A New Recursion

In
 The Theory of Macdonald Polynomials

Joint work
with
Jim Haglund

Some Basic Ingredients

Some Basic Ingredients

Some Basic Ingredients

Some Basic Ingredients

Some Basic Ingredients

Some Basic Ingredients

Some Basic Ingredients

$$
n(\mu)=\sum l=\sum l^{\prime}=\sum(i-1) \mu_{i}=\sum\binom{\mu_{i}^{\prime}}{2}
$$

Some Basic Ingredients

$n(\mu)=\sum l=\sum l^{\prime}=\sum(i-1) \mu_{i}=\sum\binom{\mu_{i}^{\prime}}{2}$
$\sum q^{a^{\prime}} t^{l^{\prime}}=B_{\mu}(q, t)$

Some Basic Ingredients

$n(\mu)=\sum l=\sum l^{\prime}=\sum(i-1) \mu_{i}=\sum\binom{\mu_{i}^{\prime}}{2}$
$\sum q^{a^{\prime}} t^{l^{\prime}}=B_{\mu}(q, t) \quad \Pi^{o, o}\left(1-q^{a^{\prime}} t^{l^{\prime}}\right)=\Pi_{\mu}(q, t)$

Some Basic Ingredients

$$
n(\mu)=\sum l=\sum l^{\prime}=\sum(i-1) \mu_{i}=\sum\binom{\mu_{i}^{\prime}}{2}
$$

$$
\sum q^{a^{\prime}} t^{l^{\prime}}=B_{\mu}(q, t)
$$

$$
\Pi^{o, o}\left(1-q^{a^{\prime}} t^{l^{\prime}}\right)=\Pi_{\mu}(q, t)
$$

$$
\Pi\left(q^{a}-t^{l+1}\right)=\tilde{h}_{\mu}(q, t)
$$

Some Basic Ingredients

$$
\begin{aligned}
& n(\mu)=\sum l=\sum l^{\prime}=\sum(i-1) \mu_{i}=\sum\left(\begin{array}{c}
\left.\mu_{2}^{\prime}\right) \\
\sum q^{a^{\prime}} t^{l^{\prime}}
\end{array}=B_{\mu}(q, t) \quad \prod^{o, o}\left(1-q^{a^{\prime}} t^{l^{\prime}}\right)=\Pi_{\mu}(q, t)\right.
\end{aligned}
$$

$$
\Pi\left(q^{a}-t^{l+1}\right)=\tilde{h}_{\mu}(q, t)
$$

$$
\Pi\left(t^{l}-q^{a+1}\right)=\tilde{h}_{\mu}^{\prime}(q, t)
$$

Some Basic Ingredients

$$
\begin{aligned}
n(\mu)=\sum l & =\sum l^{\prime}=\sum(i-1) \mu_{i}=\sum\left(\begin{array}{c}
\mu_{2}^{\prime} i
\end{array}\right) \\
\sum q^{a^{\prime}} t^{l^{\prime}} & =B_{\mu}(q, t) \quad \Pi^{o, o}\left(1-q^{a^{\prime}} t^{l^{\prime}}\right)=\Pi_{\mu}(q, t)
\end{aligned}
$$

$$
\begin{aligned}
& \Pi\left(q^{a}-t^{l+1}\right)=\tilde{h}_{\mu}(q, t) \\
& \Pi\left(t^{l}-q^{a+1}\right)=\tilde{h}_{\mu}^{\prime}(q, t)
\end{aligned}
$$

Some Basic Ingredients

$$
\begin{aligned}
& n(\mu)=\sum l=\sum l^{\prime}=\sum(i-1) \mu_{i}=\sum\binom{\left.\mu_{2}^{\prime}\right)}{2} \\
& \sum q^{a^{\prime}} t^{l^{\prime}}=B_{\mu}(q, t) \quad \Pi^{o, o}\left(1-q^{a^{\prime}} t^{l^{\prime}}\right)=\Pi_{\mu}(q, t)
\end{aligned}
$$

