## Some Problems and Conjectures

in the

[manipulatorial)
Theory of Macdonald Polynomials

## Notation



$$
\mathrm{B}_{\mu}(\mathrm{q}, \mathrm{t})=\sum_{\mathrm{c} \in \mu} \mathrm{t}^{\mathbf{1}^{\prime}(\mathrm{c})} \mathrm{q}^{\mathrm{a}^{\prime}(\mathrm{c})}
$$

$$
\begin{array}{|l|l|}
\hline \begin{array}{ll}
3 & \\
\hline
\end{array} & \\
\hline 2 & 2 \\
\hline 1 & 1 \\
\hline 0 & 0
\end{array} \quad \mathrm{D}_{\mu}=(1-\mathrm{t})(1-\mathrm{q}) \mathrm{B}_{\mu}(\mathrm{q}, \mathrm{t})-1
$$

## Preliminaries

The Macdonald polynomials we workwith here are those whose Schur function expansion is

$$
\tilde{H}_{\mu}(x ; q, t)=\sum_{\lambda} S_{\lambda}(x) \tilde{K}_{\lambda, \mu}(q, t)
$$

where

$$
\tilde{\mathbf{K}}_{\lambda_{\mu}}(\mathbf{q}, \mathbf{t})=\mathbf{t}^{\mathbf{n}(\mu)} \mathbf{K}_{\lambda \mu}(\mathbf{q}, 1 / \mathbf{t})
$$

with $\mathrm{K}_{\lambda_{\mu}}(\mathbf{q}, \mathrm{t})$ the Macdonald $\mathrm{q}, \mathrm{t}$-Kostka coefficient.

$$
\begin{aligned}
& \tilde{H}_{[3,2]}(x ; q, t)=s_{5}+s_{4,1}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]+s_{3,2}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]+s_{3,1,1 q}\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]+ \\
& +s_{2,2,1} q\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]+s_{2,1,1,1} t q^{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]+s_{1,1,1,1,1} \quad t^{2} q^{4} \\
& t^{2} q^{3}\left(a+b q+c q^{2}+d t+e t q+f t^{2}\right) \Rightarrow t^{2} q^{3}\left(\begin{array}{lll}
f & 0 & 0 \\
d & e & 0 \\
a & b & c
\end{array}\right) \text { next }
\end{aligned}
$$

## The Dual Pieri Rule

$$
\partial_{p_{1}} \tilde{H}_{\mu}(x ; q, t)=\sum c_{\mu \nu}(q, t) \tilde{H}_{\nu}(x ; q, t)
$$

with

$$
c_{\mu \nu}(q, t)=\prod_{s \in \mathcal{R}_{\mu / \nu}} \frac{t^{l_{\mu}(s)}-q^{a_{\mu}(s)+1}}{t^{l} \mu_{\mu}(s)}-q^{a_{\mu}(s)} \prod_{s \in \mathcal{C}_{\mu / \nu}} \frac{q^{a_{\mu}(s)}-t^{l_{\mu}(s)+1}}{q^{a_{\mu}(s)}-t^{l}{ }^{j}(s)}
$$

We have a combinatorial proof that $\sum_{\nu \rightarrow \mu} \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathbf{t})=\mathbf{B}_{\mu}(\mathbf{q}, \mathbf{t})$


We have a purely combinatorial description of the polynomial
solutions of the recurrence

$$
\mathbf{B}_{\mathbf{k}}(\mathbf{q}, \mathbf{t})=\sum_{\nu \rightarrow \omega} \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathbf{t}) \mathbf{B}_{\mathbf{k}-\mathbf{1}}(\mathbf{q}, \mathbf{t}) \quad\left(\mathbf{B}_{\mathbf{0}}(\mathbf{q}, \mathbf{t})=\mathbf{B}(\mathbf{q}, \mathbf{t})\right)
$$

## Problem

Give a combinatorial proof. More generally explain combinatorially why so many recurrences involving these dual Pieri coefficients have integral polynomial solutions.

