Hilbert series of Invariants and

Constant Term Identities

Garsia -Musiker-Wallach-Xin-Zabrocki

The action of a matrix on a polynomial

$$
\begin{gathered}
\text { For } \mathbf{A}=\left\|\mathrm{a}_{\mathbf{i}, \mathbf{j}}\right\|_{\mathrm{i}, \mathbf{j}=1}^{\mathbf{n}} \text { and } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \text { we set } \\
\qquad \mathbf{T}_{\mathbf{A}} \mathbf{P}(\mathrm{x})=\mathbf{P}(\mathrm{xA})
\end{gathered}
$$

Example

$$
\begin{gathered}
A=\left[\begin{array}{ll}
\mathbf{a}_{1,1} & \mathbf{a}_{1,2} \\
\mathbf{a}_{2,1} & \mathbf{a}_{2,2}
\end{array}\right] \\
\mathbf{T}_{\mathbf{A}} \mathbf{x}_{1}^{\mathrm{p}_{1}} \mathbf{x}_{2}^{\mathrm{p}_{2}}=\left(\mathrm{x}_{1} \mathbf{a}_{1,1}+\mathrm{x}_{2} \mathbf{a}_{2,1}\right)^{\mathrm{P}_{1}}\left(\mathrm{x}_{1} \mathbf{a}_{1,2}+\mathrm{x}_{2} \mathbf{a}_{2,2}\right)^{\mathrm{P}_{2}}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[>\operatorname{expo}\left(x[1]^{\wedge} 2 * x[2]^{\wedge} 3\right) ;\right.} \\
& \left(x_{1} a_{1,1}+x_{2} a_{2,1}\right)^{2}\left(x_{1} a_{1,2}+x_{2} a_{2,2}\right)^{3} \\
& >\text { expand ("); } \\
& x_{1}^{5} a_{1,1}^{2} a_{1,2}^{3}+3 x_{1}^{4} a_{1,1}^{2} a_{1,2}^{2} x_{2} a_{2,2}+3 x_{1}^{3} a_{1,1}^{2} a_{1,2} x_{2}^{2} a_{2,2}^{2}+x_{1}^{2} a_{1,1}^{2} x_{2}^{3} a_{2,2}^{3} \\
& +2 x_{1}^{4} a_{1,1} x_{2} a_{2,1} a_{1,2}^{3}+6 x_{1}^{3} a_{1,1} x_{2}^{2} a_{2,1} a_{1,2}^{2} a_{2,2}+6 x_{1}^{2} a_{1,1} x_{2}^{3} a_{2,1} a_{1,2} a_{2,2}^{2} \\
& +2 x_{1} a_{1,1} x_{2}^{4} a_{2,1} a_{2,2}^{3}+x_{2}^{2} a_{2,1}^{2} x_{1}^{3} a_{1,2}^{3}+3 x_{2}^{3} a_{2,1}^{2} x_{1}^{2} a_{1,2}^{2} a_{2,2} \\
& +3 x_{2}{ }^{4} a_{2,1}{ }^{2} x_{1} a_{1,2} a_{2,2}^{2}+x_{2}{ }^{5} a_{2,1}{ }^{2} a_{2,2}{ }^{3}
\end{aligned}
$$

Hilbert series of Invariants

Let G be a group of $\mathbf{n} \times \mathbf{n}$ matrices.

Recall that for $P(x)=P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
a polynomial in $R=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $M \in G$ we set

$$
\mathrm{T}_{\mathrm{M}} \mathrm{P}(\mathrm{x})=\mathrm{P}(\mathrm{xM})
$$

then

$$
\mathbf{R}^{\mathrm{G}}=\left\{\mathbf{P} \in \mathbf{R}: \mathbf{T}_{\mathrm{M}} \mathbf{P}(\mathrm{x})=\mathbf{P}(\mathrm{x}) \quad \forall \quad \mathbf{M} \in \mathbf{G}\right\}
$$

We let $\mathcal{H}_{\mathrm{m}}\left(\mathrm{R}^{\mathrm{G}}\right)$ denote the subspace of G -invariants
that are homogeneous of degree m and set

$$
\mathrm{F}_{\mathbf{R}^{\mathrm{G}}}(\mathbf{q})=\sum_{\mathrm{m} \geq 0} \mathrm{q}^{\mathrm{m}} \operatorname{dim} \mathcal{H}_{\mathrm{m}}\left(\mathbf{R}^{\mathrm{G}}\right)
$$

A basic result of invariant Theory

Theorem

For any group G with a finite invariant measure in particular for any finite group we can always construct homogeneous polynomials $\theta_{1}, \theta_{2}, \ldots, \theta_{n} ; \phi_{1}, \phi_{2}, \ldots, \phi_{k} \in \mathbf{R}^{\mathbf{G}}$ such that every invariant \mathbf{P} has an expansion of the form

$$
\left.\mathbf{P}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \Phi_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}}\left(\theta_{1} \theta_{2}, \ldots, \theta_{\mathrm{n}}\right) \quad \text { (with } \quad \mathrm{Q}_{\mathrm{i}}\left(\mathbf{y}_{1} \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathrm{n}}\right) \in \mathbb{C}\left[\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathrm{n}}\right]\right)
$$

where the polynomials $\mathrm{Q}_{\mathbf{i}}\left(\mathbf{y}_{\mathbf{1}} \mathbf{y}_{\mathbf{2}}, \ldots, \mathbf{y}_{\mathbf{n}}\right)$ are uniquely determined by \mathbf{P}.
Equivalently the collection