$$
\begin{aligned}
& \Pi\left(q^{a}-t^{l+1}\right)=\tilde{h}_{\mu}(q, t) \\
& \Pi\left(t^{l}-q^{a+1}\right)=\tilde{h}_{\mu}^{\prime}(q, t)
\end{aligned}
$$

$$
M=(1-t)(1-q)
$$

Some Basic Ingredients

$$
\begin{aligned}
& n(\mu)=\sum l=\sum l^{\prime}=\sum(i-1) \mu_{i}=\sum\binom{\left.\mu_{2}^{\prime}\right)}{2} \\
& \sum q^{a^{\prime}} t^{l^{\prime}}=B_{\mu}(q, t) \quad \Pi^{o, o}\left(1-q^{a^{\prime}} t^{l^{\prime}}\right)=\Pi_{\mu}(q, t)
\end{aligned}
$$

$$
\begin{aligned}
& \Pi\left(q^{a}-t^{l+1}\right)=\tilde{h}_{\mu}(q, t) \\
& \Pi\left(t^{l}-q^{a+1}\right)=\tilde{h}_{\mu}^{\prime}(q, t)
\end{aligned}
$$

$$
M=(1-t)(1-q)
$$

The Macdonald polynomials

The Macdonald polynomials
we will work with are

The Macdonald polynomials

we will work with are
the unique symmetric function basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right\}_{\mu}$

The Macdonald polynomials
we will work with are
the unique symmetric function basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right\}_{\mu}$ such that

The Macdonald polynomials

we will work with are

$$
\text { the unique symmetric function basis }\left\{\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \boldsymbol{q}, \mathrm{t}]\right\}_{\mu}
$$

such that

$$
\text { 1) }\left.\quad \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \boldsymbol{q}, \mathrm{t}]\right|_{\mathbb{S}_{[n]}}=1
$$

The Macdonald polynomials

we will work with are
the unique symmetric function basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathrm{X} ; \mathbf{q}, \mathrm{t}]\right\}_{\mu}$
such that

1) $\left.\quad \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \boldsymbol{q}, \mathrm{t}]\right|_{\mathrm{S}_{[\mathbf{n}]}}=1$
2) $\left\langle\tilde{\mathrm{H}}_{\mu}, \tilde{\mathrm{H}}_{\lambda}\right\rangle_{*}=\chi(\lambda=\mu) \mathbf{w}_{\mu}(\mathbf{q}, \mathbf{t})$

The Macdonald polynomials

we will work with are
the unique symmetric function basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right\}_{\mu}$
such that

$$
\begin{gathered}
\text { 1) }\left.\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]\right|_{\mathbf{S}_{[\mathbf{n}]}}=1 \\
\text { 2) }\left\langle\tilde{\mathrm{H}}_{\mu}, \tilde{\mathrm{H}}_{\lambda}\right\rangle_{*}=\chi(\lambda=\mu) \mathbf{w}_{\mu}(\mathbf{q}, \mathbf{t}) \\
\left\langle p_{\alpha}, p_{\beta}\right\rangle_{*}= \\
\end{gathered}
$$

The Macdonald polynomials

we will work with are
the unique symmetric function basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathrm{q}, \mathrm{t}]\right\}_{\mu}$
such that

$$
\begin{gathered}
\text { 1) }\left.\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]\right|_{\mathbf{S}_{[\mathbf{n}]}}=1 \\
\text { 2) } \\
\left\langle\tilde{\mathrm{H}}_{\mu}, \tilde{\mathrm{H}}_{\lambda}\right\rangle_{*}=\chi(\lambda=\mu) \mathbf{w}_{\mu}(\mathbf{q}, \mathbf{t}) \\
\left\langle p_{\alpha}, p_{\beta}\right\rangle_{*}= \\
\chi(\alpha=\beta) z_{\alpha} \prod_{\alpha_{i}>0}(-1)^{\alpha_{i}-1}\left(1-t^{\alpha_{i}}\right)\left(1-t^{\beta_{i}}\right)
\end{gathered}
$$

The Visual Representation of a polynomial P[q, t]