## NABLA

$$
\begin{aligned}
& \nabla \tilde{H}_{\mu}=T_{\mu} \tilde{H}_{\mu} \\
& \text { S4 } \quad \text { S31 } \\
& \text { S22 } \\
& \text { S211 } \\
& \nabla \mathrm{S} 4 \\
& -t^{3} q^{3} \\
& -t^{3} q^{3}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& -t^{3} q^{3}\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \\
& \nabla \mathbf{S} 31 \rightarrow \quad 0 \quad t^{2} q^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad t^{2} q^{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& t^{2} q^{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& \nabla \mathbf{S} 22 \rightarrow \quad 0 \quad-t^{2} q^{2} \\
& 0 \\
& \nabla \mathbf{S} 211 \rightarrow \quad 0 \quad-t q\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-t q\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& -t q\left(\begin{array}{llll|l}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

## Totally positive or totally negative

## Conjecture I

For any pair of partitions $\lambda, \mu$ and for a every positive integer m we have

$$
(-1)^{b\left(\lambda^{\prime}\right)}\left\langle\nabla S_{\lambda}, S_{\mu}\right\rangle \in N[q, t]
$$

(*)
with $\langle$,$\rangle the Hall inner product and$

$$
b(\lambda)=\binom{\mathbf{l}(\lambda)}{2}+\sum_{\lambda_{\mathbf{i}}<(\mathbf{i}-\mathbf{1})}\left(\mathbf{i}-1-\lambda_{\mathbf{i}}\right)
$$

The sign in (*) wasidentified by M. Bousquet-Mefou who gave a combinatorial interpretation to the left hand side of $\left({ }^{*}\right)$, for $\mathrm{m}=1$ and $\mu=1^{\mathrm{n}}$.

Note for $\lambda=1^{\mathbf{n}}\left(^{*}\right)$ is a corollary of a general result of Mark Haiman.

Conjecture II (A. Lascoux)
For any partitions $\lambda, \mu$ we have

$$
(-1)^{|\mu|-l(\mu)}\left\langle\nabla \tilde{H}_{\mu}(x ; 0, t), S_{\lambda}(x)\right\rangle \in \mathbf{N}[q, t]
$$

## NABLA at $\mathrm{t}=1$

$$
\begin{align*}
& \tilde{\nabla} \tilde{h}_{m}\left[\frac{X}{1-q}\right]=q^{\left(\frac{m}{2}\right)} h_{m}\left[\frac{X}{1-q}\right]  \tag{1}\\
& \tilde{\nabla}(F(x) \times G(x))=\tilde{\nabla} F(x) \times \tilde{\nabla} G(x) \tag{2}
\end{align*}
$$

$$
\left.T_{\mu}\right|_{t=1}=\prod_{i=1}^{l(\mu)} q^{\left(\mu_{i}\right)}
$$

$$
\begin{aligned}
& \tilde{H}_{\mu}(x ; q, 1)=\prod_{i=1}^{l(\mu)}(1-q) \cdots\left(1-q^{\mu_{i}}\right) h_{\mu_{i}}\left[\frac{X}{1-q}\right] \\
& \tilde{\nabla} \tilde{H}_{\mu}(x ; q, 1)=\prod_{i=1}^{l(\mu)}(1-q) \cdots\left(1-q^{\mu_{i}}\right) q^{\left(\mu_{i}\right)} h_{\mu_{i}}\left[\frac{X}{1-q}\right]
\end{aligned}
$$

## What is known

Theorem(M. Haiman)

$$
\begin{aligned}
& \text { For all } \mu \\
& \qquad\left\langle\nabla \mathbf{e}_{\mathbf{n}}, \mathbf{S}_{\mu}\right\rangle \in \mathbf{N}[\mathbf{q}, \mathbf{t}]
\end{aligned}
$$

Theorem(C.Lennart)
For all $\lambda, \mu$

$$
(-\mathbf{1})^{\mathbf{b}(\lambda)}\left\langle\tilde{\nabla} \mathbf{S}_{\lambda}, \mathbf{S}_{\mu}\right\rangle \in \mathbf{N}[\mathbf{q}, \mathbf{t}]
$$

Note Jacobi-Trudi plus multiplicativity gives

$$
\tilde{\nabla} \mathbf{S}_{\lambda}=\operatorname{det}\left\|\tilde{\nabla} \mathbf{e}_{\lambda_{\mathbf{i}}^{\prime}+\mathbf{j}-\mathbf{i}}\right\|_{\mathbf{i}, \mathbf{j}}
$$

