

= 1
(n−1)!Jn−1(2k, y, k) = 1

(n−1)!Rn−1(k)
n−1∏
j=1

Γ
(
2k + (j − 1)k)Γ

(
y + (j − 1)k)

)
Γ
(
2k + y + (n − 1 + j − 2)k

) .

3.24
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Note next that 3.2 b) and c) give

lim
x→0

xΓ(x) = lim
x→0

xπ

sin πx
= 1 .

and so from 3.20 we derive that

lim
x→0

xJn(x, y; k) = Rn(k) lim
x→0

xΓ(x)Γ(y)

∏n
j=2 Γ

(
x + (j − 1)k)Γ

(
y + (j − 1)k)

)
∏n

j=1 Γ
(
x + y + (n + j − 2)k

)

= Rn(k) Γ(y)

∏n
j=2 Γ

(
(j − 1)k)Γ

(
y + (j − 1)k)

)
∏n

j=1 Γ
(
y + (n + j − 2)k

) .

3.25

As may be suspected, the first term in the right hand side of 3.23 will bear no contribution, since it turns
out that we do have

lim
x→0

∫ 1

0

(1 − txn)∂tnf(tn, x) dtn = 0 . 3.26

This passage to the limit under the integral sign is somewhat delicate and it is usually skipped in most
presentations. For sake of completeness we shall carry it out here in full detail. But before we do that it will
be good to see what 3.23 yields us. To this end note that combining 3.23, 3.24, 3.25 and 3.26 we derive that

Rn(k) Γ(y)

∏n
j=2 Γ

(
(j − 1)k)Γ

(
y + (j − 1)k)

)
∏n

j=1 Γ
(
y + (n + j − 2)k

) = n!
(n−1)!Rn−1(k)

n−1∏
j=1

Γ
(
2k + (j − 1)k)Γ

(
y + (j − 1)k)

)
Γ
(
2k + y + (n − 1 + j − 2)k

) .

Cancelling the obvious common factors this reduces to

Rn(k)
Γ
(
y + (n − 1)k)

∏n
j=2 Γ

(
(j − 1)k)∏n

j=1 Γ
(
y + (n + j − 2)k

) = n Rn−1(k)

∏n−1
j=1 Γ

(
(j + 1)k)∏n−1

j=1 Γ
(
y + (n − 1 + j)k

) .

Now a simple manipulation of indices in these products gives

Rn(k)
Γ
(
y + (n − 1)k)

∏n−1
j=1 Γ

(
jk)∏n−1

j=0 Γ
(
y + (n + j − 1)k

) = n Rn−1(k)

∏n
j=2 Γ(jk)∏n−1

j=1 Γ
(
y + (n − 1 + j)k

) ,

and miraculously all dependence on y disappears yieding the simple recursion

Rn(k) = n Rn−1(k)
Γ(nk)
Γ(k)

= Rn−1(k)
knΓ(nk)
kΓ(k)

= Rn−1(k)
Γ(nk + 1)
Γ(k + 1)

. 3.27

Note that setting n = 1 in 3.1 and using 3.3 we get

J1(x, y, k) =
Γ(x)Γ(y)
Γ(x + y)

On the other hand doing the same in 3.20 gives

J1(x, y, k) =
Γ(x)Γ(y)
Γ(x + y)

R1(k)
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Thus we must take R1(k) = 1. This given, successive applications of 3.27 finally yields

Rn(k) =
n∏

j=1

Γ(jk + 1)
Γ(k + 1)

. 3.28

We clearly see then that 3.20 combined with 3.28 will complete the proof of Theorem 3.1 once we verify 3.26.
To this end it is convenient to set for a moment

G(tn, tn−1, x) =
∫ 1

tn−1

· · ·
∫ 1

t2

n−1∏
i=1

tx−1
i (1 − ti)y−1

n−1∏
i=1

(ti − tn)2k
∏

1≤i<j≤n−1

(ti − tj)2kdt1dt2 · · · dtn−2 . 3.29

so that 3.22 may be written in the form

f(tn, x) = (1 − tn)y−1

∫ 1

tn

G(tn, tn−1, x)dtn−1 3.30

with
This gives

∂tn
f(tn, x) = (y − 1)(1 − tn)y−2

∫ 1

tn

G(tn, tn−1, x)dtn−1

− (1 − tn)y−1G(tn, tn, x)

+ (1 − tn)y−1

∫ 1

tn

∂tn
G(tn, tn−1, x)dtn−1

Now we immediately see from 3.29 that G(tn, tn, x) = 0 and so we may write

∂tn
f(tn, x) = A(tn, x) + B(tn, x) 3.31

with

A(tn, x) = (y−1)(1−tn)y−2

∫ 1

tn

∫ 1

tn−1

· · ·
∫ 1

t2

n−1∏
i=1

tx−1
i (1−ti)y−1

n−1∏
i=1

(ti−tn)2k
∏

1≤i<j≤n−1

(ti−tj)2kdt1dt2 · · · dtn−1

3.32
and

B(tn, x) = (1−tn)y−1

∫ 1

tn

∫ 1

tn−1

· · ·
∫ 1

t2

n−1∏
i=1

tx−1
i (1−ti)y−1

(
∂tn

n−1∏
i=1

(ti−tn)2k
) ∏

1≤i<j≤n−1

(ti−tj)2kdt1dt2 · · · dtn−1

3.33
Since in the process of proving the recursion in 3.27 the dependence on y disappeared in the end, there is
no loss at this point to assume that y > 2. This given it follows that

(1 − tn)y−2 ≤ 1

and, using ti − tn ≤ ti, we get from 3.32

∣∣A(tn, x)
∣∣ ≤ |y − 1|

∫ 1

tn

∫ 1

tn−1

· · ·
∫ 1

t2

n−1∏
i=1

tx+2k−1
i (1 − ti)y−1

∏
1≤i<j≤n−1

(ti − tj)2kdt1dt2 · · · dtn−1
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and for k ≥ 1 we can let tn→0 to obtain a final estimate which is a scalar independent of x:

∣∣A(tn, x) ≤ |y − 1|
∫ 1

0

∫ 1

tn−1

· · ·
∫ 1

t2

n−1∏
i=1

t2k−1
i (1 − ti)y−1

∏
1≤i<j≤n−1

(ti − tj)2kdt1dt2 · · · dtn−1 . 3.34

Now note that we have

∂tn

n−1∏
i=1

(ti − tn)2k =
n−1∏
i=1

(ti − tn)2k∂tn
log

( n−1∏
j=1

(tj − tn)2k
)

= 2k

n−1∏
i=1

(ti − tn)2k
n−1∑
j=1

∂tn log(tj − tn)

= −2k

n−1∏
i=1

(ti − tn)2k
n−1∑
j=1

1
tj − tn

thus

|∂tn

n−1∏
i=1

(ti − tn)2k| ≤ 2k

n∑
j=1

(tj − tn)2k−1
n−1∏

i=1;i �=j

(ti − tn)2k ≤ 2k

n∑
j=1

t2k−1
j

n−1∏
i=1;i �=j

t2k
i .