$$
\mathcal{B}=\left\{\boldsymbol{\Phi}_{\mathbf{i}} \theta_{1}^{\mathrm{P} \mathbf{1}} \theta_{2}^{\mathrm{P} \mathbf{2}} \cdots \theta_{\mathrm{n}}^{\mathrm{Pr}}\right\}_{\mathbf{1} \leq \mathbf{i} \leq \mathbf{k}_{\mathrm{i}} \mathrm{P}_{\mathbf{i}} \geq 0}
$$

is a basis for \mathbf{R}^{G}. We call such a collection a basic set for \mathbf{R}^{G} "
Note then it follows that
equivalently

$$
F_{R G}(q)=\frac{\sum_{i=1}^{k} q^{\operatorname{deg}\left(\Phi_{i}\right)}}{\prod_{i=1}^{n}\left(1-q^{\operatorname{deg} \theta_{i}}\right)}
$$

When do we have we have a Basic set?

Note if the elements of a collection

$$
\mathcal{B}=\left\{\Phi_{\mathrm{i}} \theta_{1}^{\mathrm{P} \mathbf{1}} \theta_{2}^{\mathrm{P} \mathbf{2}} \cdots \theta_{\mathbf{n}}^{\mathrm{Pr}}\right\}_{\mathbf{1} \leq \mathbf{i} \leq \mathbf{k}_{\mathrm{i}} \mathbf{P} \geq 0}
$$

span \mathbf{R}^{G} then

$$
\operatorname{dim} \mathcal{H}_{\mathrm{m}}\left(\mathbf{R}^{\mathrm{G}}\right) \leq\left.\frac{\sum_{\mathbf{i}=1}^{\mathbf{k}} \mathbf{q}^{\operatorname{deg}\left(\Phi_{\mathbf{i}}\right)}}{\prod_{\mathbf{i}=1}^{\mathrm{n}}\left(\mathbf{1}-\mathbf{q}^{\operatorname{deg} \theta_{\mathbf{i}}}\right)}\right|_{\mathbf{q}^{m}}
$$

alternatively if the elements of \mathcal{B} are independent then

$$
\left.\frac{\sum_{\mathbf{i}=1}^{\mathbf{k}} \mathbf{q}^{\operatorname{deg}\left(\Phi_{\mathbf{i}}\right)}}{\prod_{\mathbf{i}=1}^{\mathrm{n}}\left(\mathbf{1}-\mathbf{q}^{\operatorname{deg} \theta_{\mathbf{i}}}\right)}\right|_{\mathbf{q}^{\mathbf{m}}} \leq \operatorname{dim} \mathcal{H}_{\mathrm{m}}\left(\mathbf{R}^{\mathrm{G}}\right)
$$

Thus if we know that

$$
F_{R^{G}}(q)=\frac{\sum_{i=1}^{k} q^{\operatorname{deg}\left(\Phi_{i}\right)}}{\prod_{i=1}^{n}\left(1-q^{\operatorname{deg} \theta_{i}}\right)}
$$

Then to show that \mathcal{B} is basic we need only to show one of these two properties

How do we compute the Hilbert series?

Moliens Theorem

For G a finite group we have

$$
\mathbf{F}_{\mathbf{R}^{\mathrm{G}}}(\mathbf{q})=\frac{1}{|\mathrm{G}|} \sum_{\mathrm{M} \in \mathrm{G}} \frac{1}{\operatorname{det}(\mathbf{1}-\mathbf{q M})}
$$

More generally for groups with a finite G-invariant measure

$$
\mathbf{F}_{\mathbf{R}^{G}}(\mathbf{q})=\frac{\mathbf{1}}{\omega(\mathbf{G})} \int_{\mathrm{M} \in \mathrm{G}} \frac{\mathbf{1}}{\operatorname{det}(\mathbf{1}-\mathbf{q} \mathbf{M})} \mathbf{d} \omega
$$

Such an integral often reduces to taking the constant term of the integrand [including the density of the measure]

Combining actions

Action of a matrix $\mathrm{g} \in \mathrm{SL}(\mathbf{n} ; \mathbb{C})$ on a row vector

$$
\mathbf{U}=\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathbf{n}}\right) \quad \longrightarrow \quad \mathbf{U} \mathbf{g}^{-\mathbf{1}}
$$

Action of a matrix $g \in S L(n ; \mathbb{C})$ on a column vector

$$
\mathrm{V}=\left(\begin{array}{c}
\mathrm{v}_{\mathbf{1}} \\
\vdots \\
\mathrm{v}_{\mathrm{n}}
\end{array}\right) \quad \longrightarrow \quad \mathrm{gV}
$$

Action of a matrix $g \in S L(n ; \mathbb{C})$ on an $n \times n$ matrix

$$
\mathrm{X}=\left\|\mathrm{x}_{\mathrm{i}, \mathrm{j}}\right\|_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{n}} \quad \longrightarrow \quad \mathrm{gX} \mathrm{~g}^{-1}
$$

Action of a matrix $g \in S L(n ; \mathbb{C})$ on a polynomial in the variables $\left\{\mathbf{u}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}, \mathrm{x}_{\mathbf{i}, \mathbf{j}}\right\}_{\mathrm{i}, \mathbf{j}=1}^{n}$

$$
\mathrm{T}_{\mathrm{g}} \mathrm{P}(\mathrm{U}, \mathrm{~V}, \mathrm{X})=\mathrm{P}\left(\mathbf{U} \mathbf{g}^{-1}, \mathbf{g V}, \mathbf{g X} \mathbf{g}^{-1}\right)
$$