( Lennart and Bousquet-Melou use this to prove their result)

## PROBLEM: Nabla "Lagrange inverts" what?

## Theorem

At $t=1$
The formal series
is the $q$-Lagrange inverse of the series

$$
F(z)=\sum_{n \geq 1} F_{n} z^{n}=\frac{z}{E(z)} \quad\left(E(z)=\sum_{n>0} e_{n}(x) z^{n}\right) .
$$

More precisely we show that $\quad \sum_{\mathrm{n} \geq 1} \mathbf{F}_{\mathrm{n}} \mathbf{f}(\mathbf{z}) \mathbf{f}(\mathbf{z q}) \cdots \mathbf{f}\left(\mathbf{z q}^{\mathrm{n}-1}\right)=\mathrm{z}$.
What if $t=1 / q$ ?

$$
\begin{gathered}
f(z)=\left.z \sum_{n>0} q^{\left(\frac{n}{2}\right)} \nabla e_{n}\right|_{t=1 / q} z^{n} \\
\left.q^{\left(\frac{n}{2}\right)} \nabla e_{n}\right|_{t=1 / q}=\frac{e_{n}\left[X\left(1+q+\cdots+q^{n}\right)\right]}{1+q+\cdots+q^{n}}=\left.\frac{1}{1+q+\cdots+q^{n}} R(z) R(z q) \cdots R\left(z q^{n}\right)\right|_{z^{n}}
\end{gathered}
$$

$$
R(z)=\sum_{m \geq 0} e_{m}(x) z^{n}
$$

$$
f(z)=\left.z \sum_{n \geq 0} \frac{1}{1+q+\cdots+q^{n}} R(z) R(z q) \cdots R\left(z q^{n}\right)\right|_{z^{n}}
$$

## NABLA AND PARKING FUNCTIONS



$$
\tilde{\nabla} e_{n}=\sum_{D \in \mathcal{D}_{n}} q^{a(D)} \prod_{i=1}^{n} e_{\alpha_{i}(D)}(x)
$$

$\tilde{\nabla} \mathrm{e}_{\mathrm{n}}$ is a q-analogue of the Frobenius characteristic of a
sign twisted version of the action of $S_{n}$ on parking functions

## Two Important Operators to be further explored

$D_{k} F[X]=\left.F\left[X+\frac{(1-t)(1-q)}{z}\right] \sum_{m \geq 0}(-z)^{m} e_{m}[X]\right|_{\mathbf{z}^{k}}$

$$
D_{k}^{*} F[X]=\left.F\left[X-\frac{(1-1 / t)(1-1 / \mathbf{q})}{z}\right] \sum_{\mathrm{m}>0} z^{m} \mathbf{h}_{\mathrm{m}}[\mathbf{X}]\right|_{\mathbf{z}^{\mathrm{k}}} .
$$

(iv)

$$
\begin{align*}
& \mathrm{D}_{0} \tilde{\mathbf{H}}_{\mu}=-\mathbf{D}_{\mu}(\mathbf{q}, \mathbf{t}) \tilde{\mathbf{H}}_{\mu} \quad,  \tag{i}\\
& \text { (i) }{ }^{*} \quad \mathbf{D}_{0}^{*} \tilde{\mathbf{H}}_{\mu}=-\mathbf{D}_{\mu}(\mathbf{1} / \mathbf{q}, \mathbf{1} / \mathbf{t}) \tilde{\mathbf{H}}_{\mu} \\
& \mathrm{D}_{\mathrm{k}} \underline{\mathrm{e}}_{1}-\underline{\mathrm{e}}_{\mathrm{i}} \mathrm{D}_{\mathrm{k}}=\mathrm{M} \mathrm{D}_{\mathrm{k}+1}  \tag{ii}\\
& \nabla \underline{e}_{1} \nabla^{-1}=-D_{1}  \tag{iii}\\
& \mathrm{D}_{\mathrm{k}}^{*} \underline{\mathrm{e}}_{1}-\underline{\mathrm{e}}_{1} \mathrm{D}_{\mathrm{k}}^{*}=-\widetilde{\mathrm{M}} \mathrm{D}_{\mathrm{k}+1}^{*}  \tag{ii}\\
& \nabla^{-1} \partial_{1} \nabla=\frac{1}{\mathrm{M}} \mathrm{D}_{-1} \\
& (i v)^{*} \\
& \nabla \mathrm{D}_{1}^{*} \nabla^{-1}=\underline{e}_{1} \\
& \mathbf{M}=(\mathbf{1}-\mathbf{t})(\mathbf{1}-\mathbf{q}), \quad \widetilde{\mathbf{M}}=(\mathbf{1}-\mathbf{1} / \mathbf{t})(\mathbf{1}-/ \mathbf{q})
\end{align*}
$$