Using this in 3.33 we get for x, y > 0 and k ≥ 1

|B(tn, x)| ≤ 2k

n∑
j=1

∫ 1

tn

∫ 1

tn−1

· · ·
∫ 1

t2

tx+2k−2
j (1 − tj)y−1

n−1∏
i=1;i �=j

tx+2k−1
i (1 − ti)y−1

∏
1≤i<j≤n−1

(ti − tj)2kdt1dt2 · · · dtn−1 .

≤ 2k

n∑
j=1

∫ 1

0

∫ 1

tn−1

· · ·
∫ 1

t2

t2k−2
j (1 − tj)y−1

n−1∏
i=1;i �=j

t2k−1
i (1 − ti)y−1

∏
1≤i<j≤n−1

(ti − tj)2kdt1dt2 · · · dtn−1 .

3.35
Combining 3.31, 3.34 and 3.35 we derive that |∂tnf(tn, x)| is bounded by a scalar independent of x.

Thus we can pass to the limit under the integral sign and conclude that

lim
x→0

∫ 1

0

(1 − txn)∂tnf(tn, x) dtn = 0

This completes our proof of Theorem 3.1
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4. The Mehta integrals for Sn, Bn and Dn

Our point of departure in each case is the the Selberg identity
∫ 1

0

· · ·
∫ 1

0

( n∏
i=1

tx−1
i (1 − ti)y−1

) ∏
1≤i<j≤n

(ti − tj)2kdt1dt2 · · · dtn =
n∏

j=1

Γ(x+(j−1)k)Γ(y+(j−1)k)Γ(1+jk)
Γ(x+y+(n+j−2)k)Γ(1+k) 4.1

For Sn we make the substitutions

ti = 1
2 (1 − xi/N), x = 1 + N2

2 y = 1 + N2

2 + 1
2

and obtain
∫ N

−N

· · ·
∫ N

−N

n∏
i=1

(1
4

− x2
i

4N2

)N2
2

(1
2

+
xi

2N

) 1
2 ∏

1≤i<j≤n

(xi − xj

2N

)2k dx1dx2 · · · dxn

(2N)n
=

=
n∏

j=1

Γ(x+(j−1)k)Γ(x+(j−1)k+ 1
2 )

Γ(2+N2+(n+j−2)k+ 1
2 )

n∏
j=1

Γ(1+jk)
Γ(1+k)

Using the Legendre duplication formula

Γ(2z) = 22z−1
√

π
Γ(z) Γ(z + 1

2 ) 4.2

with z = x + (j − 1)k this may be rewritten as
∫ N

−N

· · ·
∫ N

−N

n∏
i=1

(
1 − x2

i

N2

)N2
2

(1
2

+
xi

2N

) 1
2 ∏

1≤i<j≤n

(xi − xj)2kdx1dx2 · · · dxn =

= 2nN2
(2N)k n(n−1)(2N)n

n∏
j=1

√
π Γ(2+N2+2(j−1)k)

21+N2+2(j−1)k Γ(2+N2+(n+j−2)k+ 1
2 )

n∏
j=1

Γ(1+jk)
Γ(1+k)

= π
n
2 Nkn(n−1)+n

n∏
j=1

Γ(2+N2+2(j−1)k)

Γ(2+N2+(n+j−2)k+ 1
2 )

n∏
j=1

Γ(1+jk)
Γ(1+k)

4.3

Our next step is to pass to the limit as N→∞. The left hand side of 4.3 is almost immediate. In fact the
simple inequality

1 − u ≤ e−u (for all u ≥ 0 ) 4.4

which follows from the identity
1 − u = e−u−u2

2 −u3
3 ··· 4.5

gives (for |xi| ≤ N) (
1 − x2

i

N2

)N2
2

(1
2

+
xi

2N

) 1
2 ≤ e

−zi2

2 4.6

and so the Dominated Convergence Theorem gives

lim
N→∞

∫ N

−N

· · ·
∫ N

−N

n∏
i=1

(
1 − x2

i

N2

)N2
2

(1
2

+
xi

2N

) 1
2 ∏

1≤i<j≤n

(xi − xj)2kdx1dx2 · · · dxn =

=
1

2
n
2

∫ +∞

−∞
· · ·

∫ +∞

−∞
e−(x2

1+x2
2+···+x2

n)/2
∏

1≤i<j≤n

(xi − xj)2kdx1dx2 · · · dxn

4.7



A. M. Garsia & A. Wallach October 22, 2005 29

To compute the limit of the right hand side we shall resort to the Stirling formula

Γ(x + 1) ≈ (2π)
1
2 xx+ 1

2 e−x 4.8

Concentrating our efforts on the part of the right hand side of 4.3 that depends on N from 4.4 we derive
that

lim
N→∞

Nkn(n−1)+n
n∏

j=1

Γ(2+N2+2(j−1)k)

Γ(2+N2+(n+j−2)k+ 1
2 )

=

= lim
N→∞

Nkn(n−1)+n
n∏

j=1

(
1+N2+2(j−1)k

)1+N2+2(j−1)k+ 1
2 e−(1+N2+2(j−1)k)(

1+N2+(n+j−2)k+ 1
2

)2+N2+(n+j−2)k+1
e−(1+N2+(n+j−2)k+ 1

2 )