Some Invariants under this action

$$
\Pi_{k}=\operatorname{trace} X^{k} \quad \Theta_{k}=\operatorname{trace} U X^{k-1} V
$$

Note

$$
\begin{gathered}
\mathrm{T}_{\mathbf{g}} \text { trace } \mathbf{X}^{\mathbf{k}}=\operatorname{trace}\left(\mathbf{g X} \mathbf{g}^{-\mathbf{1}}\right)^{\mathbf{k}}={\text { trace } \mathbf{g} \mathbf{X}^{\mathbf{k}} \mathbf{g}^{-\mathbf{1}}=\text { trace } \mathbf{X}^{\mathbf{k}}}_{\mathbf{T}_{\mathbf{g}} \mathbf{U} \mathbf{X}^{\mathbf{k}} \mathbf{V}=\mathbf{U} \mathbf{g}^{\mathbf{1}}\left(\mathbf{g X} \mathbf{g}^{\mathbf{- 1}}\right)^{\mathbf{k}} \mathbf{g V}=\mathbf{U} \mathbf{g}^{\mathbf{- 1}} \mathbf{g} \mathbf{X}^{\mathbf{k}} \mathbf{g}^{-\mathbf{1}} \mathbf{g V}=\mathbf{U} \mathbf{X}^{\mathbf{k}} \mathbf{V}} \\
X:=\left[\begin{array}{lll}
x_{1,1} & x_{1,2} & x_{1,3} \\
x_{2,1} & x_{2,2} & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right]
\end{gathered}
$$

trace (multiply (X, X));

$$
x_{1,1}^{2}+2 x_{1,2} x_{2,1}+2 x_{1,3} x_{3,1}+x_{2,2}^{2}+2 x_{2,3} x_{3,2}+x_{3,3}^{2}
$$

$>$ expand(trace(multiply $(\mathbf{X}, \mathbf{X}, \mathbf{X}))$);
$3 x_{1,1} x_{1,3} x_{3,1}+3 x_{1,1} x_{1,2} x_{2,1}+3 x_{3,1} x_{1,3} x_{3,3}+3 x_{3,1} x_{1,2} x_{2,3}+3 x_{2,1} x_{1,3} x_{3,2}$
$+3 x_{2,1} x_{1,2} x_{2,2}+3 x_{2,2} x_{2,3} x_{3,2}+3 x_{3,2} x_{2,3} x_{3,3}+x_{1,1}{ }^{3}+x_{2,2}{ }^{3}+x_{3,3}{ }^{3}$
$>$ expand (multiply $(\mathbb{U}, \mathrm{X}, \mathrm{V})[1,1])$;
$v_{1} u_{1} x_{1,1}+v_{1} u_{2} x_{2,1}+v_{1} u_{3} x_{3,1}+v_{2} u_{1} x_{1,2}+v_{2} u_{2} x_{2,2}+v_{2} u_{3} x_{3,2}+v_{3} u_{1} x_{1,3}$
$+v_{3} u_{2} x_{2,3}+v_{3} u_{3} x_{3,3}$

Some not so obvious Invariants

$$
\begin{aligned}
& \Phi(\mathrm{U}, \mathrm{X})=\operatorname{det}\left\|\begin{array}{c}
\mathrm{U} \\
\mathrm{UX} \\
\mathrm{UX}^{2} \\
\vdots \\
\mathrm{UX}^{\mathrm{n}-1}
\end{array}\right\| \quad \Psi(\mathrm{V}, \mathrm{X})=\operatorname{det}\left\|\mathrm{V}, \mathrm{XV}, \mathrm{X}^{2} \mathbf{V}, \ldots, \mathrm{X}^{\mathrm{n}-1} \mathrm{~V}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{g}} \operatorname{det}\left(\mathrm{~V} X V X^{2} V \cdots X^{\mathrm{n}-1} \mathrm{~V}\right)=\operatorname{det}\left(\mathrm{gV} \mathbf{g X V} \mathrm{gX}^{2} V \cdots \mathrm{~V}^{\mathrm{n}-1} \mathrm{~V}\right) \\
& =\operatorname{det} g \times \operatorname{det}\left(\begin{array}{lllll}
\mathrm{V} & \mathrm{XV} & \mathrm{X}^{2} \mathrm{~V} & \cdots & \mathrm{X}^{\mathrm{n}-1} \mathrm{~V}
\end{array}\right)
\end{aligned}
$$

Theorem

The Constant Term Problem

The Hilbert series of the polynomials $\mathbf{P}(\mathbf{U}, \mathbf{V}, \mathbf{X})$ invariants under this action is

$$
F_{U V X}(q)=\left.\left.\frac{1}{(1-q)^{n}} \prod_{i=1}^{n} \frac{1}{\left(1-q x_{i}\right)\left(1-q / x_{i}\right)} \prod_{1 \leq i<j \leq n} \frac{1-x_{i} / x_{j}}{\left(1-q x_{i} / x_{j}\right)\left(1-q x_{j} / x_{i}\right)}\right|_{x_{1} x_{2} \cdots x_{n}=1}\right|_{x_{1}^{0} x_{2}^{0} \cdots x_{n}^{0}}
$$