For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}, 1^{a}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{s} \geq 2$ and $a \geq 0$ set

$$
\begin{aligned}
& W_{\lambda}[X ; q, t]=\underline{e}_{1}^{a} D_{1}^{*} \underline{e}_{1}^{\lambda_{1}-1} D_{1}^{*} \underline{e}_{1}^{\lambda_{2}-1} \cdots D_{1}^{*} \underline{e}_{1}^{\lambda_{0}-1} \\
& U_{\lambda}[X ; q, t]=D_{1}^{a} \underline{e}_{1} D_{1}^{\lambda_{1}-1} \underline{e}_{1} D_{1}^{\lambda_{2}-1} \cdots \underline{e}_{1} D_{1}^{\lambda_{0}-1} 1
\end{aligned}
$$

Theorem
The operator $\nabla$ may be computed from the identity

$$
\nabla W_{\lambda}[X ; q, t]=(-1)^{a+\sum_{i=1}^{0}\left(\lambda_{i}-1\right)} U_{\lambda}[X ; q, t]
$$

## Lattice Polynomials

| $(2,0)$ | $(2,1)$ | $(2,2)$ | $(2,3)$ |
| :--- | :--- | :--- | :--- |
| $(1,0)$ | $(1,1)$ | $(1,2)$ | $(1,3)$ |
| $(0,0)$ | $(0,1)$ | $(0,2)$ | $(0,3)$ |

$$
\begin{aligned}
\mathbf{L} & =\{(0,2),(0,3),(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{2}),(2,3)\} \\
\boldsymbol{\Delta}_{\mathbf{L}} & =\operatorname{det}\left(\begin{array}{ccccc}
y_{1}^{2} & y_{2}^{2} & y_{3}^{2} & y_{4}^{2} & y_{5}^{2} \\
y_{1}^{3} & y_{2}^{3} & y_{3}^{3} & y_{4}^{3} & y_{5}^{3} \\
x_{1} y_{1} & x_{2} y_{2} & x_{3} y_{3} & x_{4} y_{4} & x_{4} y_{5} \\
x_{1} y_{1}^{2} & x_{2} y_{2}^{2} & x_{3} y_{3}^{2} & x_{4} y_{4}^{2} & x_{4} y_{5}^{2} \\
x_{1}^{2} y_{1}^{3} & x_{2}^{2} y_{2}^{3} & x_{3}^{2} y_{3}^{3} & x_{4}^{2} y_{4}^{3} & x_{5}^{2} y_{5}^{3}
\end{array}\right)
\end{aligned}
$$

More generally if

$$
\begin{aligned}
& \mathrm{L}=\left\{\left(\mathbf{p}_{1}, \mathbf{q}_{1}\right),\left(\mathbf{p}_{2}, \mathbf{q}_{2}\right), \ldots,\left(\mathbf{p}_{\mathrm{n}}, \mathbf{q}_{\mathrm{n}}\right)\right\} \\
& \Delta_{L}[X, Y]=\left\|x_{i}^{p_{j}} y_{i}^{q_{j}}\right\|_{i, j=1}^{n}
\end{aligned}
$$

## The Corresponding $S_{n}$ Modules

## $\mathbf{M}_{\mathbf{L}}=\mathcal{L}\left[\partial_{\mathbf{x}}^{\mathbf{p}} \partial_{\mathbf{y}}^{\mathbf{q}} \boldsymbol{\Delta}_{\mathbf{J}}[\mathbf{X}, \mathbf{Y}]\right]$

## Definition

A Lattice diagram with $n$ cells will be called "regular" if the corresponding module is a multiple of the regular representation of $S_{n}$.