The Macdonald polynomials

we will work with are
the unique symmetric function basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathrm{X} ; \mathrm{q}, \mathrm{t}]\right\}_{\mu}$
such that

$$
\begin{gathered}
\text { 1) }\left.\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right|_{\mathbf{S}_{[\mathbf{n}]}}=1 \\
\text { 2) }\left\langle\tilde{\mathrm{H}}_{\mu}, \tilde{\mathrm{H}}_{\lambda}\right\rangle_{*}=\chi(\lambda=\mu) \mathbf{w}_{\mu}(\mathbf{q}, \mathrm{t}) \\
\left\langle p_{\alpha}, p_{\beta}\right\rangle_{*}=\chi(\alpha=\beta) z_{\alpha} \prod_{\alpha_{i}>0}(-1)^{\alpha_{i}-1}\left(1-t^{\alpha_{i}}\right)\left(1-t^{\beta_{i}}\right) \\
\text { The Visual Representation of a polynomial } \mathrm{P}[\mathrm{q}, \mathrm{t}] \\
8 q^{3}+36 q^{2} t+54 q t^{2}+27 t^{3}+12 q^{2}+36 q t+27 t^{2}+6 q+9 t+1
\end{gathered}
$$

The Macdonald polynomials

we will work with are
the unique symmetric function basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathrm{X} ; \mathrm{q}, \mathrm{t}]\right\}_{\mu}$
such that

1) $\left.\quad \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right|_{\mathrm{S}_{[\mathbf{n}]}}=1$
2) $\left\langle\tilde{\mathrm{H}}_{\mu}, \tilde{\mathrm{H}}_{\lambda}\right\rangle_{*}=\chi(\lambda=\mu) \mathbf{w}_{\mu}(\mathbf{q}, \mathbf{t})$

$$
\left\langle p_{\alpha}, p_{\beta}\right\rangle_{*}=\chi(\alpha=\beta) z_{\alpha} \prod_{\alpha_{i}>0}(-1)^{\alpha_{i}-1}\left(1-t^{\alpha_{i}}\right)\left(1-t^{\beta_{i}}\right)
$$

The Visual Representation of a polynomial P[q,t]

$$
8 q^{3}+36 q^{2} t+54 q t^{2}+27 t^{3}+12 q^{2}+36 q t+27 t^{2}+6 q+9 t+1
$$

$$
\left[\begin{array}{rrrr}
27 & 0 & 0 & 0 \\
27 & 54 & 0 & 0 \\
9 & 36 & 36 & 0 \\
1 & 6 & 12 & 8
\end{array}\right]
$$

The Macdonald polynomials

we will work with are
the unique symmetric function basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathrm{X} ; \mathrm{q}, \mathrm{t}]\right\}_{\mu}$
such that

1) $\left.\quad \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right|_{\mathrm{S}_{[\mathbf{n}]}}=1$
2) $\left\langle\tilde{\mathrm{H}}_{\mu}, \tilde{\mathrm{H}}_{\lambda}\right\rangle_{*}=\chi(\lambda=\mu) \mathbf{w}_{\mu}(\mathbf{q}, \mathbf{t})$

$$
\left\langle p_{\alpha}, p_{\beta}\right\rangle_{*}=\chi(\alpha=\beta) z_{\alpha} \prod_{\alpha_{i}>0}(-1)^{\alpha_{i}-1}\left(1-t^{\alpha_{i}}\right)\left(1-t^{\beta_{i}}\right)
$$

The Visual Representation of a polynomial P[q,t]

$$
8 q^{3}+36 q^{2} t+54 q t^{2}+27 t^{3}+12 q^{2}+36 q t+27 t^{2}+6 q+9 t+1
$$

$$
\mathfrak{t}^{\mathbf{r}} \begin{array}{r}
3 \\
2
\end{array}\left[\begin{array}{rrrr}
27 & 0 & 0 & 0 \\
1 \\
27 & 54 & 0 & 0 \\
0 & 36 & 36 & 0 \\
1 & 6 & 12 & 8
\end{array}\right]
$$

The Macdonald polynomials

we will work with are
the unique symmetric function basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right\}_{\mu}$
such that