Proof

Passing from $\mathrm{SL}_{\mathbf{n}}[\mathbb{c}]$ to $\mathrm{SU}[\mathrm{n}]$ and using Moliens Theorem, we derive that

$$
\mathrm{F}_{\mathrm{UVX}}(\mathbf{q})=\int_{\mathbf{T}_{\mathbf{n}}} \frac{1}{\operatorname{det}|1-\mathrm{qD}(\mathbf{g})|} \mathrm{d} \omega(\mathbf{g})
$$

with $D(g)$ giving the action of T_{g} on the on the alphabet $\left\{u_{i}, v_{j}, x_{i, j}\right\}_{i, j=1}^{n}$ with $d w(g)$ the Haar measure.
The integral need only be carried out over the Thorus T_{n} of diagonal matrices

$$
g=\operatorname{diag}\left\{e^{i 8_{1}}, e^{i \delta_{2}}, \ldots, e^{i \ell_{n}}\right\} \quad \text { with } \quad e^{i \ell_{1}} e^{i \delta_{2}} \ldots e^{i \ell_{n}}=1
$$

Thus

$$
T_{g}\left\{u_{r}, v_{s}, x_{r, s}\right\}_{r, s=1}^{n}=\left\{u_{r} e^{-i \theta_{r}}, e^{i \theta_{s}} v_{s,} e^{i \theta_{s}} x_{r, s} e^{-i \theta_{r}}\right\}_{r, s=1}^{n} .
$$

gives

$$
D(g)=\operatorname{diag}\left\{\mathrm{e}^{-\mathbf{i} \xi_{\mathbf{1}}}, \ldots, \mathrm{e}^{-\mathbf{i} \xi_{\mathbf{n}}} ; \mathrm{e}^{\mathbf{i} \theta_{\mathbf{1}} \mathbf{1}}, \ldots, \mathrm{e}^{\mathbf{i} \xi_{\mathbf{n}}} ; \mathrm{e}^{-\mathbf{i} \xi_{\mathbf{r}}} \mathrm{e}^{\mathbf{i} \theta_{\mathbf{s}}}: \mathbf{1} \leq \mathbf{r}, s \leq \mathbf{n}\right\}
$$

Thus

$$
\operatorname{det}|1-\mathrm{qD}(g)|=\prod_{\mathbf{r}=\mathbf{1}}^{n}\left(1-\mathrm{q} / \mathrm{e}^{\mathrm{i} \theta_{\boldsymbol{r}}}\right)\left(1-\mathrm{qe} \mathrm{e}^{\mathrm{i} \theta_{\boldsymbol{r}}}\right) \prod_{\mathbf{r}, \mathrm{s}=\mathbf{1}}^{n}\left(1-\mathrm{q}^{\mathrm{i} \varepsilon_{s}} / \mathrm{e}^{\mathrm{i} \xi_{\boldsymbol{r}}}\right)
$$

and (*) becomes

Our Constant term can has an explicit evaluation!

Theorem

$$
\begin{aligned}
\frac{1}{(1-q)^{n}} & \prod_{i=1}^{n} \frac{1}{\left(1-q x_{i}\right)\left(1-q / x_{i}\right)} \\
& \left.\left.\prod_{1 \leq i<j \leq n} \frac{1-x_{i} / x_{j}}{\left(1-q x_{i} / x_{j}\right)\left(1-q x_{j} / x_{i}\right)}\right|_{x_{1} x_{2} \cdots x_{n}=1}\right|_{x_{1}^{0} x_{2}^{0} \cdots x_{n}^{0}}
\end{aligned}
$$

$$
\left.=\frac{1+q^{\binom{n+1}{2}}}{(1-q) \prod_{i=1}^{n}\left(1-q^{i}\right)^{2}\left(1-q^{n+1}\right)\left(1-q^{(n+1} 2\right)}\right)
$$

How do we show this?

A Remarkable Identity

Theorem

$$
\begin{aligned}
& \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \sigma\left(\prod_{1 \leq i<j \leq n}\left(x_{i}-q x_{j}\right)\right)= \\
& =\prod_{i=1}^{n} \frac{1-q^{i}}{1-q} \prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right) \\
& \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \sigma\left(\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)\right)=\mathrm{n}!\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)
\end{aligned}
$$

Proof (by induction)

The first reduction

Setting

$$
G(x ; q)=\frac{1}{(1-q)^{n}} \prod_{1 \leq i<i \leq n} \frac{1}{\left(1-q x_{i} / x_{j}\right)\left(1-q x_{j} / x_{i}\right)}
$$

Proposistion 2
For any $\mathbf{n} \geq \mathbf{2}$ we have

$$
\mathrm{G}(\mathrm{x} ; \mathbf{q})=\frac{1}{\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(1-\mathrm{q}^{\mathrm{i}}\right)} \frac{1}{\Delta(\mathrm{x})} \sum_{\sigma \in \mathrm{S}_{\mathrm{n}}} \operatorname{sign}(\sigma) \sigma \prod_{\mathrm{i}-1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{\mathrm{n}-\mathrm{i}}\left(\prod_{1 \leq \mathrm{i}<\mathrm{i} \leq \mathrm{n}} \frac{1}{1-\mathrm{qx}_{\mathrm{i}} / \mathrm{x}_{\mathrm{j}}}\right)
$$

where $\Delta(x)$ denotes the Vandermonde determinant in $x_{1}, x_{2}, \ldots, x_{n}$.
Proof
The previous identity can be rewritten in the form

$$
\frac{1}{\prod_{i=1}^{n}\left(1-\mathbf{q}^{\mathrm{i}}\right)} \frac{1}{\Delta(\mathrm{x})} \sum_{\sigma \in \mathrm{S}_{\mathrm{n}}} \operatorname{sign}(\sigma) \sigma\left(\prod_{\mathrm{i}-1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{\mathrm{n}-\mathrm{i}} \prod_{1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}}\left(1-\mathrm{qx}_{\mathrm{j}} / \mathrm{x}_{\mathrm{i}}\right)\right)=\frac{1}{(1-\mathbf{q})^{\mathrm{n}}}
$$

Divide both sides by the rational function $\prod_{1 \leq i \leq j \leq n} \frac{1}{\left(1-q x_{i} / x_{j}\right)\left(1-q x_{j} / x_{i}\right)}$.