= lim
N→∞

Nkn(n−1)+n
n∏

j=1

(
1+N2+2(j−1)k

)1+N2

(
1+N2+(n+j−2)k+ 1

2

)1+N2

n∏
j=1

(
1+N2+2(j−1)k

)2(j−1)k+ 1
2 e(n−j)k+ 1

2(
1+N2+(n+j−2)k+ 1

2

)(n+j−2)k+1

= lim
N→∞

n∏
j=1

(
1+

2(j−1)k

1+N2

)1+N2

(
1+

(n+j−2)k+ 1
2

1+N2

)1+N2

n∏
j=1

e(n−j)k+ 1
2 =

n∏
j=1

e2(j−1)k

e(n+j−2)k+ 1
2

n∏
j=1

e(n−j)k+ 1
2 = 1

Combining this with 4.3 and 4.7 gives the Metha identity

1
(2π)

n
2

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
e−(z2

1+z2
2+···+z2

n)/2
∏

1≤i<j≤n

(zi − zj)2kdz1dz2 · · · dzn =
n∏

j=1

Γ(1 + jk)
Γ(1 + k)

To get the Macdonald-Mehta identities for Bn and Dn, following Regev’s idea, we start again with
the Selberg identity

∫ 1

0

· · ·
∫ 1

0

( n∏
i=1

tx−1
i (1 − ti)y−1

) ∏
1≤i<j≤n

(ti − tj)2kdt1 · · · dtn =

=
n∏

j=1

Γ
(
x+(j−1)k)Γ

(
y+(j−1)k)

)
Γ
(
x+y+(n+j−2)k

) n∏
j=1

Γ(1+jk)
Γ(1+k)

4.9

but now we make the substitutions

ti = 1 − xi

N and x = N + 1 .

and get

∫ N

0

· · ·
∫ N

0

( n∏
i=1

(
1 − xi

N

)N
)

(x1x2 · · ·xn)y−1
∏

1≤i<j≤n

(xi − xj)2kdx1 · · · dxn =

= NnyNkn(n−1)
n∏

j=1

Γ(N+1+(j−1)k)
Γ(N+1+y+(n+j−2)k)

n∏
j=1

Γ(y+(j−1)k)Γ(1+jk)
Γ(1+k)

4.10
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Now a use of the dominated convergence theorem as we did before yields that the left hand side, as N→∞,
converges to ∫ ∞

0

· · ·
∫ ∞

0

e−x1−x2−···−xn (x1x2 · · ·xn)y−1
∏

1≤i<j≤n

(xi − xj)2kdx1 · · · dxn .

To calculate the limit of the right hand side we use 4.4 (Stirling’s formula) and get

NnyNkn(n−1)
n∏

j=1

Γ(N+1+(j−1)k)
Γ(N+1+y+(n+j−2)k) ≈

≈ NnyNkn(n−1)
n∏

j=1

(
N+1+(j−1)k

)N+1+(j−1)k+ 1
2 e−(N+1+(j−1)k)(

N+1+y+(n+j−2)k
)N+1+y+(n+j−2)k+ 1

2 e−(N+1+y+(n+j−2)k)

= NnyNkn(n−1)
n∏

j=1

(
N+1+(j−1)k

)N+1+(j−1)k+ 1
2 e(y+(n−1)k)(

N+1+y+(n+j−2)k
)N+1+y+(n+j−2)k+ 1

2

=
n∏

j=1

(
1+

1+(j−1)k
N

)N+1+(j−1)k+ 1
2 e(y+(n−1)k)(

1+
1+y+(n+j−2)k

N

)N+1+y+(n+j−2)k+ 1
2

−→
n∏

j=1

e(1+(j−1)k) e(y+(n−1)k)

e(1+y+(n+j−2)k) = 1 .

Thus passing to the limit as N→∞ in 4.10 we obtain the identity

∫ ∞

0

· · ·
∫ ∞

0

e−x1−x2−···−xn (x1x2 · · ·xn)y−1
∏

1≤i<j≤n

(xi − xj)2kdx1 · · · dxn =
n∏

j=1

Γ(y+(j−1)k)Γ(1+jk)
Γ(1+k) 4.11

To get to our desired identities we need the further change of variables

xi = z2
i

2

and since dxi = zidzi , 4.11 becomes

1
2n(n−1)k+n(y−1)

∫ ∞

0

· · ·
∫ ∞

0

e−
z2
1+z2

2+···+z2
n

2 (z1z2 · · · zn)2y−1
∏

1≤i<j≤n

(z2
i − z2

j )2kdz1 · · · dzn =

=
n∏

j=1

Γ(y+(j−1)k)Γ(1+jk)
Γ(1+k)

4.12

To obtain the Bn identity we make the specialization

y = k + 1
2

and get from 4.12
∫ ∞

0

· · ·
∫ ∞

0

e−
z2
1+z2

2+···+z2
n

2 (z1z2 · · · zn)2k
∏

1≤i<j≤n

(z2
i − z2

j )2kdz1 · · · dzn =

= 2n2k− n
2

n∏
j=1

Γ( 1
2+jk)Γ(1+jk)

Γ(1+k)
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and since the integrand is an even function we also have

∫ ∞

−∞
· · ·

∫ ∞

−∞
e−

z2
1+z2

2+···+z2
n

2 (z1z2 · · · zn)2k
∏

1≤i<j≤n

(z2
i − z2

j )2kdz1 · · · dzn =

= 2n2k+ n
2

n∏
j=1

Γ( 1
2+jk)Γ(1+jk)

Γ(1+k)

4.13

Using the Legendre duplication formula 4.8 with z = 1
2 + jk, the right hand side of 4.13 becomes

RHS = 2n2k+ n
2

n∏
j=1

Γ( 1
2+jk)Γ(1+jk)

Γ(1+k)

= 2n2k+ n
2

n∏
j=1

√
π Γ(1+2jk)

22jkΓ
(
1+k

) = π
n
2 2

n2k+ n
2

2n(n+1)k

n∏
j=1

Γ(1+2jk)
Γ(1+k) = (2π)

n
2

2nk

n∏
j=1

Γ(1+2jk)
Γ(1+k)

Using this in 4.12 we finally obtain the Bn Macdonald-Mehta identity

1

(2π)
n
2

∫ ∞

−∞
· · ·

∫ ∞

−∞
e−

z2
1+z2

2+···+z2
n

2 (z1z2 · · · zn)2k
∏

1≤i<j≤n

(z2
i − z2

j )2kdz1 · · · dzn = 1
2nk

∏n
j=1

Γ(1+2jk)
Γ(1+k)

