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0 Ao A 0 -AZ-(Z)- L1 iz- 1111
Hyz >, ,| 0 Az A 0 H,. >, , 0 ﬁ LLL1
Aoz A1 Avirir Aviiii 2.2, 11
] As oz Ao
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k-Schur expansion of Macdonald Polynomials

(for 2 bounded partitions of 4 )

0 A 0
H([2,2]) g A+ (g+tg) A+, [A“ P Aml]
A1 0
H([Z2,1,1] tgA L+ (g+) A+ A 0 A1
Aoy A
H([1,1,1,1]) AL () A+ A
(for 2 bounded partitions of 6 )
0 A1 A 0 —Az-(z)- L1 iz- 1111
H. =, ,| 0 Az A 0 Ho,i1, >, , 0 }i-l-l-l-l
Aoz Aol Al Arriin 2.2.1.1
| Asaa Az
(A 110 0
0 0
Aol Alriii
B >, A2 A
0 A
0 0
- Avao Ao |
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k-Schur expansion of Macdonald Polynomials

(for 2 bounded partitions of 4 )

0 A 0
H([2,2]) A+ (g+1g) A+ Ay [Azz P Aml]
A1 0
H([Z2,1,1] tgA 1+ (g+1) A+ Ay, 0 AL
Ao A
H([1,1,1,1]) A (B ) A+ A
(for 2 bounded partitions of 6 )
0 Ao A 0 _AZ-S- L1 iz- 1111
H,, =, ,| 0 A1 A 0 H,. >, , 0 ﬁ L1LL1
Aos Ao A Al 2.2 11
| Ao Ao
(AL 1111
(A 1111 0 A1
0 0 A
A1 Al Aﬁ. 1111
Hoyrn, >, .| %211 A H s 2,2.11
0 A1 PR LY CT ] Avan
0 0 Ao
| Az Az | 0
0
Ao
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(1,0)

(1,1)

(0,0)
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Some remarkable determinants

0..0 0..0 0..0 0..0
/X1}’1 Xo¥o2 X3¥g X4Y4\

(1,0) | (1,1) X3¥i X3Y3 X3¥3 X4¥i
'::> As2(X,Y) = det
(0,0) | (0,1) XiYi X3¥s X3¥s Xi¥4

1..1 1.1 1..1 1.1
\X1}’1 Xo¥> X3¥3 X4}’4/
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(1,0)

(1,1)

(0,0)

(0,1)

Some remarkable determinants

'::> Ar2(X,Y) = det
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0.0
/X1y1
0,.1
X1¥1

1,.0
X1¥4

\ xtyl

0.0
Xo¥o

0,1
Xo¥o
1.0
Xo¥o

1.1
Xo¥o

0.0
Xa¥g

0,.1
X3¥3
1,.0
Xa¥g

1.1
X3¥g

X4¥4 \

0.1
Xa4Y4

1.0
X4¥4

iyl /

det

1

Y1
X4

X1¥1

1

Yo
X2

X2¥2

1

¥z
X3

X3¥s3

1

¥4
X4
X4¥4



Some remarkable determinants

/X1¥1 X3¥3 X3¥s XqVa)\
S R iyl xvi xvi vl o1t
|::> As2(X,Y) = det — det| 1 Y2 Ya Y4
1,,0 1,,0 1,,0 1,,0 X4 X2 X3 X4
Xi1¥1 X3¥o X3¥3 X4¥4
(001 ©0.1) X1¥1 X2¥2 Xa¥a Xa¥4

1..1 1.1 1..1 1.1
\\X1Y1 Xo¥> X3¥3 X4}’4/

(2,0)

(1,0) | (1,1) | (1,2)

(0,0) | (0,1) | (0,2)
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0..0 0..0 0..0 0..0
/X1}’1 Xo¥o2 X3¥g X4}’4\