The next reduction

Proposition 3

For $\mathbf{n} \geq \mathbf{2}$ and for any symmetric rational funtion $\mathbf{A}(\mathrm{x})$ we have

$$
\begin{aligned}
\frac{1}{(1-q)^{n}} A(x) & \left.\left.\prod_{1 \leq i<j \leq n} \frac{1-x_{i} / x_{j}}{\left(1-q x_{i} / x_{j}\right)\left(1-q x_{j} / x_{i}\right)}\right|_{x_{1} x_{2} \cdots x_{n}=1}\right|_{x_{1}^{0} x_{2}^{0} \cdots x_{n}^{0}}= \\
& \left.\left.\frac{1}{\prod_{i=1}^{n}\left(1-q^{i}\right)} A(x) \prod_{1 \leq i<j \leq n} \frac{1-x_{i} / x_{j}}{\left(1-q x_{i} / x_{j}\right)}\right|_{x_{1} x_{2} \cdots x_{n}=1}\right|_{x_{1}^{0} x_{2}^{0} \cdots x_{n}^{0}} .
\end{aligned}
$$

(proved by manipulations using the previous identity)
If we use this with

$$
A(x)=\prod_{i=1}^{n} \frac{1}{\left(1-u / x_{i}\right)\left(1-v x_{i}\right)}
$$

we get the "tri-graded" Hilbert series

$$
\begin{aligned}
F_{U V X}\left(u_{s}, v_{i} q\right)= & \left.\left.\frac{1}{(1-q)^{n}} \prod_{i=1}^{n} \frac{1}{\left(1-u / x_{i}\right)\left(1-v x_{i}\right)} \prod_{1 \leq i<j \leq n} \frac{1-x_{i} / x_{j}}{\left(1-q x_{i} / x_{j}\right)\left(1-q x_{j} / x_{i}\right)}\right|_{x_{1} x_{2} \cdots x_{n}=1}\right|_{x_{1}^{0} x_{2}^{0} \cdots x_{n}^{0}} \\
& =\left.\left.\frac{1}{\prod_{i=1}^{n}\left(1-q^{i}\right)} \prod_{i=1}^{n} \frac{1}{\left(1-u / x_{i}\right)\left(1-v x_{i}\right)} \prod_{1 \leq i<i \leq n} \frac{1-x_{i} / x_{\mathbf{i}}}{\left(1-q x_{i} / x_{j}\right)}\right|_{x_{1} x_{2} \cdots x_{n}=1}\right|_{x_{1}^{0} x_{2}^{0} \cdots x_{n}^{0}} .
\end{aligned}
$$

which keeps track of the degrees of the variables $u_{i}, v_{\mathbf{j}}$ and $\mathrm{x}_{\mathbf{i}, \mathbf{j}}$ separately

Computing Constant terms by partial fraction

We choose a total order for the variables, say $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$.
We then work with the field of iterated formal Laurent series (IFLS): $\left.\mathrm{K}\left(\left\langle\mathrm{x}_{\mathbf{1}}\right)\right)\left(\left(\mathrm{x}_{\mathbf{2}}\right)\right) \cdots\left(\mathrm{x}_{\mathbf{n}}\right)\right)$ recursively defined as the field of formal Laurent series in x_{n} with coefficients in $K\left(\left\langle x_{1}\right)\right)\left(\left(\mathbf{x}_{\mathbf{2}}\right)\right) \cdots\left(\left(x_{n-1}\right)\right)$. Here

$$
\mathrm{K}\left(\left(\mathrm{x}_{\mathbf{1}}\right)\right)=\left\{\sum_{\mathbf{m}>\mathrm{M}} \mathrm{a}_{\mathbf{m}} \mathrm{X}_{\mathbf{1}}^{\mathbf{m}}: \mathrm{a}_{\mathbf{m}} \in \mathrm{K}\right\}
$$

This total order allows us to imbed the field of rational functions $K\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as a subfield of $\left.\mathrm{K}\left(\left\langle\mathrm{x}_{\mathbf{1}}\right)\right)\left(\left(\mathrm{x}_{\mathbf{2}}\right)\right) \cdots\left(\mathrm{x}_{\mathbf{n}}\right)\right\rangle$.