Theorem (Mark Haiman)
Every Ferrers diagram is regular and its bigraded Frobenius
characteristic is

$$
\tilde{\mathbf{H}}_{\mu}(\mathbf{x} ; \mathbf{q}, \mathbf{t})
$$

## Corollary

The diagram $\mu / 00$ obtained by removing the 00 cell from a Ferrers diagram of a partition $\mu \vdash n+1$ is regular and its bigraded Frobenius characteristic is

$$
\partial_{\mathbf{P}_{\mathbf{1}}} \tilde{\mathbf{H}}_{\mu}(\mathbf{x} ; \mathbf{q}, \mathbf{t})
$$

## Pierced Diagrams



The shadow of the cell ( $\mathrm{i}, \mathrm{j}$ )
Conjecture III (Francois and Nantel)
For $\mu \vdash n+1$ the lattice diagram $\mu / i j$ is always regular and the module $\mathbf{M}_{\mu / i j}$ affords as many copies of the regular representation of $S_{n}$ as there are cells in the shadow of $(i, j)$


A Macdonald dual Pieri rule


$$
+c_{2}(q, t)
$$


$+c_{3}(q, t)$


The hole propagates to one of the corners in its shadow!!

## The action of the operators

$$
D_{x}=\sum_{i=1}^{n} \partial_{x_{i}} \uparrow \quad D_{y}=\sum_{i=1}^{n} \partial_{y_{i}} \Rightarrow
$$

THE CASE OF $(\mathbf{4}, \mathbf{3}, \mathbf{1})$


## THE CHARACTERISTIC OF PIERCED FERRERS MODULES

## Conjecture IV

Denoting by $\mathbf{C}_{\mu / \mathbf{j}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})$ the characteristic of $\mathbf{M}_{\mu / \mathbf{i j}}$, we have

$$
\mathbf{C}_{\mu / \mathbf{i j}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\sum_{\rho \rightarrow \tau} \mathbf{c}_{\tau \rho}(\mathbf{q}, \mathbf{t}) \tilde{\mathbf{H}}_{\mu-\tau+\rho}(\mathbf{x} ; \mathbf{q}, \mathbf{t}) \quad(*)
$$

Where $\tau$ denotes the partition corresponang to the snadow of $(\mathbf{i}, \mathbf{j})$ and the symbol " $\mu-\tau+\rho$ " is to represent replacing $\tau$ by $\rho$ in the shadow of $(i, j)$.

## Theorem

Equation (*) above is equivalent to the four term recursion

$$
\mathrm{C}_{\mu / \mathrm{ij}}=\frac{\mathbf{t}^{\mathbf{1}}-\mathbf{q}^{\mathbf{a}+\mathbf{1}}}{\mathbf{t}^{\mathbf{1}}-\mathbf{q}^{\mathbf{a}}} \mathbf{C}_{\mu / \mathbf{i}, \mathbf{j}+\mathbf{1}}+\frac{\mathbf{t}^{\mathbf{l}+\mathbf{1}}-\mathbf{q}^{\mathbf{a}}}{\mathbf{t}^{1}-\mathbf{q}^{\mathbf{a}}} \mathrm{C}_{\mu / \mathbf{i}+\mathbf{1}, \mathbf{j}}-\frac{\mathbf{t}^{\mathbf{1 + 1}}-\mathbf{q}^{\mathbf{a}+\mathbf{1}}}{\mathbf{t}^{1}-\mathbf{q}^{\mathbf{a}}} \mathrm{C}_{\mu / \mathbf{i}+\mathbf{1}, \mathbf{j}+1},
$$

with $l$ and $a$ the Ieg an arm of $(i, j)$ in $\mu$

## KERNELS AND ATOMS

Let $\mathbf{K}_{i j}^{\infty}$ denote the kernel of the operator $\mathbf{D}_{\mathbf{x}}$ as a map of $\mathbf{M}_{i j}$ onto $\mathbf{M}_{i+1, j}$. Similarly, let $\mathbf{K}_{i j}^{y}$ be the kernel of $\mathbf{D}_{\mathbf{y}}$ as a map of $\mathbf{M}_{i j}$ onto $\mathbf{M}_{i, j+1}$.
Note we have

$$
\mathbf{K}_{i, j+1}^{\infty} \subseteq \mathbf{K}_{i j}^{\infty} \quad \text { as well as } \quad \mathbf{K}_{i+1, j}^{y} \subseteq \mathbf{K}_{i j}^{y}
$$