S R iyl xvi xvi vl o1t
> A2x(XY) = det _ det| Yt Y2 ¥z Vi

xly® xiyd xly? xlyo X4 Xo Xg X4

(0,0) | (0,1) 1¥1 %2¥2 X3¥3 X4¥4 Xiyi Xoys Xaya Xava

1..1 1.1 1..1 1.1
\\X1Y1 Xo¥> X3¥3 X4}’4/

(2,0)

(1,0) | (1,1) | (1,2)

(0,0) | (0,1) | (0,2)
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Some remarkable determinants

/ngf Xo¥o X3¥g X4}’4\

10101 iyl vl xdyi vl Lot
|::> As2(X,Y) = det — det| 1 Y2 Ya Y4
xly?  xlyQ xly0 x1y0 X1 Xo X3 X4
(0,0) | (0,1) 1¥1 2¥2 a¥s3 4Y4 X1¥1 Xa2¥a XaVs XV
\xiyl xiyi xiyi xiyi/
(2,0)
/ 1 1 1 1 1 1 1 \
Y1 Y2 Y3 Y4 Y5 Y5 Y7
(1,0)| (1,1) [ (1,2) yi Y> ¥Ya ¥Yi Yi Yi ¥z
|::> Az31(X,Y) = det X4 Xo X3 X4 X5 X2 x2
(0,0) | (0,1) | (0,2) X1¥1 X2¥2 Xa¥az Xq¥4 X5¥Y5 Xe¥e X7¥7
’ ’ ’ 2 2 2 2 2 2 2
X1¥Y1 X2¥3 Xa¥3 X4¥4 Xs5Yy Xe¥Ys X7¥7
\x2 x2 x2 x2 x2 x2 x|/
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Some remarkable determinants

/ngf Xo¥o X3¥g X4Y4\

(101 1.1) qvi xdvi =y xdy o]
|::> As2(X,Y) = det — det| 1 Y2 Ya Y4
(0,0) | (0,1) Xiy§ X3Y> X3y¥s X4¥g o X2 X3 X4
X1¥1 X2¥2 Xz¥z X4¥Y4
\xiy! xiyi xiyi xiyi/
(2,0)

/1 1 1 1 1 1 1 \

}’% }’g }’g .Yé ¥s ¥s hird

(1,0 [ 1,1 | (1,2) yi ys Y3 Yi Y5 Yo Y%

|::> Az31(X,Y) = det X4 Xo X3 X4 X5 X2 x2

(0,0) | (0,1) | (0,2) X1¥1 X2¥2 Xa¥a Xq¥s4 Xs¥s Xe¥e Xr¥7

X1¥: Xo¥3: XaY3 X4¥F XsYE XeYa XvY3
\x2 B ¥ x x x x /

General definition
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Some remarkable determinants

0..0 0..0 0..0 0..0
/X1}’1 Xo¥o2 X3¥g X4Y4\

10101 iyl v xdyvi vl Lol
—— > A2(XY) = det _ det| Yt Y2 ¥z Vi
xiy®  xly® xiy® xly0 X1 Xo X3 X4
(0,0) | (0,1) 1¥1 2¥2 a¥s 4¥4 Xiyi Xoys Xaya Xava
2.0 \xly! xiyl xiy! xiyl/

’ /1 1 1 1 1 1 1y

}’% }’g }’g .Yé }’g }’g Y;

(1,00 [ (1,1 | (1.2) R N T R B B

|::> Az31(X,Y) = det X4 Xo X3 X4 X, X2 x2

(0,0) | (0,1) | (0,2) X1¥1 X2¥2 Xa¥a Xq¥s4 Xs¥s Xe¥e Xr¥7
X1¥: X2Y3 XaYF Xayi XsY: Xe¥Yi Xr¥7
V2 2 2 x2 x2 x2 x|/

General definition

If (p1,4q1),(P2,42), ., (Pn, Gn) are the cells of the Ferrers diagram of - n then
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Some remarkable determinants

(1,0)

(1,1)