Under this imbedding all the identities in $\mathrm{K}\left(\mathrm{x}_{\mathbf{1}}, \mathrm{x}_{\mathbf{2}}, \ldots, \mathrm{x}_{\mathbf{n}}\right)$ become identities in $\mathrm{K}\left(\left\langle\mathrm{x}_{\mathbf{1}}\right)\right)\left(\left(\mathrm{x}_{\mathbf{2}}\right)\right) \cdots\left(\left(\mathrm{x}_{\mathbf{n}}\right)\right)$.
The rational functions we will work with here may all be written in the form

$$
F=\frac{P}{\left(1-m_{1}\right)\left(1-m_{2}\right) \cdots\left(1-m_{n}\right)}
$$

with P a Laurent polynomial and $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{k}}$ Laurent monomials.
To convert F we must decide whether a given factor $\frac{1}{1-\mathrm{m} .}$ should be converted to

$$
\text { a) } \sum_{\mathrm{s} \geq 0} \mathrm{~m}_{\mathrm{i}}^{\mathrm{s}} \quad \text { or } \quad \text { b) } \quad-\sum_{\mathrm{s} \geq 1} \frac{1}{m_{\mathrm{i}}^{\mathrm{s}}}\left(=\frac{-\frac{1}{\mathbf{m}_{1}}}{1-\frac{1}{\mathbf{m}_{1}}}\right)
$$

The total order forces one of the two "forma" inequalities $m_{i}<1$ or $m_{i}>1$ to be true
In the first case we choose a) and in the second case we choose b) .
To decide which we scan the monomial m_{i} if the smallest variable has positive exponent then $m_{i}<1$ if it has negative exponent then $m_{i}>1$.

Eliminating a Variable

To avoid using summations we rewrite F in the form

$$
\mathrm{F}=\mathrm{P} \times\left(\prod_{\mathbf{m}_{\mathbf{i}}<\mathbf{1}} \frac{1}{1-\mathrm{m}_{\mathbf{i}}}\right) \times\left(\prod_{\mathbf{m}_{\mathbf{j}}>\mathbf{1}} \frac{-\frac{1}{\mathbf{m}_{\mathbf{j}}}}{1-\frac{1}{\mathbf{m}_{\mathbf{j}}}}\right)
$$

This is called the "proper form" of F. To compute $\left.\mathrm{F}\right|_{\mathbf{a}_{1}^{0} a_{2}^{0} \ldots \mathbf{a}_{k}^{0}}$ by Xin algorithm, Say we want to eliminate " x ". First we rewrite our rational function in the form

$$
\mathrm{F}=\mathrm{Q}(\mathrm{x})+\frac{\mathrm{R}(\mathrm{x})}{\left(1-\mathrm{xU}_{\mathbf{1}}\right) \cdots\left(1-\mathrm{xU}_{\mathbf{h}}\right)\left(\mathrm{x}-\mathrm{V}_{\mathbf{1}}\right) \cdots\left(\mathrm{x}-\mathrm{V}_{\mathbf{k}}\right)}
$$

with $Q(x)$ a Laurent polynomial, $R(x)$ a polynomial of degree less than $h+k$ and $U_{1}, U_{2}, \ldots, U_{h}$ as well as $\mathrm{V}_{1}, \mathrm{~V}_{\mathbf{2}}, \ldots, \mathrm{V}_{\mathrm{k}}$ are monomials not containing x . With

$$
\mathrm{xU}_{\mathrm{i}}<1 \quad \text { for } 1 \leq \mathrm{i} \leq \mathrm{h} \quad \text { and } \quad \mathrm{V}_{\mathrm{j}} / \mathrm{x}<1 \quad \text { for } 1 \leq \mathrm{j} \leq \mathrm{k} .
$$

Then write

$$
F(x)=Q(x)+\sum_{i=1}^{h} \frac{A_{i}}{\left(1-x U_{i}\right)}+\sum_{j=1}^{k} \frac{B_{j}}{\left(x-V_{j}\right)}
$$

with

$$
A_{i}=\left.\left(1-x U_{i}\right)(F(x)-Q(x))\right|_{x=1 / U_{\mathbf{1}}} \quad \text { and } \quad B_{\mathbf{j}}=\left.\left(x-V_{j}\right)(F(x)-Q(x))\right|_{x=v_{j}}
$$

This immediately yields the equalities

$$
\left.F\right|_{x^{0}}=\left.Q\right|_{x^{0}}+\sum_{i=1}^{h} A_{i}=\left(F(0)+\sum_{i=1}^{h} B_{i} / V_{i} \quad \text { if } P(x) \text { is a polynomial }\right)
$$

The reason for this is that for each term $\frac{b_{j}}{x-V_{j}}$ we have $V_{j} / x<1$,
so that the proper form of the last summation is $\quad \sum_{j=1}^{k} \frac{B_{j} / x}{\left(1-V_{j} / x\right)}$

Here we will only use a particular case

Proposition

Suppose that our kemel is of the form

$$
F(x)=\frac{1}{1-U x} \frac{P\left(\frac{1}{x}\right)}{\prod_{i=1}^{k}\left(1-m_{i} / x^{a_{i}}\right)}
$$

with \mathbf{P} a polynomial, and $\mathbf{U}, \mathbf{m}_{\mathbf{1}}, \mathbf{m}_{\mathbf{2}}, \ldots, \mathbf{m}_{\mathbf{k}}$ monomials not containing $\mathbf{x}, \mathbf{a}_{\mathbf{i}} \geq \mathbf{1}$ and

$$
\mathbf{U x}<\mathbf{1}, \quad \mathbf{m}_{\mathbf{i}} / \mathrm{x}^{\mathbf{a}_{\mathbf{i}}}<\mathbf{1} \quad \text { for } \quad \mathbf{1} \leq \mathbf{i} \leq \mathbf{k}
$$

then

$$
\left.F(x)\right|_{x^{0}}=\left.\frac{P\left(\frac{1}{x}\right)}{\prod_{i=1}^{k}\left(1-\mathbf{m}_{i} / x^{a_{i}}\right)}\right|_{x=1 / U}=\frac{P(U)}{\prod_{i=1}^{k}\left(1-\mathbf{m}_{i} U^{a_{i}}\right)}
$$

