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m-QUASI-INVARIANTS

Denote by “ si,j ” the transposition that interchanges xi and xj.

For any P(x) ∈ Q[Xn] for some integer r ≥ 0 we have

(1 − sij)P(x) = (xi − xj)2r+1Pij(x)

With Xn = {x1,x2, . . . ,xn} we set

QIm[Xn] =
{
P(x) ∈ Q[Xn] : (1 − sij)P(x) = (xi − xj)2m+1Pij(x) ∀ 1 ≤ i < j ≤ n

}

QIm[Xn] is an Sn-module

Q[Xn] = QI0[Xn] ⊃ QI1[Xn] ⊃ QI2[Xn] ⊃ · · · ⊃ QIm[Xn] ⊃ · · · ⊃ QI∞[Xn] = SYM[Xn]

QIm[Xn] is a ring

(1 − sij)PQ = ((1 − sij) P)Q + (sijP)(1 − sij) Q
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SOME REMARKABLE RESULTS

Theorem 1 (Etingof-Ginsburg )

QIm[Xn] is free over SYM[Xn]

Theorem 1 (Felder-Veselov )
The quotient

QIm[Xn]/(e1, e2, . . . , en)QIm[Xn]

is a graded version of the Left-Regular representation of Sn with Frobenius character-
istic ∑

λ�n

Sλ(x)
∑

T∈ST(λ)

qco(T)+m
(
(n2)−cλ

)

cλ =
∑

(i,j)∈λ

(j − i) = nλ − nλ′

(There are m-analogs of everything in sight!)
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THE ORBIT QUOTIENT

We select a regular point a = (a1, a2, . . . , an) and define the “orbit of a ”

[a] =
{
aσ : σ ∈ Sn

}

then define the “ideal of the orbit of a ”

J[a](m) =
(
P ∈ QIm[Xn] : P(b) = 0 ∀ b ∈ [a]

)
QIm[Xn]

then define the “Ring of the orbit of a ”

R[a](m) = QIm[Xn]/J[a](m)

Theorem(easy)
R[a](m) has dimension n! and carries the left regular representation of Sn.

Proof
To get a basis of R[a](m), for each b ∈ [a] we construct a polynomial

φb(x) =
{

1 if x = b
0 if x �= b

for x ∈ [a]

Then Sn acts on this basis precisely as it acts on itself.
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THE GRADED ORBIT QUOTIENT

For a polynomial P define h(P) to be the homogeneous component of highest
degree in P then set

grJ[a] =
(
h(P) : P ∈ J[a](m)

)
QIm[Xn]

and define “graded Ring of the orbit of a ”

grR[a](m) = QIm[Xn]/grJ[a](m)

Theorem(easy)
grR[a](m) has dimension n! and carries the left regular representation of Sn.

Proof
A standard argument transfers properties from R[a](m) to grR[a](m)
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THE BILINEAR FORM
Proposition(easy)

For any homogeneous polynomial q(x) of degree d we have

q(∂x) =
1

2dd!

d∑
k=0

(
d
k

)
∆d−kq(x)∆k

Define
Lm = ∆ − 2m

∑
1≤i<j≤n

1
xi − xj

(∂xi
− ∂xj

)

and for each q ∈ QIm[Xn], homogeneous of degree d set

γq(x, ∂x) =
1

2dd!

d∑
k=0

(
d
k

)
Ld−k

m q(x)Lk
m

then extend to all of QIm[Xn] by linearity.
Theorem (very hard)

The map q → γq is a ring isomorphism from QIm[Xn] to the ring of operators
that commute with Lm. Moreover if for p,q ∈ QIm[Xn] we set

〈
p , q

〉
m

= γp q
∣∣∣
x=0

we get a non-degenerate, symmetric, bilinear form on QIm[Xn]
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ORBIT HARMONICS
Using the bilinear form define “the m-Harmonics of [a] ” by

H[a](m) =
{
P ∈ QIm[Xn] :

〈
q,P

〉
m

= 0 ∀ q ∈ grJ[a]

}

Theorem
H[a](m) has dimension n! and carries the left regular representation of Sn.

