SOME NEW METHODS

IN THE THEORY

 \mathbf{OF}

m-QUASI-INVARIANTS

by

J. BELL, A. M. GARSIA and N. WALLACH

(title of the paper submitted to the Stanley Festschrift)

June 10, 2004 2

BUT

TODAY I WILL SPEAK ON

 \mathbf{ON}

m-QUASI-INVARIANTS

 \mathbf{OF}

IN THE THEORY

SOME OLD METHODS

m-Quasi-Invariants

June 10, 2004 3

m-QUASI-INVARIANTS

Denote by " $\mathbf{s}_{i,j}$ " the transposition that interchanges \mathbf{x}_i and \mathbf{x}_j . For any $\mathbf{P}(\mathbf{x}) \in \mathbf{Q}[\mathbf{X}_n]$ for some integer $\mathbf{r} \ge \mathbf{0}$ we have

$$(1-s_{\mathbf{ij}})\mathbf{P}(\mathbf{x})\,=\,(\mathbf{x_i}-\mathbf{x_j})^{\mathbf{2r+1}}\mathbf{P_{ij}}(\mathbf{x})$$

With $\mathbf{X_n} = \{\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}\}$ we set

$$\mathbf{QI_m}[\mathbf{X_n}] \,=\, \Big\{ \mathbf{P}(\mathbf{x}) \in \mathbf{Q}[\mathbf{X_n}] \,:\, (\mathbf{1} - \mathbf{s_{ij}})\mathbf{P}(\mathbf{x}) = (\mathbf{x_i} - \mathbf{x_j})^{\mathbf{2m+1}}\mathbf{P_{ij}}(\mathbf{x}) \;\;\forall\;\; \mathbf{1} \leq i < j \leq n \Big\}$$

$QI_m[X_n]$ is an S_n -module

 $\mathbb{Q}[\mathbf{X}_n] = \mathbf{QI}_0[\mathbf{X}_n] \supset \mathbf{QI}_1[\mathbf{X}_n] \supset \mathbf{QI}_2[\mathbf{X}_n] \supset \dots \supset \mathbf{QI}_m[\mathbf{X}_n] \supset \dots \supset \mathbf{QI}_\infty[\mathbf{X}_n] = \mathbf{SYM}[\mathbf{X}_n]$

 $\mathbf{QI}_{\mathbf{m}}[\mathbf{X}_{\mathbf{n}}]$ is a ring

$$(\mathbf{1} - \mathbf{s_{ij}}) \mathbf{PQ} = ((\mathbf{1} - \mathbf{s_{ij}}) \mathbf{P})\mathbf{Q} + (\mathbf{s_{ij}P})(\mathbf{1} - \mathbf{s_{ij}}) \mathbf{Q}$$

SOME REMARKABLE RESULTS

 $Theorem \ 1 \ ({\rm Etingof-Ginsburg} \)$

 $\mathbf{QI_m}[\mathbf{X_n}]$ is free over $\mathbf{SYM}[\mathbf{X_n}]$

Theorem 1 (Felder-Veselov) The quotient

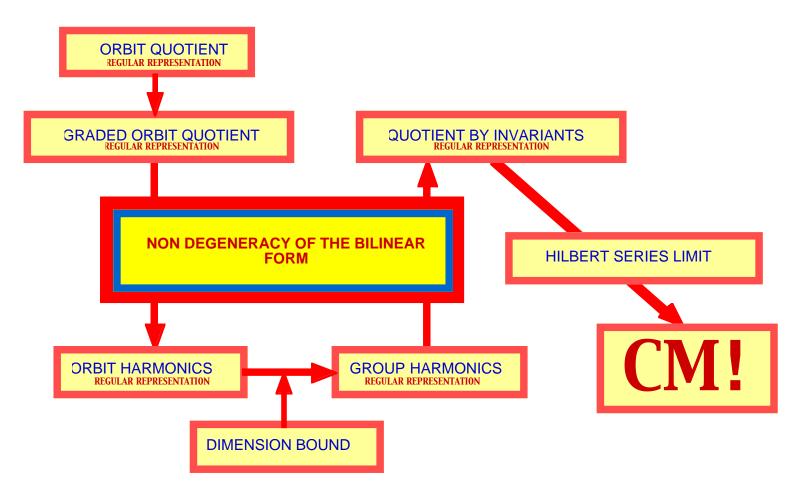
$$\mathbf{QI_m}[\mathbf{X_n}]/(\mathbf{e_1},\mathbf{e_2},\ldots,\mathbf{e_n})_{\mathbf{QI_m}[\mathbf{X_n}]}$$