'::> Ar2(X,Y) = det

(0,0) | (0,1)
(2,0)
(1,001 (1,1) | (1,2)
'::> Az (X,Y)
(0,0) | (0,1) | (0,2)

General definition

If (p1,4q1),(P2,42), ., (Pn, Gn) are the cells of the Ferrers diagram of - n then

Au(z,y) = det ||z y;"

Tuesday, March 24, 2009

0.0
/X1Y1
0,.1
X1¥1

1,.0
X1¥4

\ xtyl

= det

0..0 0 0..0
Xo¥o2 X3¥g X4Y4\
0.1 0.1 0.1
Xo¥s X3¥3 X4¥4y
1..0 1..0 1..0
Xo¥o X3¥3 X4¥4
sclnl gl gl 1/
2¥o 3¥3 4Y4
/ 1 1 1
¥1 ¥2 ¥a
2 2 2
Y1 Yo ¥a
X1 Xo Xa
X1¥1 X2¥2 X3¥3
2 2
X1¥71 X2¥5 Xa¥3
\ x2 X2 X2

n

= det

1,7=1

1
¥1
X1

X1¥1

1

¢
b
X5

X5Y¥s

2
XsY¥x

2
Xy

XeYe

2
XeYs

2
X6

X3¥s3

1

Y7

¢

X7
Xr¥r
X7.‘7’72'

2
X7

X4¥4

/



Some remarkable determinants

0..0 0..0 0..0 0..0
/X1Y1 Xo¥o2 X3¥g X4Y4\

(1,0)| (1,1) x0yl  xQyl x%yl xQyi 1 1 1
|::> As2(X,Y) = det — det| 1 Y2 Ya
civ0  xly® g0 4140 X4 Xo X3
0,0) | (0,1 1¥1 2¥2 a¥s3 4Y4 X1¥1 Xa2Va Xa¥a
\xiy! xiyi =iyl xiyi/
(2,0)
/ 1 1 1 1 1 1 1
Y1 Y2 Ya Y4 Ys Y5 Y7
(1,0)| (1,1) [ (1,2) yi Ya Y: ¥Yi Yi Yo Y%
|::> Az31(X,Y) = det X4 Xo X3 X4 Xr, X2 x2
(0,0) | (0,1) | (0,2) X1¥1 X2¥2 Xa¥z X4¥4 X5¥s5 XeY¥e X7¥7
2 2 2 2 2 2 2
X1¥Y71 X2¥s Xa¥z X4¥4 Xs5¥5 Xe¥Ye X7Y¥7
\ x2 X2 X2 X3 ' X2 x2

(General definition
If (p1,4q1),(P2,42), ., (Pn, Gn) are the cells of the Ferrers diagram of - n then

n

Ay(r,y) = det ||$§yj i,j=1

The linear span of all the partial derivatives of A ,(x,y) Is denoted M, [X, Y]
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Some remarkable determinants

(1,0) | (1,1)
'::> Ar2(X,Y) = det
(0,0) | (0,1)
(2,0)
(1,001 (1,1) | (1,2)
'::> Azay(X,Y)
(0,0) | (0,1) | (0,2)

General definition

If (p1,4q1),(P2,42), ., (Pn, Gn) are the cells of the Ferrers diagram of - n then

Au(x,y) = det |27y}

The linear span of all the partial derivatives of A,(x,y) 1s denoted M, [X, Y]

0..0
/X1Y1
0.1
Xq¥4

1,.0
X1¥4

\ xtyl

= det

Xo¥o X3¥3g X4.Y4\
0.1 0.1 0.1
Xo¥s X3¥3 X4¥4y
1..0 1..0 1..0
Xo¥o X3¥3 X4¥4
slvl  xlyl gl 1/
2¥o 3¥3 4Y4
/ 1 1 1
¥1 ¥2 ¥a
2 2 2
Y1 Yo ¥a
X4 X2 X3
X1¥1 X2¥2 X3z¥:3
2 2
X1¥7 X2¥5 Xa¥3
\ x2 X2 X2

n

= det

2,=1

M, [X,Y] = L]0705Au(x,y))
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(1,0)