Set

$$
\mathbf{A}_{i j}^{\infty}=\mathbf{K}_{i j}^{\infty} / \mathbf{K}_{i, j+1}^{\infty} \quad \text { and } \quad \mathbf{A}_{i j}^{y}=\mathbf{K}_{i j}^{y} / \mathbf{K}_{i+1, j}^{y}
$$

and let $A_{i j}^{\infty}$ and $A_{i i}^{y}$ denote their respective Frobenius characteristics.

## Proposition

$$
\mathbf{K}_{\mathbf{i j}}^{\mathbf{x}}=\mathrm{C}_{\mu / \mathrm{ij}}-\mathbf{t} \mathrm{C}_{\mu / \mathrm{i}+1 \mathrm{j}} \quad \text { and } \quad \mathrm{K}_{\mathrm{ij}}^{\mathrm{y}}=\mathrm{C}_{\mu / \mathrm{ij}}-\mathbf{q} \mathrm{C}_{\mu / \mathrm{i}+1}
$$

and

$$
A_{i j}^{\mathrm{x}}=\mathrm{K}_{\mathrm{ij}}^{\mathrm{x}}-\mathrm{K}_{\mathrm{ij}+1}^{\mathrm{x}} \quad \text { and } \quad \mathrm{A}_{\mathrm{ij}}^{\mathrm{y}}=\mathrm{K}_{\mathrm{ij}}^{\mathrm{y}}-\mathrm{K}_{\mathrm{i}+1 \mathrm{j}}^{\mathrm{y}}
$$

In particular the four term recurrence may be rewritten in the simple form

$$
\mathbf{t}^{1} A_{i \mathrm{j}}^{\mathrm{x}}=\mathrm{q}^{\mathrm{a}} \mathrm{~A}_{\mathrm{ij}}^{\mathrm{y}}
$$

## Computing Atoms for the Ferrers Diagram of a $\mu \vdash \mathbf{n}+\mathbf{1}$

(1) Decompose $\mu$ into rectangles since (up to a scalar) atoms do not vary within a rectangle

(2) Atoms have explicit expressions in terms of the Macdonald polynomials indexed by partitions obtained from $\mu$. by removing one of the corners in the shadow of the atom.

For the Atom $\mathbf{A}_{00}$ for $\mu=[3,2]$ the formula is

$$
\begin{aligned}
\mathbf{A}_{00}=\mathbf{c}_{32,31} \tilde{\mathbf{H}}_{31}+\mathbf{c}_{32,22} \tilde{\mathbf{H}}_{22}-\left(\mathbf{c}_{21,11} \tilde{\mathbf{H}}_{22}+\mathbf{c}_{21,2} \tilde{\mathbf{H}}_{31}-\mathbf{t} \tilde{\mathbf{H}}_{31}\right) \\
=\frac{1-\mathbf{q}}{\mathbf{t}-\mathbf{q}} \tilde{\mathbf{H}}_{22}+\frac{\mathbf{t}-1}{\mathbf{t}-\mathbf{q}} \tilde{\mathbf{H}}_{31}
\end{aligned}
$$



For the Atom $\mathbf{A}_{\mathbf{1 0}}$ for $\mu=[3,2,1]$ the formula is
$\mathbf{A}_{10}=\mathbf{c}_{21,11} \tilde{\mathbf{H}}_{311}+\mathbf{c}_{21,2} \tilde{\mathbf{H}}_{32}-\mathbf{t} \tilde{\mathbf{H}}_{32}-\tilde{\mathbf{H}}_{311}$

$$
=\frac{\mathbf{1}-\mathbf{q}}{\mathbf{t}-\mathbf{q}} \tilde{\mathbf{H}}_{311}+\frac{\mathbf{t}-\mathbf{1}}{\mathbf{t}-\mathbf{q}} \tilde{\mathbf{H}}_{32}
$$