is a graded version of the Left-Regular representation of $\mathbf{S_n}$ with Frobenius characteristic

$$egin{aligned} &\sum_{\lambda dash \mathbf{n}} \mathbf{S}_{\lambda}(\mathbf{x}) \sum_{\mathbf{T} \in \mathbf{ST}(\lambda)} \mathbf{q}^{\mathbf{co}(\mathbf{T}) + \mathbf{m}\left(inom{n}{2}
ight) - \mathbf{c}_{\lambda}
ight)} \ &\mathbf{c}_{\lambda} \, = \, \sum_{(\mathbf{i}, \mathbf{j}) \in \lambda} (\mathbf{j} - \mathbf{i}) = \mathbf{n}_{\lambda} - \mathbf{n}_{\lambda'} \end{aligned}$$

(There are m-analogs of everything in sight!)

THE PROOF OF COHEN MACAULINESS for m-QUASI-INVARIANTS



THE ORBIT QUOTIENT

We select a regular point $a = (a_1, a_2, \ldots, a_n)$ and define the "orbit of a"

$$[\mathbf{a}] \,=\, \big\{ \mathbf{a}\sigma \,:\, \sigma \in \mathbf{S_n} \big\}$$

then define the "ideal of the orbit of a"

$$\mathbf{J}_{[\mathbf{a}]}(\mathbf{m}) \,=\, \begin{pmatrix} \mathbf{P} \in \mathbf{QI}_{\mathbf{m}}[\mathbf{X}_{\mathbf{n}}] \,:\, \mathbf{P}(\mathbf{b}) = \mathbf{0} \quad \forall \ \mathbf{b} \ \in [\mathbf{a}] \end{pmatrix}_{\mathbf{QI}_{\mathbf{m}}[\mathbf{X}_{\mathbf{n}}]}$$

then define the "Ring of the orbit of a"

$$\mathbf{R}_{[\mathbf{a}]}(\mathbf{m}) = \mathbf{QI}_{\mathbf{m}}[\mathbf{X}_{\mathbf{n}}] / \mathbf{J}_{[\mathbf{a}]}(\mathbf{m})$$

Theorem(easy)

 $R_{[\mathbf{a}]}(\mathbf{m})$ has dimension $\mathbf{n}!$ and carries the left regular representation of $\mathbf{S_n}.$ Proof

To get a basis of $\mathbf{R}_{[\mathbf{a}]}(\mathbf{m}),$ for each $\mathbf{b}\in[\mathbf{a}]$ we construct a polynomial

$$\phi_{\mathbf{b}}(\mathbf{x}) = \begin{cases} \mathbf{1} & \text{if } \mathbf{x} = \mathbf{b} \\ 0 & \text{if } \mathbf{x} \neq \mathbf{b} \end{cases} \quad \text{for } \mathbf{x} \in [\mathbf{a}]$$

Then S_n acts on this basis precisely as it acts on itself.

THE GRADED ORBIT QUOTIENT

For a polynomial P define h(P) to be the homogeneous component of highest degree in P then set

$$\mathbf{gr} \, \mathbf{J}_{[\mathbf{a}]} \, = \, \Big(\mathbf{h}(\mathbf{P}) \, : \, \mathbf{P} \in \mathbf{J}_{[\mathbf{a}]}(\mathbf{m}) \, \Big)_{\mathbf{QI}_{\mathbf{m}}[\mathbf{X}_{\mathbf{n}}]}$$

and define "graded Ring of the orbit of a"

$$\mathbf{gr}\,\mathbf{R}_{[\mathbf{a}]}(\mathbf{m})\,=\,\mathbf{QI}_{\mathbf{m}}[\mathbf{X}_{\mathbf{n}}]/\mathbf{gr}\,\mathbf{J}_{[\mathbf{a}]}(\mathbf{m})$$

Theorem(easy)

 $\operatorname{\mathbf{gr}} R_{[a]}(m)$ has dimension n! and carries the left regular representation of $\mathbf{S}_n.$ Proof

A standard argument transfers properties from $\mathbf{R}_{[\mathbf{a}]}(\mathbf{m})$ to $\mathbf{gr} \mathbf{R}_{[\mathbf{a}]}(\mathbf{m})$