To obtain the Dn identity we substitute y = 1
2 in 4.12 and get

∫ ∞

0

· · ·
∫ ∞

0

e−
z2
1+z2

2+···+z2
n

2

∏
1≤i<j≤n

(z2
i − z2

j )2kdz1 · · · dzn =

= 2n(n−1)k− n
2

n∏
j=1

Γ( 1
2+(j−1)k)Γ(1+jk)

Γ(1+k) = 2n(n−1)k− n
2 Γ( 1

2 )Γ(1+nk)

Γ(1+k)

n−1∏
j=1

Γ( 1
2+jk)Γ(1+jk)

Γ(1+k)

but again, since the integrand is even, we also have

∫ ∞

−∞
· · ·

∫ ∞

−∞
e−

z2
1+z2

2+···+z2
n

2

∏
1≤i<j≤n

(z2
i − z2

j )2kdz1 · · · dzn = 2n(n−1)k+ n
2 Γ( 1

2 )Γ(1+nk)

Γ(1+k)

n−1∏
j=1

Γ( 1
2+jk)Γ(1+jk)

Γ(1+k) 4.14

Using the duplication formula 4.8 once more with z = 1
2 + jk the right hand side becomes

RHS = 2n(n−1)k(2π)
n
2 Γ(1+nk)

Γ(1+k)

n−1∏
j=1

Γ(1+2jk)
22jkΓ(1+k)

= 2n(n−1)k(2π)
n
2 Γ(1+nk)

Γ(1+k) 2n(n−1)k

n−1∏
j=1

Γ(1+2jk)
Γ(1+k) = (2π)

n
2 Γ(1+nk)

Γ(1+k)

n−1∏
j=1

Γ(1+2jk)
Γ(1+k)

and we finally obtain from 4.14 the the Dn Macdonald-Mehta identity

1

(2π)
n
2

∫ ∞

−∞
· · ·

∫ ∞

−∞
e−

z2
1+z2

2+···+z2
n

2

∏
1≤i<j≤n

(z2
i − z2

j )2kdz1 · · · dzn = Γ(1+nk)
Γ(1+k)

n−1∏
j=1

Γ(1+2jk)
Γ(1+k)
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5. Shift-differential operators and m-Quasi-Invariants
Given a Coxeter group W of n × n matrices a polynomial P (x1, x2, . . . , xn) ∈ Q[x1, x2, . . . , xn] is

said to be W -m-quasi-invariant if and only if

1
(α,x)2m+1 (1 − sα)P ∈ Q[x1, x2, . . . , xn] (for all α ∈ Φ+) 5.1

where {(α, x) : α ∈ Φ+} as before denotes the collection of reflecting hyperplanes of W . It is easy to see
that the polynomials satisfying 5.1 form a finitely generated graded algebra, we shall denote it here “QIW

m ”.
We see that 5.1 is no restriction when m = 0 and for m = ∞ we may interpret 5.1 as requiring that P is a
W -invariant polynomial. Thus we have a strictly descending chain of algebras

Q[x] = QIW
0 ⊃ QIW

1 ⊃ QIW
2 ⊃ · · · ⊃ QIW

m ⊃ · · · ⊃ QIW
∞ = Q[x]W

that interpolates betwen Q[x] and Q[x]W . These algebras have been introduced by Chalykh, Feigin and A.
P. Veselov [4],[9] and intensely studied in recent years (see [2],[3],[8]). They have been shown to have truly
remarkable properties. In particular in the Sn case they display some surprising combinatorial properties
([11],[12]). It was conjectured by Feigin and Veselov and proved by Etingof-Ginsburg that each QIW

m is a
free module over Q[x]W of rank the order of W . In fact, each of these algebras affords analogues of every
fundamental property of the ordinary polynomial algebra. For instance, let us recall that the polynomial
ring Q[x] has a natural scalar product

〈
,

〉
obtained by setting for P, Q ∈ Q[x]

〈
P , Q

〉
= Q(∂x)P (x)

∣∣
x=0

5.2

Now the space HW of “W -Harmonics” is defined as the orthogonal complement of the ideal JW generated
by the homogeneous W -invariants of positive degree with respect to this scalar product.

It is well known that for a Coxeter group W of n × n matrices the ring of W -invariants Q[X]W is a
free polynomial ring on n homogeneous generators f1(x), f2(x), . . . fn(x). It follows from this that we have

HW =
{
P ∈ Q[Xn] : fk(∂x)P (x) = 0 ∀ k = 1, 2, . . . , n

}
5.3

where for a polynomial P (x) we set P (∂x) = P (∂x1 , ∂x2 , · · · , ∂xn
). It is also well known that HW is the linear

span of the partial derivatives of the discriminant ΠW (x) =
∏

α∈Φ+(α, x) . In symbols

HW =
{
Q(∂x)ΠW (x) Q ∈ Q[Xn]

}
. 5.4

Now Feigin and Veselov conjectured [8] and and Etingof and Ginsburg proved [6] an entirely analogous result
for each m-Quasi-Invariant algebra. To state this result we need to recall that in [4] Chalykh and Veselov
show that to each homogeneous m-Quasi-Invariant Q(x) of degree d there corresponds a unique homogeneous
differential operator, acting on QIm, of the form

γQ(x, ∂x) = Q(∂x) +
∑
|q|<d

cq(x)∂q
x 5.5
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where ∂q
x = ∂q1

x1
∂q2

x2
· · · ∂qn

xn
and |q| = q1 + q2 + · · ·+ qn. With cq(x) a rational function in x1, x2, . . . , xn with a

denominator which factors into a product of the linear forms (x, α). In fact, there is even an explicit formula
for γq(x, ∂x) which is due to Berest [2]. This is

γQ(x, ∂x) =
1

2dd!

d∑
r=0

(
d

r

)
(−1)d−rLm(W )d−rQ(x)Lm(W )r 5.6

where Q(x) denotes the operator “multiplication by Q(x)”, and Lm(W ) is our now familiar operator ∆W,−m

which (in the Sn case) Zeilberger rediscovered in his attempt to give a WZ proof of the Mehta identity. That
is

Lm(W ) = ∆2 − 2m
∑

α∈Φ+

1
(x, α)