Proof
Using the non degeneracy of the bilinear form we can transfer properties from

grR[a] to H[a](m)

THE GROUP HARMONICS
Let JSn be the ideal

JSn =
(
e1, e2, . . . , en

)
QIm[Xn]

then set
HSn(m) =

{
P ∈ QIm[Xn] :

〈
q,P

〉
m

= 0 ∀ q ∈ JG

}
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THE CRUCIAL EQUALITY
Proposition 1

For both H[a](m) and HSn(m) we have

H[a](m) =
{
P ∈ QIm[Xn] : γq(x, ∂x)P = 0 ∀ q ∈ grJ[a]

}

HSn(m) =
{
P ∈ QIm[Xn] : γei

(x, ∂x)P = 0 ∀ i = 1,2, . . . ,n
}

Proof
Immediate application of the non-degeneracy of the form.

Proposition 2
H[a](m) ⊆ HSn(m) (∗)

Proof
Since ei(x) − ei(a) ∈ J[a] then ei(x) ∈ grJ[a] and (*) follows from Proposition 1.

THE ROLE OF THE DIMENSION BOUND
Theorem

dim HSn(m) ≤ n! =⇒ H[a](m) = HSn(m)

and thus HSn(m) carries the left regular representation
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Two simple observations

Recall

q(∂x) =
1

2dd!

d∑
k=0

(
d
k

)
∆d−kq(x)∆k γq(x, ∂x) =

1
2dd!

d∑
k=0

(
d
k

)
Ld−k

m q(x)Lk
m

Lm = ∆ − 2m
∑

1≤i<j≤n

1
xi − xj

(∂xi
− ∂xj

)

It follows that
γq(x, ∂x) = q(∂x) +

∑
|p|<degree(q)

cp(x) ∂p
x

with cp(x) having only the factors xi − xj in the denominators.

NOTE:

(1) cp(x) is OK as long as x is not in one of the reflecting hyperplanes

(2) the difference γq(x, ∂x) − q(∂x) is of lower order than q(∂x)
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THE DIMENSION BOUND
Theorem (Feigin-Veselov)

dim HSn(m) ≤ n!

Proof
Classical (m = 0) Harmonic theory gives that for every monomial xp we have

xp =
∑

0≤εi≤i−1

xεAε(x) (with Aε ∈ RSn)

and for any q ∈ HSn(m) and any xp we can write

∂p
xq(x) =

∑
0≤εi≤i−1

∂ε
x γAε(x, ∂x)q(x) +

∑
0≤εi≤i−1

∂ε
x

(
Aε(∂x) − γA(x, ∂x)

)
q(x) (∗)

Since
Aε(x) = Aε(e1, e2, . . . , en)

it follows that for any q ∈ HSn(m) we get

γAε(x, ∂x)q(x) = Aε(0)q(x)

so (*) gives for a regular point xo

∂p
xq(x)

∣∣∣
x=xo

=
∑

0≤εi≤i−1

Aε(0)∂ε
x q(x)

∣∣∣
x=xo

+ · · · (lower order derivatives of q(x) at xo

)

and by induction we get that q(x) is determined by n! derivatives at xo.
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THE HILBERT SERIES LIMIT

Theorem (known more or less)

Let A be a finitely generated graded algebra and let

a1,a2, . . . ,ak ∈ A

be homogeneous of degrees
d1,d2, . . . ,dk

and suppose that
dimA/(a1,a2, . . . ,ak)A ≤ N

with k minimal. Then

limq→−1 (1 − qd1)(1 − qd2) · · · (1 − qd2)FA = N

Implies that A is COHEN-MACAULAY
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THE m-QUASI-INVARIANT SANDWICH

Theorem
The Hilbert series of the Ring QIm[Xn] of m-Quasi-Invariants satisfies the

coefficient-wise inequalities

q2m(n2)

(1 − q)n
<< FQIm[Xn](q) <<

1
(1 − q)n

Thus
limq→−1(1 − q)(1 − q2) · · · (1 − qn)FQIm[Xn](q) = n!

Proof
Every polynomial P(x) ∈ Q[Xn] multiplied by

Π(x)2m =
∏

1≤r<s≤n

(xr − xs)2m

gives an m-Quasi-Invariant. In fact for all 1 ≤ i < j ≤ n we have

(1 − sij)P(x)Π(x)2m = Π(x)2m(1 − sij)P(x)

QED!
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