Proof
We have

$$
F(x)=\frac{A}{1-U x}+
$$

Only the denominator factor ($1-\mathrm{Ux}$) contributes so

$$
\left.F(x)\right|_{x^{0}}=A=\left.(1-U x) F(x)\right|_{x=1 / U}
$$

Let us now compute a Constant term

Set

$$
R_{n}\left(u_{i}, v_{,} w\right)=\frac{1}{1-w / x_{1} \cdots x_{n}} \prod_{i=1}^{n} \frac{1}{\left(1-u x_{i}\right)\left(1-v / x_{i}\right)} \prod_{1 \leq i<i \leq n} \frac{1-x_{\mathbf{i}} / x_{i}}{\left(1-q x_{\mathbf{i}} / x_{i}\right)}
$$

Lemma 1

$$
\left.R_{\mathbf{n}}(\mathrm{u}, \mathrm{v}, \mathrm{w})\right|_{\mathrm{x}_{\mathbf{1}}^{\mathbf{0}} \times x_{\mathbf{n}}^{\mathbf{0}}}=\left.\frac{1}{1-\mathrm{uv}} \mathrm{R}_{\mathrm{n}-\mathbf{1}}(\mathrm{uq}, \mathrm{v}, \mathrm{w} u)\right|_{\mathbf{x}_{\mathbf{1}}^{\mathbf{0}} \cdots x_{\mathbf{n}-1}^{\mathbf{o}}} .
$$

Proof

$$
\begin{aligned}
R_{n}(u, v, w)=\frac{1}{\left(1-u x_{1}\right)\left(1-v / x_{1}\right)} \frac{1}{\left(1-w / x_{1} \cdots x_{n}\right)} & \prod_{2 \leq i \leq n} \frac{1-x_{j} / x_{1}}{\left(1-q x_{j} / x_{1}\right)^{\prime}}, \\
& \times \prod_{i=2}^{n} \frac{1}{\left(1-u x_{i}\right)\left(1-v / x_{i}\right)} \prod_{2 \leq i<i \leq n} \frac{1-x_{j} / x_{i}}{\left(1-q x_{j} / x_{i}\right)^{\prime}},
\end{aligned}
$$

We first eliminate x_{1}. Only the factor $1-\mathrm{ux}_{1}$ contributes. Thus

$$
\begin{aligned}
\left.R_{n}(u, v, w)\right|_{x_{i}^{0}}= & \frac{1}{\left(1-v / x_{1}\right)} \frac{1}{\left(1-w / x_{1} \cdots x_{n}\right)} \\
\prod_{2 \leq i \leq n} & \left.\frac{1-x_{j} / x_{1}}{\left(1-q x_{j} / x_{1}\right)}\right|_{x_{1}=1 / u} \\
& \times \prod_{i=2}^{n} \frac{1}{\left(1-u x_{i}\right)\left(1-v / x_{i}\right)} \prod_{2 \leq i<i \leq n} \frac{1-x_{j} / x_{i}}{\left(1-q x_{j} / x_{i}\right)} \\
= & \frac{1}{(1-u v)\left(1-\frac{u w}{x_{2} w x_{n}}\right)} \prod_{i=2}^{n} \frac{1}{\left(1-x_{i} u\right)\left(1-v / x_{i}\right)} \prod_{2 \leq i<i \leq n} \frac{1-x_{j} / x_{i}}{1-q x_{j} / x_{i}} \prod_{2 \leq i \leq n} \frac{1-u x_{j}}{1-u x_{j} q^{\prime}}, \\
= & \frac{1}{(1-u v)\left(1-\frac{u w}{x_{2} w x_{n}}\right)} \prod_{i=2}^{n} \frac{1}{\left(1-x_{i} u q\right)\left(1-v / x_{i}\right)} \prod_{2 \leq i<i \leq n} \frac{1-x_{j} / x_{i}}{1-q x_{i} / x_{i}} .
\end{aligned}
$$

This is exactly $\frac{1}{1-u v} R_{n-1}\left(u q_{1}, v, u w\right)$ if we rename x_{i} by x_{i-1}.

To evaluate our constant term we also need

$$
\begin{aligned}
& F_{U V X}\left(u_{,}, v_{1}\right)=\left.\frac{1}{\prod_{i=1}^{n}\left(1-q^{i}\right)} Q_{\mathbf{n}}^{+}\left(u_{,}, 1\right)\right|_{x_{2}^{0} \cdots x_{\mathbf{n}}^{0}} \\
& \mathcal{Q}_{n}^{+}\left(u_{,}, v, w\right)=\left.\prod_{i=1} \frac{1}{\left(1-u x_{i}\right)\left(1-v / x_{i}\right)} \prod_{1 \leq i<i \leq n} \frac{1-x_{j} / x_{i}}{\left(1-q x_{j} / x_{i}\right)}\right|_{x_{n}=1 / w x_{1} \cdots x_{n-1}} . \\
& R_{n}(u, v, w)=\frac{1}{1-w / x_{1} \cdots x_{n}} \prod_{i=1}^{n} \frac{1}{\left(1-u x_{i}\right)\left(1-v / x_{i}\right)} \prod_{1 \leq i<i \leq n} \frac{1-x_{j} / x_{i}}{\left(1-q x_{j} / x_{i}\right)}, \\
& R_{n}^{+}(u, v, w)=\frac{1}{1-1 / w x_{1} \cdots x_{n}} \prod_{i=1}^{n} \frac{1}{\left(1-u x_{i}\right)\left(1-v / x_{i}\right)} \prod_{1 \leq i<j \leq n} \frac{1-x_{j} / x_{i}}{\left(1-q x_{j} / x_{i}\right)} . \\
& \left.R_{\mathbf{n}}(u, v, w)\right|_{\mathbf{x}_{\mathbf{1}}^{\mathbf{0} \cdots x_{\mathbf{n}}^{0}}}=\frac{1}{(1-u v)(1-u v q) \cdots\left(1-u v q^{n-1}\right)\left(1-w u^{n^{n}} \mathbf{q}^{(\mathbf{n})}\right)} .
\end{aligned}
$$