THE BILINEAR FORM

Proposition(easy)

For any homogeneous polynomial q(x) of degree d we have

$$\mathbf{q}(\partial_{\mathbf{x}}) \,=\, \frac{1}{\mathbf{2^d} \mathbf{d}!} \sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{d}} \binom{\mathbf{d}}{\mathbf{k}} \boldsymbol{\Delta^{\mathbf{d}-\mathbf{k}}} \mathbf{q}(\mathbf{x}) \boldsymbol{\Delta^{\mathbf{k}}}$$

Define

$$\mathbf{L_m} \,=\, \boldsymbol{\Delta} - 2m \sum_{1 \leq i < j \leq n} \frac{1}{\mathbf{x_i} - \mathbf{x_j}} (\partial_{\mathbf{x_i}} - \partial_{\mathbf{x_j}})$$

and for each $\mathbf{q} \in \mathbf{QI}_{\mathbf{m}}[\mathbf{X}_{\mathbf{n}}]$, homogeneous of degree d set

$$\gamma_{\mathbf{q}}(\mathbf{x},\partial_{\mathbf{x}}) \,=\, rac{1}{2^{\mathbf{d}}\mathbf{d}!}\sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{d}} inom{\mathbf{d}}{\mathbf{k}} \mathbf{L}_{\mathbf{m}}^{\mathbf{d}-\mathbf{k}}\mathbf{q}(\mathbf{x})\mathbf{L}_{\mathbf{m}}^{\mathbf{k}}$$

then extend to all of $\mathbf{QI}_{\mathbf{m}}[\mathbf{X}_{\mathbf{n}}]$ by linearity. **Theorem** (very hard)

The map $\mathbf{q} \to \gamma_{\mathbf{q}}$ is a ring isomorphism from $\mathbf{QI_m}[\mathbf{X_n}]$ to the ring of operators that commute with $\mathbf{L_m}$. Moreover if for $\mathbf{p}, \mathbf{q} \in \mathbf{QI_m}[\mathbf{X_n}]$ we set

$$ig\langle \mathbf{p} \;,\; \mathbf{q} ig
angle_{\mathbf{m}} \;=\; \gamma_{\mathbf{p}} \, \mathbf{q} \; \Big|_{\mathbf{x} = \mathbf{0}}$$

we get a non-degenerate, symmetric, bilinear form on $QI_m[X_n]$

ORBIT HARMONICS

Using the bilinear form define "the **m**-Harmonics of $[\mathbf{a}]$ " by

$$\mathbf{H}_{[\mathbf{a}]}(\mathbf{m}) \ = \ \left\{ \mathbf{P} \in \mathbf{QI}_{\mathbf{m}}[\mathbf{X}_{\mathbf{n}}] \ : \ \left\langle \mathbf{q}, \mathbf{P} \right\rangle_{\mathbf{m}} = \mathbf{0} \quad \forall \ \ \mathbf{q} \in \mathbf{gr} \, \mathbf{J}_{[\mathbf{a}]} \right\}$$

Theorem

 $H_{[\mathbf{a}]}(\mathbf{m})$ has dimension $\mathbf{n}!$ and carries the left regular representation of $\mathbf{S_n}.$ Proof

Using the non degeneracy of the bilinear form we can transfer properties from $\operatorname{gr} R_{[a]}$ to $H_{[a]}(m)$

THE GROUP HARMONICS

Let $\mathbf{J}_{\mathbf{S}_{n}}$ be the ideal

$$\mathbf{J_{S_n}} \,=\, \left(\mathbf{e_1}, \mathbf{e_2}, \ldots, \mathbf{e_n}\right)_{\mathbf{QI_m}[\mathbf{X_n}]}$$

then set

$$\mathbf{H}_{\mathbf{S}_{\mathbf{n}}}(\mathbf{m}) \ = \ \left\{ \mathbf{P} \in \mathbf{QI}_{\mathbf{m}}[\mathbf{X}_{\mathbf{n}}] \ : \ \left\langle \mathbf{q}, \mathbf{P} \right\rangle_{\mathbf{m}} = \mathbf{0} \quad \forall \ \mathbf{q} \in \mathbf{J}_{\mathbf{G}} \right\}$$