∂αs . 5.7

In fact, the m-Quasi-Invariant algebras naturally arise in seeking for operators that commute with Lm(W ).
More precisely it follows from the quoted work of Chalykh, Feigin and Veselov that the linear extension of
the map Q → γQ(x, ∂x) defined by 5.6 yields an algebra isomorphism of QIm onto the algebra of operators
of the form 5.5 that commute with Lm(W ). In particular for all P, Q ∈ QIm we have

γPQ(x, ∂x) = γP (x, ∂x)γQ(x, ∂x). 5.8

This given, we can see that by setting, for P, Q ∈ QIm

〈
P , Q

〉
m

= γP (s, ∂x)Q(x)
∣∣
x=0

5.9

we obtain what should be the natural m-quasi-invariant analogue of the customary bilinear form in 5.2. Now
all the quoted results on m-quasi-invariants hinge on non-degeneracy of the form

〈
,

〉
m

on QIm × QIm.
In particular this allowed Feigin and Veselov to define the space HW (m) of m-Harmonics as the orthogonal
complement, with respect to

〈
,

〉
m

, of the ideal JW (m) generated in QIm by the homogeneous G invariants.
This gives

HW (m) =
{
P ∈ Q[Xn] : γfk

(x, ∂x)P (x) = 0 ∀ k = 1, 2, . . . , n
}

5.10

It should be mentioned that it follows from this that HW (m) ⊆ QIm. This is a immediate consequence of
the remarkable property of the operator Lm(W ) to the effect that for any two polynomials P, Q we have
Lm(W )P = Q with Q ∈ QIm if and only if P ∈ QIm. In particular any polynomial in the kernel of
Lm(W ) is necessarily in QIm. This given, the m-analogue of 5.4 conjectured by Feigin-Veselov and proved
by Etingof-Ginsburg may be stated as follows

Theorem 5.1 (Theorem 6.20 of [6])

HW (m) =
{
γQ(x, ∂x)Π2m+1

W (x) : Q ∈ QIm

}
. 5.11

In fact, if B ⊂ QIm is any basis for the quotient QIm/JW (m), then the collection

F =
{
γb(x, ∂x) Π2m+1

W (x) : b ∈ B
}

5.12

is a basis for HW (m)



A. M. Garsia & A. Wallach October 22, 2005 34

We should mention that the recent new proof of this result given in [11] also hinges on the non-
degeneracy of

〈
,

〉
m

. This non-degeneracy, in full generality follows from a deep result of Opdam [15]. The
present work was prompted by the desire to find a more accessible proof of this non-degeneracy. This section
is to indicate the path by which this remarkable result is derived from the identity of Theorem 2.3. To
this end we need to review some definitions and facts from the theory of “shift differential operators”. To be
precise we need to deal here, for a given Coxeter group W , with the family SDW of operators which, may
be written in the form

A =
∑
σ∈W

aσ(x, ∂x)σ 5.13

where each aσ(s, ∂x) is a differential operator of the form

a(x, ∂x) =
∑

p

ap(x)∂p1
x1

∂p2
x2

· · · ∂pn
xn

5.14

with ap(x) in the ring of rational functions in the algebra generated by

{x1, x2, . . . , xn and 1
(α,x) with α ∈ Φ+ }.

Since the algebra of operators given by 5.14 is invariant under conjugation by elements of W it follows that
the operators in SDW form an algebra. Indeed, we can see that if A is given by 5.13 and

B =
∑
τ∈W

bτ (x, ∂x)τ 5.15

Then
AB =

∑
σ∈W

aσ(x, ∂x)σ
∑
τ∈W

bτ (x, ∂x)τ

=
∑
σ∈W

aσ(x, ∂x)
∑
τ∈W

σbτ (x, ∂x)σ−1στ

=
∑
γ∈W

( ∑
στ=γ

aσ(x, ∂x)bσ
τ (x, ∂x)

)
γ

5.16

where we have set
bσ
τ (x, ∂x) = σbτ (x, ∂x)σ−1

A shift-differential operator B as in 5.15 is called “W -invariant ” if and only if

σBσ−1 = B (for all σ ∈ W )

Note that this requires that

∑
τ∈W

σbτ (x, ∂x)στσ−1 =
∑
τ∈W

aτ (x, ∂x)τ . 5.18
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There is a natural map Γ on SDW we call the ”Forgetting Map” that is simply obtained by setting

ΓB = Γ
∑
τ∈W

bτ (x, ∂x)τ =
∑
τ∈W

bτ (x, ∂x) . 5.19

It is important to note that

Proposition 5.1
ΓB is W -invariant if and only if

∑
τ∈W

σbτ (x, ∂x) =
∑
τ∈W

bτ (x, ∂x) (for all σ ∈ W ) 5.20

In particular if B is W -invariant then ΓB is W -invariant

Proof

From 5.19 we see that

σ ΓB σ−1 = B

if and only if ∑
τ∈W

σ bτ (x, ∂x)σ−1 =
∑
τ∈W

bτ (x, ∂x) (for all σ ∈ W )

and this is 5.20. Finally, if B is W -invariant then applying Γ to both sides of 5.18 gives 5.20 and completes
our proof.

The map Γ is clearly linear but is not multiplicative. Yet it is so in a variety of special cases, an
instance in point is given by the following basic fact

Proposition 5.2

If A, B ∈ SDW and ΓB is W -invariant then

ΓAB = (ΓA)(ΓB) . 5.21

In particular 5.21 will hold true if B itself is W -invariant

Proof

Assuming that A and B are given by 5.13 and 5.15 from 5.16 and 5.20 we derive that

ΓAB =
∑
σ∈W

∑
τ∈W

aσ(x, ∂x) σbτ (x, ∂x) =
∑
σ∈W

aσ(x, ∂x)
∑
τ∈W

bτ (x, ∂x)

Thus the assertions are immediate consequences of Proposition 5.1 .

The following basic fact considerably simplifies our dealing with the forgetting map Γ.
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Proposition 5.3
Two differential operators A and B that have identical actions on W -invariants are necessarily identical.