(1,1)

(0,0)

(0,1)

(2,0)

Some remarkable determinants

'::> Ar2(X,Y) = det

(1,0)

(1,1)

(1,2)

(0,0)

(0,1)

I::> Aszzq (X, Y)

(0,2)

General definition

If (p1,4q1),(P2,42), ., (Pn, Gn) are the cells of the Ferrers diagram of - n then

Au(x,y) = det |27y}

The linear span of all the partial derivatives of A,(x,y) 1s denoted M, [X, Y]

In symbols

0..0
/X1Y1
0.1
Xq¥4

1,.0
X1¥4

\ xtyl

= det

Xo¥o X3¥3g X4.Y4\
0.1 0.1 0.1
Xo¥s X3¥3 X4¥4y
1..0 1..0 1..0
Xo¥o X3¥3 X4¥4
slvl  xlyl gl 1/
2¥o 3¥3 4Y4
/ 1 1 1
¥1 ¥2 ¥a
2 2 2
Y1 Yo ¥a
X4 X2 X3
X1¥1 X2¥2 X3z¥:3
2 2
X1¥7 X2¥5 Xa¥3
\ x2 X2 X2

n

= det

2,=1

M, [X,Y] = L]0705Au(x,y))
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X2

X2¥2

1

¥z
X3

X3¥3

Y4

X4¥Y4




(1,0)

(1,1)

(0,0)

(0,1)

(2,0)

Some remarkable determinants

'::> Ar2(X,Y) = det

(1,0)

(1,1)

(1,2)

(0,0)

(0,1)

I::> Aszzq (X, Y)

(0,2)

General definition

If (p1,4q1),(P2,42), ., (Pn, Gn) are the cells of the Ferrers diagram of - n then

Au(x,y) = det |27y}

The linear span of all the partial derivatives of A,(x,y) 1s denoted M, [X, Y]

In symbols

0..0
/X1Y1
0.1
Xq¥4

1,.0
X1¥4

\ xtyl

= det

Xo¥o X3¥3g X4.Y4\
0.1 0.1 0.1
Xo¥s X3¥3 X4¥4y
1..0 1..0 1..0
Xo¥o X3¥3 X4¥4
slvl  xlyl gl 1/
2¥o 3¥3 4Y4
/ 1 1 1
¥1 ¥2 ¥a
2 2 2
Y1 Yo ¥a
X4 X2 X3
X1¥1 X2¥2 X3z¥:3
2 2
X1¥7 X2¥5 Xa¥3
\ x2 X2 X2

n

= det

2,=1

M, [X,Y] = L]0705Au(x,y))
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

Tuesday, March 24, 2009



Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols

Tuesday, March 24, 2009



Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols dim M,u [X, Y] < n!

Tuesday, March 24, 2009



Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols dim M,u [X, Y] < n!

For example

Tuesday, March 24, 2009



Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols dim M,u [X, Y] < n!

For example [ using MAPLE])
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols dim M,u [X, Y] < n!

For example [ using MAPLE])

DDmu([2,1]);
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols dim M,u [X, Y] < n!

For example [ using MAPLE)

1 1 1
vi y2 ¥3
xI x2 x3

DDmu([2,1]);
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols dim MM [X, Y] < n!