1) $\left.\quad \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right|_{\mathrm{S}_{[\mathbf{n}]}}=1$
2) $\left\langle\tilde{\mathrm{H}}_{\mu}, \tilde{\mathrm{H}}_{\lambda}\right\rangle_{*}=\chi(\lambda=\mu) \mathbf{w}_{\mu}(\mathbf{q}, \mathbf{t})$

$$
\left\langle p_{\alpha}, p_{\beta}\right\rangle_{*}=\chi(\alpha=\beta) z_{\alpha} \prod_{\alpha_{i}>0}(-1)^{\alpha_{i}-1}\left(1-t^{\alpha_{i}}\right)\left(1-t^{\beta_{i}}\right)
$$

The Visual Representation of a polynomial P[q,t]

$$
8 q^{3}+36 q^{2} t+54 q t^{2}+27 t^{3}+12 q^{2}+36 q t+27 t^{2}+6 q+9 t+1
$$

The Macdonald polynomials

we will work with are
the unique symmetric function basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathrm{q}, \mathrm{t}]\right\}_{\mu}$
such that

1) $\left.\quad \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right|_{\mathrm{S}_{[\mathbf{n}]}}=1$
2) $\left\langle\tilde{\mathrm{H}}_{\mu}, \tilde{\mathrm{H}}_{\lambda}\right\rangle_{*}=\chi(\lambda=\mu) \mathbf{w}_{\mu}(\mathbf{q}, \mathbf{t})$
$\left\langle p_{\alpha}, p_{\beta}\right\rangle_{*}=\chi(\alpha=\beta) z_{\alpha} \prod_{\alpha_{i}>0}(-1)^{\alpha_{i}-1}\left(1-t^{\alpha_{i}}\right)\left(1-t^{\beta_{i}}\right)$
The Visual Representation of a polynomial P[q, t]

$$
\begin{gathered}
8 q^{3}+36 q^{2} t+54 q t^{2}+\sqrt{27} t^{3}+12 q^{2}+36 q t+27 t^{2}+6 q+9 t+1 \\
\left.\mathrm{t}^{\mathrm{r}}\left|\begin{array}{c}
3 \\
2 \\
1 \\
0
\end{array}\right| \begin{array}{rrrrr}
27 & 0 & 0 & 0 \\
27 & 54 & 0 & 0 \\
9 & 36 & 36 & 0 \\
1 & 6 & 12 & 8
\end{array}\right] \\
\xrightarrow[0]{2} 1 \\
\mathbf{q}^{\mathrm{S}}
\end{gathered}
$$

The Macdonald polynomials

we will work with are
the unique symmetric function basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathrm{q}, \mathrm{t}]\right\}_{\mu}$
such that

1) $\left.\quad \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right|_{\mathrm{S}_{[\mathbf{n}]}}=1$
2) $\left\langle\tilde{\mathrm{H}}_{\mu}, \tilde{\mathrm{H}}_{\lambda}\right\rangle_{*}=\chi(\lambda=\mu) \mathbf{w}_{\mu}(\mathbf{q}, \mathrm{t})$
$\left\langle p_{\alpha}, p_{\beta}\right\rangle_{*}=\chi(\alpha=\beta) z_{\alpha} \prod_{\alpha_{i}>0}(-1)^{\alpha_{i}-1}\left(1-t^{\alpha_{i}}\right)\left(1-t^{\beta_{i}}\right)$
The Visual Representation of a polynomial P[q, t]

The Macdonald polynomials

we will work with are
the unique symmetric function basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathrm{X} ; \mathrm{q}, \mathrm{t}]\right\}_{\mu}$
such that

1) $\left.\quad \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right|_{\mathrm{S}_{[\mathbf{n}]}}=1$
2) $\left\langle\tilde{\mathrm{H}}_{\mu}, \tilde{\mathrm{H}}_{\lambda}\right\rangle_{*}=\chi(\lambda=\mu) \mathbf{w}_{\mu}(\mathbf{q}, \mathrm{t})$

$$
\left\langle p_{\alpha}, p_{\beta}\right\rangle_{*}=\chi(\alpha=\beta) z_{\alpha} \prod_{\alpha_{i}>0}(-1)^{\alpha_{i}-1}\left(1-t^{\alpha_{i}}\right)\left(1-t^{\beta_{i}}\right)
$$