In particular it follows that to test the equality

ΓA = ΓB

it is sufficient to verify that we have

AQ(x) = BQ(x) (for all Q(x) ∈ Q[x]W )

Proof
From the Leibnitz formula we derive that for any two polynomials f(x), g(x) ∈ Q[x1, x2, . . . , xn] we

have

∂p1
x1

∂p2
x2

· · · ∂pn
xn

f(x)g(x) =
∑
r1≥0

∑
r2≥0

· · ·
∑
rn≥0

(
p1
r1

)(
p2
r2

)
· · ·

(
pn

rn

)
∂r1

x1
∂r2

x2
· · · ∂rn

xn
f(x) ∂p1−r1

x1
∂p2−r2

x2
· · · ∂pn−rn

xn
g(x)

Viewing f(x) as the “multiplication by f(x) operator” this Leibnitz formula may be viewed as expressing the
operator identity

∂p1
x1

∂p2
x2

· · · ∂pn
xn

f(x) =
∑
r≥0

1
r!

∂r
xf(x) (p1)r1(p2)r2 · · · (pn)rn

∂p1−r1
x1

∂p2−r2
x2

· · · ∂pn−rn
xn

(∗)

By linearity it follows that for any differential operator

A(x, ∂x) =
∑

p

ap(x)∂p
x

we have

A(x, ∂x)f(x) =
∑
r≥0

∂r
xf(x)
r!

A(r)(x, ∂x) 5.22

with
A(r)(x, y) = ∂r1

y1
∂r2

y2
· · · ∂rn

yn
A(x, y)

To prove the assertion we must show that if for some operator A(x, ∂x) we have

A(x, ∂x)Q(x) = 0 (for all Q(x) ∈ Q[x]W )

then the y-polynomial
A(x, y) =

∑
p

ap(x) yp

vanishes identically. Clearly there is nothing to prove if A(x, y) is of degree 0 in y. So we can proceed by
induction on the y-degree of A(x, y) and suppose that this assertion holds true up to y-degree ≤ d− 1. This

(*) Here we set (a)k = a(a − 1)(a − 2) · · · (a − k + 1)
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given, suppose if possible that A(x, y) is of y-degree d and A(x, ∂x) kills all W -invariants. It then follows
that for any W -invariant f(x) the operator

B(x, ∂x) = A(x, ∂x)f(x) − f(x)A(x, ∂x)

will also kill all W -invariants. But from 5.22 we derive that

A(x, ∂x)f(x) − f(x)A(x, ∂x) =
∑

r≥0 , r �=0

∂r
xf(x)
r!

A(r)(x, ∂x)

since B(x, y) is of y-degree ≤ d− 1 the inductive hypothesis gives that B(x, y) must identically vanish. But
the y-homogeneous component of highest y-degree in B(x, y) is simply

n∑
i=1

∂xif(x) ∂yiAd(x, y)

where Ad(x, y) is the y-homogeneous component of y-degree d in A(x, y). It follows then that if f1(x), f2(x), . . . , fn(x)
are the fundamental invariants of W we must necessarily have the relations

n∑
i=1

∂xi
fj(x) ∂yi

Ad(x, y) = 0 (for all 1 ≤ j ≤ n) 5.23

But it is well known that the Jacobian determinant det
∥∥∂xi

fj(x)
∥∥n

i,j=1
factors into the product of the linear

forms (α, x) with α ∈ Φ+, thus it only vanishes on the reflecting hyperplanes of W thus 5.23 forces

∂yiAd(x, y) = 0 (for all 1 ≤ j ≤ n)

contraddicting the hypothesis that A(x, y) is of y-degree d. This contraddiction completes the induction and
the proof of the Proposition.

We can immediately see that the forgetting operator Γ may yield surprising results. For instance as
a corollary of Proposition 5.3 we obtain that Proposition 2.9 (for k = −m) can now be restated as follows

Proposition 5.4
For all m ≥ 1 we have

Γp2

(
∇(m)

)
= Lm(W ) 5.24

Remark 5.1
We must note that there is a certain asymmetry in the assertion of Proposition 5.2. In fact, 2.21

may not be valid if only ΓA is known to be W -invariant. Wrong conclusions are quickly reached if we fail
to take account of this fact. For example it follows from the identity in 2.7 that for any polynomial Q(x) we
have

Q(
(
∇(m)

)
=

1
2dd!

d∑
r=0

(d

r

)
(−1)r

(
p2(∇(m)

)d−r
Q(x)

(
p2(∇(m)

)r
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Now, if Q(x) is W -invariant it follows from Proposition 5.2 and 5.22 that

ΓQ(
(
∇(m)

)
=

1
2dd!

d∑
r=0

(d

r

)
(−1)rLm(W )d−rQ(x) Lm(W )r

A comparison with the right hand side of 5.6 may lead us to the conclusion that for all Q ∈ QIW
m we have

γQ(x, ∂x) = ΓQ(
(
∇(m)

)

However, examples can easily be constructed even for the simplest cases of dihedral groups where this identity
fails to be true for some W -m-quasi-invariants that are not W -invariants.

To see how the identity in 2.41 yields the non degeneracy of the bilinear form
〈

,
〉

m
, we need to

deal with the remarkable shift-differential operator introduced by Opdam [15]. Its definition is quite simple
we set

OW
m = Γ

(
ΠW (∇(m))ΠW (x)

)
. 5.25

Its significance in the theory of m-quasi-Invariants is that if we let

ΩW
m = OW

m OW
m−1 · · ·OW

2 OW
1 5.26

then the operators γQ(x, ∂x) introduced by Chalykh and Veselov in [4] satisfy the commutation relation

γQ(x, ∂x)ΩW
m = ΩW

m Q(∂x) (for all Q ∈ QIW
m ) 5.27

The proof of this identity is based on an ingenious idea of Chalykh and Veselov, and although the arguments
are not difficult it will take us to far out of the present context to carry them out here and we will have
to refer the reader to [10] for a more leasurely detailed exposition of this chapter in the theory of m-quasi-
invariants. Nevertheless, it will be good to see how 5.27 comes about in the simple case of the W -invariant
p2(x) =

∑n
i=1 x2

i . To this end the crucial identity is given by the following

Proposition 5.5
For m ≥ 1 we have

p2(∇(m))ΠW (x)f(x) = ΠW (x)p2(∇(m − 1))f(x) ( for all f ∈ Q[x]W ) 5.28

Proof
From the definition in 2.6, when v = ei (the ith coordinate vector), we get

∇i(m) = ∂xi
− m θi

where
θi =

∑
α∈Φ+

αi

(α, x)
(1 − sα).
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Thus

p2(∇(m))ΠW (x)f(x) =
n∑

i=1

(
∂2

xi
− mθi∂xi

− m∂xi
θi + m2θ2

i

)
ΠW (x)f(x)

= A − mB − mC − m2D

5.29

where for convenience we have set

A =
n∑

i=1

∂2
xi

ΠW (x)f(x) , B =
n∑

i=1

θi∂xi
ΠW (x)f(x) , C =

n∑
i=1

∂xi
θi ΠW (x)f(x) , D =

n∑
i=1

θ2
i ΠW (x)f(x) .