THE CRUCIAL EQUALITY

Proposition 1

For both $\mathbf{H}_{[\mathbf{a}]}(\mathbf{m})$ and $\mathbf{H}_{\mathbf{S}_{\mathbf{n}}}(\mathbf{m})$ we have

$$\mathbf{H}_{[\mathbf{a}]}(\mathbf{m}) \ = \ \left\{ \mathbf{P} \in \mathbf{QI}_{\mathbf{m}}[\mathbf{X}_{\mathbf{n}}] \ : \ \gamma_{\mathbf{q}}(\mathbf{x},\partial_{\mathbf{x}})\mathbf{P} = \mathbf{0} \quad \forall \ \mathbf{q} \in \mathbf{gr} \, \mathbf{J}_{[\mathbf{a}]} \right\}$$

$$\mathbf{H}_{\mathbf{S}_{\mathbf{n}}}(\mathbf{m}) \ = \ \left\{ \mathbf{P} \in \mathbf{QI}_{\mathbf{m}}[\mathbf{X}_{\mathbf{n}}] \ : \ \gamma_{\mathbf{e}_{\mathbf{i}}}(\mathbf{x}, \partial_{\mathbf{x}})\mathbf{P} = \mathbf{0} \quad \forall \ \mathbf{i} = \mathbf{1}, \mathbf{2}, \dots, \mathbf{n} \right\}$$

Proof

Immediate application of the non-degeneracy of the form.

Proposition 2

$$\mathbf{H}_{[\mathbf{a}]}(\mathbf{m}) \subseteq \mathbf{H}_{\mathbf{S}_{\mathbf{n}}}(\mathbf{m}) \tag{(*)}$$

Proof

Since $\mathbf{e}_{\mathbf{i}}(\mathbf{x}) - \mathbf{e}_{\mathbf{i}}(\mathbf{a}) \in \mathbf{J}_{[\mathbf{a}]}$ then $\mathbf{e}_{\mathbf{i}}(\mathbf{x}) \in \mathbf{gr} \mathbf{J}_{[\mathbf{a}]}$ and (*) follows from Proposition 1.

THE ROLE OF THE DIMENSION BOUND

Theorem

$$\mathbf{dim}\; \mathbf{H}_{\mathbf{S}_{\mathbf{n}}}(\mathbf{m}) \leq \mathbf{n}! \quad \Longrightarrow \quad \mathbf{H}_{[\mathbf{a}]}(\mathbf{m}) = \mathbf{H}_{\mathbf{S}_{\mathbf{n}}}(\mathbf{m})$$

and thus $\mathbf{H}_{\mathbf{S}_{n}}(\mathbf{m})$ carries the left regular representation

Two simple observations

Recall

$$\begin{split} \mathbf{q}(\partial_{\mathbf{x}}) \, &=\, \frac{1}{2^{\mathbf{d}} \mathbf{d}!} \sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{d}} \binom{\mathbf{d}}{\mathbf{k}} \Delta^{\mathbf{d}-\mathbf{k}} \mathbf{q}(\mathbf{x}) \Delta^{\mathbf{k}} \qquad \gamma_{\mathbf{q}}(\mathbf{x},\partial_{\mathbf{x}}) \, =\, \frac{1}{2^{\mathbf{d}} \mathbf{d}!} \sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{d}} \binom{\mathbf{d}}{\mathbf{k}} \mathbf{L}_{\mathbf{m}}^{\mathbf{d}-\mathbf{k}} \mathbf{q}(\mathbf{x}) \mathbf{L}_{\mathbf{m}}^{\mathbf{k}} \\ \mathbf{L}_{\mathbf{m}} \, &=\, \Delta - 2\mathbf{m} \sum_{1 \leq \mathbf{i} < \mathbf{j} \leq \mathbf{n}} \frac{1}{\mathbf{x}_{\mathbf{i}} - \mathbf{x}_{\mathbf{j}}} (\partial_{\mathbf{x}_{\mathbf{i}}} - \partial_{\mathbf{x}_{\mathbf{j}}}) \end{split}$$

It follows that

$$\gamma_{\mathbf{q}}(\mathbf{x}, \partial_{\mathbf{x}}) = \mathbf{q}(\partial_{\mathbf{x}}) + \sum_{|\mathbf{p}| < \mathbf{degree}(\mathbf{q})} \mathbf{c}_{\mathbf{p}}(\mathbf{x}) \; \partial_{\mathbf{x}}^{\mathbf{p}}$$

with $\mathbf{c_p}(\mathbf{x})$ having only the factors $\mathbf{x_i}-\mathbf{x_j}$ in the denominators.