$$
\begin{aligned}
& \left.R_{\mathbf{n}}(u, v, w)\right|_{x_{1}^{0} \cdots x_{\mathbf{n}}^{0}}=\left.Q_{\mathbf{n}}(u, v, w)\right|_{x_{1}^{0} \cdots x_{n-1}^{0}}+\left.\frac{1}{1-u v} R_{n-1}\left(u, v q_{1}, w / v\right)\right|_{x_{1}^{0} \cdots x_{n-1}^{0}} .
\end{aligned}
$$

Combining these identities we get

$$
\begin{aligned}
& \mathbf{F}_{\mathrm{UVX}}(\mathbf{u}, \mathbf{v}, \mathbf{q})=\frac{1}{\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathbf{1}-\mathbf{q}^{\mathrm{i}}\right)\left(\mathbf{1}-\mathbf{u v q ^ { i - 1 }}\right)\left(1-\mathbf{w u}^{\mathrm{n}} \mathbf{q}^{(\mathbf{n})} \mathbf{2}\right)} \\
& +\frac{\left.w^{n} \mathbf{q}^{\binom{n}{2}}\right)}{\prod_{i=1}^{n}\left(1-q^{i}\right)\left(1-u v q^{i-1}\right)\left(1-w^{n} q^{\binom{n}{2}}\right)}
\end{aligned}
$$

Conclusion

Theorem

The UVX invariants have the tri-graded basis

$$
\mathcal{B}^{\mathrm{ab}}=\left\{\Phi^{\mathrm{r}+1} \Pi_{1}^{\mathrm{p} 1} \cdots \Pi_{\mathbf{n}}^{\mathrm{pn}} \theta_{1}^{q_{1}} \cdots \theta_{\mathbf{n}}^{q_{n}} ; \Psi^{s} \Pi_{1}^{\mathrm{p} 1} \cdots \Pi_{\mathbf{n}}^{\mathrm{pn}} \theta_{1}^{q_{1}} \cdots \theta_{\mathrm{n}}^{q_{n}}: \mathrm{r}, \mathrm{~s} \geq 0, \mathrm{p}_{\mathrm{i}} \geq 0, \mathrm{q}_{\mathrm{i}} \geq 0\right\}
$$

Proof

Since we know the Hilbert series, it is sufficient to prove independence.
Suppose we had a vanishing linear combination P.
We can assume that P is tri-homogeneous.
(1) The monomial $\Phi^{r+1} \Pi_{1}^{\mathrm{p} 1} \Pi_{2}^{\mathrm{P} 2} \cdots \theta_{\mathrm{n}}^{\mathbf{P n}} \theta_{1}^{\boldsymbol{q}_{1}} \theta_{2}^{\mathbf{q}_{2}} \cdots \theta_{\mathrm{n}}^{\mathbf{q}_{\mathrm{n}}}$ has tri-degree

$$
\left(0,(\mathrm{r}+1) \mathbf{n},(\mathrm{r}+1)\binom{\mathrm{n}}{2}\right)+\left(0,0,\left(\sum_{\mathbf{i}} \mathrm{ip}_{\mathbf{i}}\right)\right)+\left(\sum_{\mathbf{i}} \mathrm{q}_{\mathbf{i}}, \sum_{\mathbf{i}} \mathrm{q}_{\mathbf{i}},\left(\sum_{\mathbf{i}} \mathrm{i}_{\mathbf{i}} \mathbf{i}\right)\right)
$$

(2) The monomial $\Psi^{\mathrm{s}} \Pi_{1}^{\mathrm{P} 1} \Pi_{2}^{\mathrm{P} 2} \cdots \theta_{\mathbf{n}}^{\mathbf{P n}} \theta_{1}^{\mathbf{q}_{1}} \theta_{2}^{\mathrm{q}_{2}} \cdots \theta_{\mathbf{n}}^{\mathrm{q}_{\mathrm{n}}}$ has tri-degree

$$
\left(s n, 0, s\binom{\mathbf{n}}{2}\right)+\left(0,0,\left(\sum_{\mathbf{i}} \mathbf{i p}_{\mathbf{i}}\right)\right)+\left(\sum_{\mathbf{i}} \mathrm{q}_{\mathbf{i}}, \sum_{\mathbf{i}} \mathrm{q}_{\mathbf{i}},\left(\sum_{\mathbf{i}} \mathbf{i} \mathrm{q}_{\mathbf{i}}\right)\right)
$$

This immediately shows that any tri-homogenous linear combination P cannot contain both Φ and Ψ.

From this, independence easily follows .

THE END