5.30
We claim that we have

a) A = 2ΠW (x)
∑

α∈Φ+

1
(α, x)

∂αf(x) + ΠW (x)∆2f(x)

b) B = 0

c) C = 2ΠW (x)
∑

α∈Φ+

1
(α, x)

∂αf(x)

d) D = 0

5.31

To prove a) we note that

∑
i=1

∂2
xi

ΠW (x)f(x) = (∆ΠW (x))f(x) + 2
∑
i=1

∂xi
ΠW (x)∂xi

f(x) + ΠW (x)∆f(x). 5.32

Now we have
∆ΠW (x) = 0 5.33

since ∆ is a W -invariant operator. To deal with the second term in 5.32 we note that

1
ΠW (x)

∂xi
ΠW (x) =

∑
α∈Φ+

1
(α, x)

∂xi
(α, x).

Thus
n∑

i=1

∂xi
ΠW (x)∂xi

f(x) = ΠW (x)
n∑

i=1

∑
α∈Φ+

αi

(α, x)
∂xi

f(x) = ΠW (x)
∑

α∈Φ+

1
(α, x)

∂αf(x)

Using this and 5.33 in 5.32 gives 5.31 a). Next note that

n∑
i=1

θi∂xiΠW (x)f(x) =
n∑

i=1

∑
α∈Φ+

αi

(α, x)
(1 − sα)∂xiΠW (x)f(x)

=
∑

α∈Φ+

1
(α, x)

∂αΠW (x)f(x) +
n∑

i=1

∑
α∈Φ+

αi

(α, x)
sα∂xisαΠW (x)f(x)

5.34

Now recall that we have
sα∂xisα = ∂xi − 2

αi

(α, α)
∂α
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and using this in 5.34 gives

n∑
i=1

θi∂xi
ΠW (x)f(x) = 2

∑
α∈Φ+

1
(α, x)

∂αΠW (x)f(x) − 2
n∑

i=1

∑
α∈Φ+

α2
i

(α, x)(α, α)
∂αΠW (x)f(x) = 0

proving 5.31 b). Next we have (by the W -invariance of f(x))

n∑
i=1

∂xiθi ΠW (x)f(x) =
n∑

i=1

∂xif(x)θi ΠW (x) =
n∑

i=1

(∂xif(x))θi ΠW (x) + f(x)
n∑

i=1

∂xiθi ΠW (x) 5.35

Now
n∑

i=1

∂xi
θi ΠW (x) =

n∑
i=1

∂xi

∑
α∈Φ+

αi

(α, x)
(1 − sα)ΠW (x) = 2

∑
α∈Φ+

∂α
1

(α, x)
ΠW (x)

but the right hand side is clearly a polynomial which alternates in sign under the action of W . Since its
degree is less than the degree of ΠW (x) it must identically vanish. Thus 5.35 reduces to

n∑
i=1

∂xiθi ΠW (x)f(x) =
n∑

i=1

(∂xif(x))θi ΠW (x)

= 2
n∑

i=1

(∂xif(x))
∑

α∈Φ+

αi

(α, x)
ΠW (x)

= 2ΠW (x)
n∑

i=1

∑
α∈Φ+

αi

(α, x)
∂xi

f(x) = 2ΠW (x)
∑

α∈Φ+

1
(α, x)

∂αf(x)

5.36

This proves 5.31 c). Finally we have

n∑
i=1

θ2
i ΠW (x)f(x) = f(x)

n∑
i=1

θ2
i ΠW (x)

= 2f(x)
n∑

i=1

( ∑
α∈Φ+

αi

(α, x)
(1 − sα)

) ∑
β∈Φ+

βi

(β, x)
ΠW (x)

= 2f(x)
∑

αβ∈Φ+

(α, β)
(α, x)

(1 − sα)
ΠW (x)
(β, x)

= 2f(x)
∑

β∈Φ+

θβ
1

(β, x)
ΠW (x)

5.37

But the expression

E =
∑

β∈Φ+

θβ
1

(β, x)
ΠW (x)

clearly evaluates to a polynomial. Moreover it is W -alternating since the operator

∑
β∈Φ+

θβ
1

(β, x)

is W -invariant. Since the degree of E is less than the degree of ΠW (x) it must identically vanish. This proves
5.31 d).
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We can now use the identities in 5.31 and and reduce 5.29 to

p2(∇(m))ΠW (x)f(x) = 2ΠW (x)
∑

α∈Φ+

1
(α, x)

∂αf(x) + ΠW (x)∆2f(x) − 2 m ΠW (x)
∑

α∈Φ+

1
(α, x)

∂αf(x)

= ΠW (x)
(
∆2 − 2(m − 1)

∑
α∈Φ+

1
(α, x)

∂α

)
f(x)

and the identity in 5.28 is thus a consequence of Proposition 5.4. This completes our proof.

We are now in a position to derive the special case Q(x) = p2(x) of 5.27.