The Visual Representation of a polynomial P[q, t]

Our Macdonald polynomials have Schur function expansion

Our Macdonald polynomials have Schur function expansion

$$
\tilde{H}_{\mu}(x ; q, t)=\sum_{\lambda} S_{\lambda}(x) \tilde{K}_{\lambda, \mu}(q, t)
$$

Our Macdonald polynomials have Schur function expansion

$$
\tilde{H}_{\mu}(x ; q, t)=\sum_{\lambda} S_{\lambda}(x) \tilde{K}_{\lambda, \mu}(q, t)
$$

where

Our Macdonald polynomials have Schur function expansion

$$
\tilde{H}_{\mu}(x ; q, t)=\sum_{\lambda} S_{\lambda}(x) \tilde{K}_{\lambda, \mu}(q, t)
$$

where

$$
\tilde{\mathbf{K}}_{\lambda \mu}(\boldsymbol{q}, \mathrm{t})=\mathrm{t}^{\mathbf{n}(\mu)} \mathbf{K}_{\lambda \mu}(\mathbf{q}, 1 / \mathbf{t})
$$

Our Macdonald polynomials have Schur function expansion

$$
\tilde{H}_{\mu}(x ; q, t)=\sum_{\lambda} S_{\lambda}(x) \tilde{K}_{\lambda, \mu}(q, t)
$$

where

$$
\tilde{\mathbf{K}}_{\lambda \mu}(\boldsymbol{q}, \mathrm{t})=\mathrm{t}^{\mathbf{n}(\mu)} \mathrm{K}_{\lambda \mu}(\boldsymbol{q}, 1 / \mathrm{t})
$$

with $K_{\lambda_{\mu}}(\mathbf{q}, \mathrm{t})$ the Macdonald q , t -Kostka coefficient.

Our Macdonald polynomials have Schur function expansion

$$
\tilde{H}_{\mu}(x ; q, t)=\sum_{\lambda} S_{\lambda}(x) \tilde{K}_{\lambda, \mu}(q, t)
$$

where

$$
\tilde{\mathbf{K}}_{\lambda \mu}(\boldsymbol{q}, \mathrm{t})=\mathrm{t}^{\mathbf{n}(\mu)} \mathbf{K}_{\lambda \mu}(\mathbf{q}, 1 / \mathbf{t})
$$

with $K_{\lambda_{\mu}}(\mathbf{q}, \mathrm{t})$ the Macdonald q , t -Kostka coefficient.

$$
\tilde{H}_{[3,2]}(x ; q, t)=
$$

Our Macdonald polynomials have Schur function expansion

$$
\tilde{H}_{\mu}(x ; q, t)=\sum_{\lambda} S_{\lambda}(x) \tilde{K}_{\lambda, \mu}(q, t)
$$

where

$$
\tilde{\mathbf{K}}_{\lambda \mu}(\mathbf{q}, \mathbf{t})=\mathrm{t}^{\mathbf{n}(\mu)} \mathbf{K}_{\lambda \mu}(\mathbf{q}, 1 / \mathbf{t})
$$

with $K_{\lambda_{\mu}}(\mathbf{q}, \mathrm{t})$ the Macdonald q, t-Kostka coefficient.

$$
\tilde{H}_{[3,2]}(x ; q, t)=s_{5}+s_{4,1}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]+s_{3,2}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]+s_{3,1,1}\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]+
$$

Our Macdonald polynomials have Schur function expansion

$$
\tilde{H}_{\mu}(x ; q, t)=\sum_{\lambda} S_{\lambda}(x) \tilde{K}_{\lambda, \mu}(q, t)
$$

where

$$
\tilde{\mathbf{K}}_{\lambda \mu}(\mathbf{q}, \mathrm{t})=\mathrm{t}^{\mathbf{n}(\mu)} \mathbf{K}_{\lambda \mu}(\mathbf{q}, 1 / \mathbf{t})
$$

with $\mathrm{K}_{\lambda_{\mu}}(\mathrm{q}, \mathrm{t})$ the Macdonald q , t-Kostka coefficient.