## Gistol Polynomials

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

| (0) | $\mathrm{G}_{\mathrm{D}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathbf{x} ; \mathbf{q}, \mathbf{t}) \quad$ if D is the diagram of |
| :---: | :---: |
| (1) | $\mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad$ if $\quad \mathrm{D}_{1} \approx \mathrm{D}_{2}$ |
| (2) | $\mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{t}, \mathbf{q}) \quad$ if $\quad \mathrm{D}_{2} \approx \mathrm{D}_{1}^{\prime}$ |
| (3) | $\mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \quad$ if $\quad \mathrm{D} \approx \mathrm{D}_{\mathbf{1}} \times \mathrm{D}_{2}$ |
| (4) | $\partial_{\mathrm{P} \mathbf{1}} \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\sum \mathrm{w}_{\mathrm{s}, \mathrm{D}}(\mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D} / \mathrm{s}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})$, |
|  | D |

Representation theoretical reasons suggest that, in the case that D is a skew diagram,
a) $\mathrm{w}_{1}[\mathrm{~s}, \mathrm{D}]=\mathbf{t}^{\mathrm{l}_{\mathrm{D}}(\mathrm{s})} \mathbf{q}^{\mathrm{a}_{\mathrm{D}}(\mathrm{s})}$
and
b) $\quad \mathrm{w}_{2}[\mathrm{~s}, \mathrm{D}]=\mathbf{t}^{\mathrm{l}_{\mathrm{D}}^{\prime}(\mathrm{s})} \mathbf{q}^{\mathrm{ad}(\mathrm{s})}$

Note: these properties overdetermine the family $\left\{\mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})\right\}_{\mathrm{D}}$, existence is by no means guaranteed.

## A Problem and a Conjecture

## Problem

Construct a family of polynomials indexed by gistols that satisfies the gistol "axioms"

## Conjecture

Gistol polynomials are Schur positive integral in $\mathbf{q}, \mathrm{t}$.


$$
s_{4}+3 s_{3,1}+2 s_{2,2}+3 s_{2,1,1}+s_{1,1,1,1}
$$

## More on Gistols

It is a cute exercise to show that for any skew Diagram D we have

$$
\sum_{c \in D} t^{l(c)} q^{a^{\prime}(c)}=\sum_{c \in D} t^{l^{\prime}(c)} q^{a(c)}
$$

It follows from this that Gistol Polynomials should be characteristics of left regular representations. In other words, for all gistols with $\mathbf{n}$ cells we have

$$
\left.\mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})\right|_{\mathrm{t}=\mathbf{q}=1}=\mathrm{e}_{1}^{\mathrm{n}}
$$

## Problem 1:

Define the bigraded modules whose Frobenius characterstics are given by Gistol polynomials

## Problem 2:

Find by a combinatorial construction a family of polynomials which satisfies the Gistol "axioms"


A family of gistols is "complete" if it is closed under nemoval of cells


Closed families are "pistols", "ribbons", "down-one-ribbons", "right-one-ribbons", etc Some facts:
(1) In previous work we gave a construction of a family of pistol polynomials that satisfies the gistol axioms.
(2) Jason Bandlow showed that pistol as well as down-one ribbons can be constructed by an extension of the Jim Kaglund statistics.
(9) Curiously, the right-one ribbons do not carry the Haglund statistics. next


Computing Gistol Polynomials

$\partial_{p_{1}} \square_{\square}=(1+t) \square \square+t^{2} \square_{\square}+q \boxminus+q^{2} \square_{\square}+t \square_{\square}$

$$
\partial_{p_{1}} \square_{\square}=t(1+t) \square+q^{2} \square_{\square}+q \boxminus+t \square_{\square}+\square_{\square}
$$

$$
\square=\frac{t^{2}-q^{2}}{t^{2}-1} \boxminus \times \square+\frac{q^{2}-t}{t^{2}-1} \boxminus \times \square+\frac{t-1}{t^{2}-1} \boxminus \square
$$