Theorem 5.2
For all m ≥ 1 we have

Lm(W )OW
m = OW

m Lm−1(W ) 5.38

In particular it follows that

Lm(W )ΩW
m = ΩW

m ∆ 5.39

Proof
Using Proposition 5.4 and the definition in 5.25 we may rewrite 5.38 in the form

(
Γp2(∇(m))

)
Γ ΠW (∇(m))ΠW (x) =

(
Γ ΠW (∇(m))ΠW (x)

)
Γp2(∇(m − 1) 5.40

However, since the two operators

ΠW (∇(m))ΠW (x) and p2(∇(m − 1))

are clearly W -invariant we can use Proposition 5.2 and derive that 5.40 holds true if and only if

Γ p2(∇(m))ΠW (∇(m))ΠW (x) = Γ ΠW (∇(m))ΠW (x)p2(∇(m − 1))

Now the commutativity of the Dunkl operators gives that this identity is equivalent

Γ ΠW (∇(m))p2(∇(m))ΠW (x) = Γ ΠW (∇(m))ΠW (x)p2(∇(m − 1)) 5.41

But from Proposition 5.3 it follows that 5.41 and therefore also 5.38 will hold true if and only if we have

ΠW (∇(m))p2(∇(m))ΠW (x)f(x) = ΠW (∇(m))ΠW (x)p2(∇(m − 1))f(x) (for all f(x) ∈ Q[x]W )

This shows that 5.38 is an immediate consequence of Proposition 5.5. Finally 5.39 follows by iterations of
5.38 applied to the definition in 5.26 and noticing that L0(W ) = ∆. This completes our proof.

One final ingredient that plays a crucial role in the study om m-quasi-invariants is the so called
“Baker-Akhiezer” function

ΨW (x, y) = ΩW
m e(x,y) 5.42
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Note that we may write
ΨW (x, y) =

∑
k≥0

Ψ(k)
W (x, y) 5.43

with
Ψ(k)

W (x, y) = ΩW
m

(∑n

i=1
xiyi

k!

)k

5.44

Thus ΨW (x, y) may be viewed as a formal power series in in the two sets of variables x1, x2, . . . , xn and
y1, y2, . . . , yn. Since the operator ΩW

m does not change degrees, we see that the term Ψ(k)
W (x, y) gives the

x, y-homogeneous component of degree k in ΨW (x, y).

The crucial fact that connects in the theory of m-quasi-invariants with the Macdonald-Mehta iden-
tities may be expressed by the following

Proposition 5.6
Setting for each k ≥ 1

CW (k) = d1d2 · · · dn(−1)
∑

j=1
(dj−1)

n∏
j=1

∏
1≤i<dj

(kdj − i) 5.45

where d1, d2, . . . .dn are the degrees of the fundamental W -invariants, the constant term of ΨW (x, y) is simply

given by the product

Ψ(0)
W = CW (m)CW (m − 1) · · ·CW (1) 5.46

Proof
Since the operator ΩW

m preserves degrees it follows from 5.42 that

Ψ(0)
W = ΩW

m 1 .

Thus the definition in 5.26 gives that

Ψ(0)
W = OW

m OW
m−1 · · ·OW

1 1 5.47

Now it follows from the definition in 5.25 that for each k ≥ 1 we have

OW
k 1 =

(
Γ ΠW (∇(k))ΠW (x)

)
1 .

But since the constant “1” is obviously W -invariant we also have

OW
k 1 = ΠW (∇(k))ΠW (x)1 = ΠW (∇(k))ΠW (x)

and Theorem 2.3 gives
OW

k 1 = CW (k)

and we see that 5.46 simply follows from 5.47 by iterating this identity.

It develops that the Baker-Akhiezer function ΨW (x, y) is essetially characterized by following result
of Chalykh and Veselov
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Theorem 5.3
For every W -m-quasi-invariant Q(x) we have

γQ(x, ∂x)ΨW (x, y) = Q(y) ΨW (x, y) 5.48

We have to refer the reader to [4] or [10] for a proof. Nevertheless we should point out that 5.48 is equivalent
to 5.27. In fact note that from 5.27 and the definition in 5.42 it follows that

γQ(x, ∂x)ΨW (x, y) = γQ(x, ∂x)ΩW
m e(x,y) = ΩW

m Q(∂x)e(x,y) = ΩW
m Q(y)e(x,y) = Q(y) ΩW

m e(x,y)

and this is 5.48. The converse is obtained by reversing these steps.

We can now collect a windfall of consequences of these last two basic results.

Theorem 5.4
For any m ≥ 1 we have

(1) The bilinear form defined by setting for any two polynomials in P, Q ∈ QIm[Xn]

〈
P , Q

〉
m

= 1

Ψ
(0)
W

γP (x, ∂x)Q(x)
∣∣
x=0

5.49

is non-degenerate.

(2) If
{
φ

(d)
k (x)

}Nd

k=1
is any complete orthonormal system for the homogeneous m-quasi-invariants of

degree d with respect to the form
〈

,
〉

m
, then

Ψ(d)
W (x, y) =

Nd∑
i=1

φ
(d)
k (x)φ(d)

k (y) 5.50

as well as

ΨW (x, y) = Ψ(0)
W +

∑
d≥1

Nd∑
i=1

φ
(d)
k (x)φ(d)

k (y) 5.51

(3) In particular ΨW (x, y) is the reproducing kernel for the form
〈

,
〉

m
.

Proof
Form 5.45 we derive that for any m-quasi-invariant Q(x) we get

∑
k≥0

γQ(x, ∂x) ΩW
m

(x,y)k

k! = Q(y)
∑
k≥0

ΩW
m

(x,y)k

k!

Now if Q is homogeneous of of degree d, then operator γQ(x, ∂x) will decrease x-degrees by d. Thus it follows
that by equating homgeneous components of equal degrees we get for all k ≥ d

γQ(x, ∂x)ΩW
m

(x,y)k

k! = Q(y) Ωm
(x,y)k−d

(k−d)! .

That is
γQ(x, ∂x) Ψ(k)

W (x, y) = Q(y) ΩmΨ(k−d)
W (x, y)
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and setting k = d we get

γQ(x, ∂x)Ψ(k)
W (x, y) = Ψ(0)

W Q(y)

In other words, we have shown that 〈
Q , Ψ(k)

W

〉
m

= Q(y) 5.52

This proves the non degeneracy of the form
〈

,
〉

m
since the constant in 5.46 never does vanish as long as m

is a positive integer.
Moreover, note that replacing Q(x) by φ

(d)
k (x) in 5.50 gives

〈
φ

(d)
k , Ψ(k)

W )m = φ
(d)
k (y)

multiplying both sides by φ
(d)
k (x), the completeness and orthonormality of the set

{
φ

(d)
k (x)

}Nd

k=1
gives

Nd∑
k=1

φ
(d)
k (x)φ(d)

k (y) = Ψ(k)
W (x, y)

this proves 5.50 and 5.51 immediately follows.
This completes our proof and our writing.
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