$$
\begin{aligned}
& \tilde{H}_{[3,2]}(x ; q, t)=s_{5}+s_{4,1}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]+s_{3,2}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]+s_{3,1,1 q}\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]+ \\
& +s_{2,2,1} q\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]+s_{2,1,1,1} t q^{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]+s_{1,1,1,1,1} \quad t^{2} q^{4}
\end{aligned}
$$

Our Macdonald polynomials have Schur function expansion

$$
\tilde{H}_{\mu}(x ; q, t)=\sum_{\lambda} S_{\lambda}(x) \tilde{K}_{\lambda, \mu}(q, t)
$$

where

$$
\tilde{\mathbf{K}}_{\lambda \mu}(\boldsymbol{q}, \mathrm{t})=\mathrm{t}^{\mathbf{n}(\mu)} \mathbf{K}_{\lambda \mu}(\mathbf{q}, 1 / \mathbf{t})
$$

with $\mathrm{K}_{\lambda_{\mu}}(\mathrm{q}, \mathrm{t})$ the Macdonald q , t-Kostka coefficient.

$$
\begin{array}{r}
\tilde{H}_{[3,2]}(x ; q, t)=s_{5}+s_{4,1}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]+s_{3,2}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]+s_{3,1,1}\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]+ \\
+s_{2,2,1}
\end{array} \begin{aligned}
& q\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]+s_{2,1,1,1} t q^{2}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]+s_{1,1,1,1,1}
\end{aligned} t^{2} q^{4},
$$

The Jig Saw Puzzle

The Jig Saw Puzzle

of

The Jig Saw Puzzle

of
Schur Function Expansions

The Jig Saw Puzzle

$\tilde{\mathrm{H}}_{[\mathbf{1 , 1 , 1 , 1]}}[\mathbf{X} ; \boldsymbol{q}, \mathrm{t}]$
of
Schur Function Expansions

The Jig Saw Puzzle

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{1 , 1 , 1 , 1}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[\begin{array}{c}
s_{1,1,1,1} \\
s_{2,1,1} \\
s_{2,2}+s_{2,1,1} \\
s_{3,1}+s_{2,1,1} \\
s_{3,1}+s_{2,2} \\
s_{3,1} \\
s_{4}
\end{array}\right]}
\end{gathered}
$$

of

Schur Function Expansions

The Jig Saw Puzzle

The Jig Saw Puzzle

$\tilde{\mathrm{H}}_{[\mathbf{1 , 1 , 1 , 1]}}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]$
\(\left[\begin{array}{c}s_{1,1,1,1}

s_{2,1,1}\end{array}\right]\)| Frobenius characteristic of |
| :---: |
| the linear span |
| of derivatives of |

the Vandermonde determinant

$$
\tilde{\mathrm{H}}_{[\mathbf{2}, \mathbf{1}, \mathbf{1}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]
$$

The Jig Saw Puzzle

$$
\begin{aligned}
& \tilde{\mathrm{H}}_{[\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& {\left[\begin{array}{c}
s_{1,1,1}, 1 \\
s_{2,1}, 1 \\
s_{2,2}+s_{2,1,1} \\
s_{3,1}+s_{2,1,1} \\
s_{3,1}+s_{2,2} \\
s_{3,1} \\
s_{4}
\end{array}\right]}
\end{aligned}
$$

Frobenius characteristic of the linear span of derivatives of
the Vandermonde determinant
of

Schur Function Expansions

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2}, \mathbf{1}, \mathbf{1}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[\begin{array}{cc}
s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1}+s_{2,2} & s_{2,1,1} \\
s_{3,1} & s_{2,2}+s_{2,1,1} \\
s_{4} & s_{3,1}
\end{array}\right]}
\end{gathered}
$$

The Jig Saw Puzzle

$$
\begin{aligned}
& \tilde{\mathrm{H}}_{[\mathbf{1 , 1 , 1 , 1} \mathbf{1}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& {\left[\begin{array}{c}
s_{1,1,1,1} \\
s_{2,1,1} \\
s_{2,2}+s_{2,1,1} \\
s_{3,1}+s_{2,1,1} \\
s_{3,1}+s_{2,2} \\
s_{3,1} \\
s_{4}
\end{array}\right]}
\end{aligned}
$$