For example [ using MAPLE)

1 1 1
vi y2 ¥3
xI x2 x3

DDmu([2,1]);

D21l:=det (")
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols dim MM [X, Y] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi v2 3
xf x2 x3
D21:=det ("); D2I=v2x3 - v3x2-vIx3+yIx2+xivy3-xIvy2
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols dim MM [X, Y] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi v2 3
xf x2 x3
D21:=det ("); D2I=v2x3 - v3x2-vIx3+yIx2+xivy3-xIvy2

diff(D21,x1);
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For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols dim MM [X, Y] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi v2 3
xf x2 x3
D21l:=det("); D21:=v2x3 -v3x2-yIx3+yIx2+xIvy3-xIy2
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols dim M'u [X, Y] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi v2 3
xf x2 x3
D21l:=det("); D21:=v2x3 -v3x2-yIx3+yIx2+xIvy3-xIy2
diff(D21,x1);
y3 - ¥2

diff(D21,%3);
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols dim M'u [X, Y] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi v2 3
xf x2 x3
D21l:=det("); D21:=v2x3 -v3x2-yIx3+yIx2+xIvy3-xIy2
diff(D21,x1);
y3-y2
diff (D21,x3);
y2 - yi
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols (iiI[lI\d#L[}K:,wif] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi y2 3
xf x2 x3
D21:=det ("); D2I=v2x3 - v3x2-vIx3+yIx2+xivy3-xIvy2
diff (D21,x1);
y3 - ¥2
diff (D21,x3);
y2 -1

diff(D21,y1);
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols (iiI[lI\d#L[}K:,wif] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi y2 3
xf x2 x3
D21:=det ("); D2I=v2x3 - v3x2-vIx3+yIx2+xivy3-xIvy2
diff (D21,x1);
y3 - ¥2
diff (D21,x3);
y2 -1
diff(D21,y1);
-x3 + x2
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For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols (iiI[lI\d#L[}K:,wif] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi y2 3
xf x2 x3
D21:=det ("); D2I=v2x3 - v3x2-vIx3+yIx2+xivy3-xIvy2
diff (D21,x1);
y3 - ¥2
diff (D21,x3);
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diff(D21,y1);
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diff(D21,y3);
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For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols (iiI[lI\d#L[}K:,wif] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi y2 3
xf x2 x3
D21:=det ("); D2I=v2x3 - v3x2-vIx3+yIx2+xivy3-xIvy2
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y3 - ¥2
diff (D21,x3);
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols (iiI[lI\d#L[}K:,wif] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi y2 3
xf x2 x3
D21:=det ("); D2I=v2x3 - v3x2-vIx3+yIx2+xivy3-xIvy2
diff (D21,x1);
y3 - ¥2
diff (D21,x3);
y2 -1
diff(D21,y1);
-x3 + x2

diff(D21,y3);
-x2 + xl
diff(D21,x3,y2);
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols (iiI[lI\d#L[}K:,wif] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi y2 3
xf x2 x3
D21:=det ("); D2I=v2x3 - v3x2-vIx3+yIx2+xivy3-xIvy2
diff (D21,x1);
y3 - ¥2
diff (D21,x3);
y2 -1
diff(D21,y1);
-x3 + x2
diff (D21,y3);
-x2+ x{
diff(D21,x3,y2);
1
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols (iiI[lI\d#L[}K:,wif] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi y2 3
xf x2 x3
D21:=det ("); D21 :=v2x3 - v3x2-vIx3+yIx2+xivy3-xIvy2
diff (D21,x1);
y3 - ¥2
diff (D21,x3);
y2 -1
diff(D21,y1);
-x3 + x2
diff (D21,y3);
-x2+ x{
diff(D21,x3,y2);
1
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!

In symbols (iirrLINGQL[}KL,’iT] < n!

For example [ using MAPLE)

1 1 1
DDmu([2,1]); vi y2 3
xf x2 x3
D21:=det ("); D21 :=v2x3 - v3x2-vIx3+yIx2+xivy3-xIvy2
diff (D21,x1);
y3 —¥2
diff (D21,x3);
y2 -1
diff(D21,y1);
-x3 + x2
diff (D21,y3);
-x2 + x1
diff(D21,x3,y2);
1
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Theorem (easy) Brief review

For any p - n the dimension of the linear span of the derivatives of A,(X,Y) is at most n!
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