$$
\square \times \square=\frac{(1-t)\left(q-t^{3}\right)}{(q-t)\left(q^{2}-t^{3}\right)} \boxminus \square+\frac{\left(1-t^{2}\right)(q-1)}{\left(q-t^{2}\right)(q-t)} \square+\frac{(q-1)\left(q^{2}-t^{2}\right)}{\left(q-t^{2}\right)\left(q^{2}-t^{3}\right)} \boxminus
$$

$$
\boxminus \times \square=\frac{\left(1-t^{2}\right)(1-t)}{\left(q^{2}-t^{2}\right)(q-t)} \square+\frac{\left(1-t^{2}\right)(q-1)\left(q-t^{2}\right)}{(q-t)^{2}\left(q^{2}-t^{3}\right)} \square_{\square}
$$

$$
+\frac{\left(1-t^{2}\right)(q-1)\left(q^{2}-t\right)}{\left(q-t^{2}\right)(q-t)\left(q^{2}-t^{2}\right)} \square+\frac{(q-1)\left(q^{2}-t\right)}{\left(q-t^{2}\right)\left(q^{2}-t^{3}\right)} \boxminus
$$

$$
\square=\frac{(1-t)}{(q-t)} \square+\frac{(q-1)}{(q-t)} \square \square
$$

## Yet another surprise

$$
\begin{aligned}
& \square=\frac{q-t^{2}}{1-t^{2}} \boxminus+\frac{t-q}{1-t^{2}} \boxminus+\frac{1-t}{1-t^{2}} \boxminus \\
& \boxminus=\frac{(1-t)\left(1-t^{2}\right)}{(q-t)\left(q-t^{2}\right)} \boxminus+\frac{(1-t)(q-1)(1+t)^{2}}{(q-t)\left(q-t^{3}\right)} \boxminus+\frac{(q-t)(q-1)}{\left(q-t^{2}\right)\left(q-t^{3}\right)} \boxminus \\
& 母=\frac{t^{3}-1}{t^{3}-q} \boxminus+\frac{1-q}{t^{3}-q} \sharp . \\
& \square=\frac{1-t}{q-t} \square+\frac{q-1}{q-t} \square \\
& \square=\frac{(1-q)}{(t-q)} \square+\frac{(t-1)}{(t-q)} \square \square
\end{aligned}
$$

The Atom!!!!

## Everybody heard about the n! conjecture

## oops!!! Theorem!!!!!

## But did you hear about the $n!/ k$ conjecture?

Let $\mu \models \mathbf{n}+1$ be ak comer partition and

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}
$$

be the partitions obtained by removing one of the corners of $\mu$

Conjecture:

$$
\operatorname{dim}\left(\mathbf{M}_{\alpha_{1}} \cap \mathbf{M}_{\alpha_{2}} \cap \cdots \cap \mathbf{M}_{\alpha_{k}}\right)=\frac{n!}{k}
$$

## Science Fiction?

$$
\operatorname{Flip}_{\alpha} \mathbf{M}=\left\{b\left(\partial_{x}, \partial_{y}\right) \Delta_{\alpha}(x, y): b(x, y) \in \mathbf{M}\right\}
$$

## Theorem

If M is a submodule of $\mathrm{M}_{\alpha}$ with Frobenius characteristic $\Phi_{\mathrm{M}}(\mathbf{x} ; \mathbf{q}, \mathrm{t})$
then Flip $_{\alpha} \mathrm{M}$ has Frobenius characteristic

$$
\mathbf{T}_{\alpha} \omega \Phi_{\mathbf{M}}\left(\mathbf{x} ; \frac{\mathbf{1}}{\mathbf{q}}, \frac{\mathbf{1}}{\mathbf{t}}\right)
$$

Let $\alpha, \beta, \gamma$ be the three partitions obtained by removing a corner from a three corner partition.

As a result the Frobenius chamateristics of each of these intersection submodules can be explicitely expressed in terms of the Macdonald polynomials

$$
\tilde{\mathrm{H}}_{\alpha}(\mathbf{x} ; \mathbf{q} ; \mathbf{t}), \tilde{\mathrm{H}}_{\beta}(\mathbf{x} ; \mathbf{q}, \mathbf{t}), \tilde{\mathrm{H}}_{\gamma}(\mathbf{x} ; \mathbf{q}, \mathbf{t})
$$



| ( |
| :--- |


| ( |
| :--- |


| ( |
| :--- |