Frobenius characteristic of the linear span of derivatives of
the Vandermonde determinant
of
Schur Function Expansions

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2}, \mathbf{1}, \mathbf{1}]}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
{\left[\begin{array}{cc}
s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1}+s_{2,2} & s_{2,1,1} \\
s_{3,1} & s_{2,2}+s_{2,1,1} \\
s_{4} & s_{3,1}
\end{array}\right]} \\
\\
\quad \tilde{\mathrm{H}}_{[\mathbf{4}]}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]
\end{gathered}
$$

The Jig Saw Puzzle

$$
\begin{aligned}
& \tilde{\mathrm{H}}_{[\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& {\left[\begin{array}{c}
s_{1,1}, 1,1 \\
s_{2,1,1} \\
s_{2,2}+s_{2,1,1} \\
s_{3,1}+s_{2,1,1} \\
s_{3,1}+s_{2,2} \\
s_{3,1} \\
s_{4}
\end{array}\right]}
\end{aligned}
$$

Frobenius characteristic of the linear span of derivatives of
the Vandermonde determinant
of

Schur Function Expansions

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2 , 1 , 1}]}\left[\mathbf{X} ; \mathbf{\mathbf { q } _ { 1 }}, \mathrm{t}\right] \\
{\left[\begin{array}{cc}
s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1}+s_{2,2} & s_{2,1,1} \\
s_{3,1} & s_{2,2}+s_{2,1,1} \\
s_{4} & s_{3,1}
\end{array}\right]} \\
\tilde{H}_{[\mathbf{4}]}[\mathbf{X} ; \mathbf{c}, \mathrm{t}] \\
{\left[\begin{array}{ccc}
s_{2,2} & s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1} & s_{3,1}+s_{2,1,1} & s_{2,1,1} \\
s_{4} & s_{3,1} & s_{2,2}
\end{array}\right]}
\end{gathered}
$$

The Jig Saw Puzzle

Frobenius characteristic of the linear span of derivatives of
the Vandermonde determinant
of

Schur Function Expansions

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2}, \mathbf{1}, \mathbf{1}]}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
{\left[\begin{array}{cc}
s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1}+s_{2,2} & s_{2,1,1} \\
s_{3,1} & s_{2,2}+s_{2,1,1} \\
s_{4} & s_{3,1}
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
c \tilde{H}_{[\mathbf{4}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[\begin{array}{ccc}
s_{2,2} & s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1} & s_{3,1}+s_{2,1} 1 & s_{2,1,1} \\
s_{4} & s_{3,1} & s_{2,2}
\end{array}\right]}
\end{gathered}
$$

$$
\tilde{\mathrm{H}}_{[3,1]}[\mathbf{X} ; \mathbf{c}, \mathrm{t}]
$$

The Jig Saw Puzzle

Frobenius characteristic of the linear span of derivatives of
the Vandermonde determinant
of

Schur Function Expansions

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2 , 1 , 1]}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[\begin{array}{cc}
s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1}+s_{2,2} & s_{2,1,1} \\
s_{3,1} & s_{2,2}+s_{2,1,1} \\
s_{4} & s_{3,1}
\end{array}\right]} \\
\tilde{\mathrm{H}}_{[\mathbf{4}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[\begin{array}{ccc}
s_{2,2} & s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1} & s_{3,1}+s_{2,1,1} & s_{2,1,1} \\
s_{4} & s_{3,1} & s_{2,2}
\end{array}\right]} \\
{\left[\begin{array}{cccc}
s_{3,1} & s_{2,2}+s_{2,1,1} & s_{2,1,1} & s_{1,1,1,1} \\
s_{4} & s_{3,1} & s_{3,1}+s_{2,2} & s_{2,1,1}
\end{array}\right]}
\end{gathered}
$$

The Jig Saw Puzzle

Frobenius characteristic of the linear span of derivatives of
the Vandermonde determinant
of