NOTE:

- (1) $c_p(x)$ is OK as long as x is not in one of the reflecting hyperplanes
- (2) the difference $\gamma_{\mathbf{q}}(\mathbf{x}, \partial_{\mathbf{x}}) \mathbf{q}(\partial_{\mathbf{x}})$ is of lower order than $\mathbf{q}(\partial_{\mathbf{x}})$

THE DIMENSION BOUND

Theorem (Feigin-Veselov)

 $\mathbf{dim}\; \mathbf{H_{S_n}(m)} \leq \mathbf{n}!$

Proof

Classical (m = 0) Harmonic theory gives that for every monomial x^p we have

$$\mathbf{x}^{\mathbf{p}} = \sum_{\mathbf{0} \leq \epsilon_{\mathbf{i}} \leq \mathbf{i}-\mathbf{1}} \mathbf{x}^{\epsilon} \mathbf{A}_{\epsilon}(\mathbf{x})$$
 (with $\mathbf{A}_{\epsilon} \in \mathbf{R}^{\mathbf{S}_{\mathbf{n}}}$)

and for any $\mathbf{q}\in \mathbf{H}_{\mathbf{S_n}}(\mathbf{m})$ and any $\mathbf{x^p}$ we can write

$$\partial_{\mathbf{x}}^{\mathbf{p}}\mathbf{q}(\mathbf{x}) = \sum_{\mathbf{0} \le \epsilon_{\mathbf{i}} \le \mathbf{i}-\mathbf{1}} \partial_{\mathbf{x}}^{\epsilon} \gamma_{\mathbf{A}_{\epsilon}}(\mathbf{x}, \partial_{\mathbf{x}})\mathbf{q}(\mathbf{x}) + \sum_{\mathbf{0} \le \epsilon_{\mathbf{i}} \le \mathbf{i}-\mathbf{1}} \partial_{\mathbf{x}}^{\epsilon} \Big(\mathbf{A}_{\epsilon}(\partial_{\mathbf{x}}) - \gamma_{\mathbf{A}}(\mathbf{x}, \partial_{\mathbf{x}})\Big)\mathbf{q}(\mathbf{x})$$
(*)

Since

$$\mathbf{A}_{\epsilon}(\mathbf{x}) = \mathbf{A}_{\epsilon}(\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n})$$

it follows that for any $\mathbf{q} \in \mathbf{H}_{\mathbf{S}_{n}}(\mathbf{m})$ we get

$$\gamma_{\mathbf{A}_{\epsilon}}(\mathbf{x},\partial_{\mathbf{x}})\mathbf{q}(\mathbf{x}) \,=\, \mathbf{A}_{\epsilon}(\mathbf{0})\mathbf{q}(\mathbf{x})$$

so (*) gives for a regular point \mathbf{x}_{o}

$$\partial_{\mathbf{x}}^{\mathbf{p}} \mathbf{q}(\mathbf{x}) \Big|_{\mathbf{x} = \mathbf{x}_{\mathbf{o}}} = \sum_{\mathbf{0} \leq \epsilon_{\mathbf{i}} \leq \mathbf{i} - \mathbf{1}} \mathbf{A}_{\epsilon}(\mathbf{0}) \partial_{\mathbf{x}}^{\epsilon} \mathbf{q}(\mathbf{x}) \Big|_{\mathbf{x} = \mathbf{x}_{\mathbf{o}}} + \cdots \left(\text{lower order derivatives of } \mathbf{q}(\mathbf{x}) \text{ at } \mathbf{x}_{\mathbf{o}} \right)$$

and by induction we get that q(x) is determined by n! derivatives at x_o .

THE HILBERT SERIES LIMIT

Theorem (known more or less)

Let \mathbf{A} be a finitely generated graded algebra and let

 $a_1,a_2,\ldots,a_k\,\in A$

be homogeneous of degrees

 d_1, d_2, \ldots, d_k

and suppose that

 $\dim \mathbf{A}/(\mathbf{a_1},\mathbf{a_2},\ldots,\mathbf{a_k})_\mathbf{A} \leq \mathbf{N}$

with \mathbf{k} minimal. Then

 $lim_{\mathbf{q}\rightarrow^{-1}}\;(1-\mathbf{q^{d_1}})(1-\mathbf{q^{d_2}})\cdots(1-\mathbf{q^{d_2}})F_{\mathbf{A}}=\mathbf{N}$

Implies that A is COHEN-MACAULAY

THE m-QUASI-INVARIANT SANDWICH

Theorem

The Hilbert series of the Ring $\mathbf{QI}_m[\mathbf{X_n}]$ of m-Quasi-Invariants satisfies the coefficient-wise inequalities

$$\frac{\mathbf{q^{2m\binom{n}{2}}}}{(1-q)^n} << F_{\mathbf{QI_m}[\mathbf{X_n}]}(\mathbf{q}) << \frac{1}{(1-q)^n}$$

Thus

$$lim_{q\rightarrow^{-1}}(1-q)(1-q^2)\cdots(1-q^n)F_{\mathbf{QI}_m[\mathbf{X}_n]}(q) \ = \ n!$$

Proof

Every polynomial $\mathbf{P}(\mathbf{x}) \in \mathbb{Q}[\mathbf{X_n}]$ multiplied by

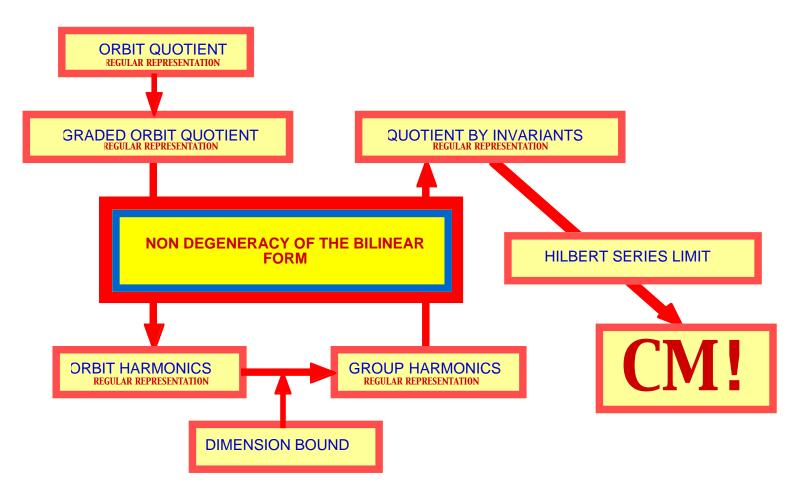
$$\Pi(\mathbf{x})^{\mathbf{2m}} = \prod_{1 \leq \mathbf{r} < \mathbf{s} \leq \mathbf{n}} (\mathbf{x_r} - \mathbf{x_s})^{\mathbf{2m}}$$

gives an m-Quasi-Invariant. In fact for all $1 \leq i < j \leq n$ we have

$$\begin{aligned} (1-s_{ij})P(\mathbf{x})\Pi(\mathbf{x})^{\mathbf{2m}} \,=\, \Pi(\mathbf{x})^{\mathbf{2m}}(1-s_{ij})P(\mathbf{x})\\ \mathbf{QED!} \end{aligned}$$

16

THE PROOF OF COHEN MACAULINESS for m-QUASI-INVARIANTS



REFERENCES

- [1] Yu. Berest, P. Etingof and V. Ginzburg, *Cherednik algebras and differential operators on m-quasi-invariants*, math. QA/011005.
- [2] E. R. Berlekamp, Agebraic Coding Theory, Aegean Park Press (1984) pp. 21-30.
- [3] O. A. Chalykh and A. P. Veselov, *Commutative Rings of Partial Differential Operators and Lie Algebras*, Comm. in Math. Phys. **126** 597-611 (1990).
- [4] P. Etingof and V. Ginzburg, Om m-quasi-invariants of a Coxeter group, arXiv:math.QA/0106175 v1 Jun 2001.
- [5] P. Etingof and E. Strickland, Lectures on quasi-invariants of Coxeter groups and the Cherednik algebra, arXiv:math.QA/0204104 v1 9 Apr 2002.
- [6] G. Felder and A. P. Veselov, Action of Coxeter Groups on m-harmonic Polynomials and KZ equations arXiv:math.QA/0108012 v2 3 Oct 2001.
- [7] M. Feigin and A. P. Veselov, *Quasi-invariants of Coxeter groups and m-harmonmic polynomials*, arXiv:math-ph/0105014 v1 11 May 2001.
- [8] A. P. Veselov, K.L. Styrkas and O. A. Chalykh, Algebraic integrability for the Schrödinger equation and finite reflection groups, (translated from Teo. i Math. Fizika, Vol 94 No 2 pp 253-275)