Schur Function Expansions

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2 , 1 , \mathbf { 1 }]}}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
{\left[\begin{array}{cc}
s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1}+s_{2,2} & s_{2,1,1} \\
s_{3,1} & s_{2,2}+s_{2,1,1} \\
s_{4} & s_{3,1}
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
c \tilde{\mathrm{H}}_{[\mathbf{4}]}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
{\left[\begin{array}{ccc}
s_{2,2} & s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1} & s_{3,1}+s_{2,1,1} & s_{2,1,1} \\
s_{4} & s_{3,1} & s_{2,2}
\end{array}\right]}
\end{gathered}
$$

$$
\tilde{\mathrm{H}}_{[3,1]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]
$$

$$
\left[\begin{array}{cccc}
s_{3,1} & s_{2,2}+s_{2,1,1} & s_{2,1,1} & s_{1,1,1,1} \\
s_{4} & s_{3,1} & s_{3,1}+s_{2,2} & s_{2,1,1}
\end{array}\right]
$$

$$
\tilde{\mathrm{H}}_{[2,2]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]
$$

The Jig Saw Puzzle

$$
\begin{aligned}
& \tilde{H}_{[\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& {\left[\begin{array}{c}
s_{1,1}, 1,1 \\
s_{2,1} \\
s_{2,2}+s_{2,1,1} \\
s_{3,1}+s_{2,1,1} \\
s_{3,1}+s_{2,2} \\
s_{3,1} \\
s_{4}
\end{array}\right]}
\end{aligned}
$$

Frobenius characteristic of the linear span of derivatives of
the Vandermonde determinant
of

Schur Function Expansions

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2}, \mathbf{1}, \mathbf{1}]}\left[\mathbf{X} ; \mathbf{c}_{\mathbf{\prime}} \mathbf{t}\right] \\
{\left[\begin{array}{cc}
s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1}+s_{2,2} & s_{2,1,1} \\
s_{3,1} & s_{2,2}+s_{2,1,1} \\
s_{4} & s_{3,1}
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
c \tilde{\mathrm{H}}_{[\mathbf{4}]}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
{\left[s_{2,2}\right.} \\
s_{2,1,1}
\end{gathered} s_{1,1,1,1}\left[\begin{array}{ccc}
s_{3,1} & s_{3,1}+s_{2,1} 1 & s_{2,1,1} \\
s_{4} & s_{3,1} & s_{2,2}
\end{array}\right]
$$

$$
\tilde{\mathrm{H}}_{[3, \mathbf{1}]}[\mathbf{X} ; \mathbf{c}, \mathrm{t}]
$$

$$
\left[\begin{array}{cccc}
s_{3,1} & s_{2,2}+s_{2,1,1} & s_{2,1,1} & s_{1,1,1,1} \\
s_{4} & s_{3,1} & s_{3,1}+s_{2,2} & s_{2,1,1}
\end{array}\right]
$$

$$
\begin{gathered}
\tilde{H}_{[\mathbf{2 , 2}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[s_{4}, s_{3,1}, s_{3,1}+s_{2,2}, s_{3,1}+s_{2,1,1}, s_{2,2}+s_{2,1,1}, s_{2,1,1}, s_{1,1,1,1}\right]}
\end{gathered}
$$

The Jig Saw Puzzle

$$
\begin{aligned}
& \tilde{\mathrm{H}}_{[\mathbf{1 , 1 , 1 , \mathbf { 1 }]}}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& {\left[\begin{array}{c}
s_{1,1,1,1} \\
s_{2,1,1} \\
s_{2,2}+s_{2,1,1} \\
s_{3,1}+s_{2,1,1} \\
s_{3,1}+s_{2,2} \\
s_{3,1} \\
s_{4}
\end{array}\right]}
\end{aligned}
$$

Frobenius characteristic of the linear span of derivatives of
the Vandermonde determinant
of

Schur Function Expansions

They are all deformations
the Sn Harmonics

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[4]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[\begin{array}{ccc}
s_{2,2} & s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1} & s_{3,1}+s_{2,1,1} & s_{2,1,1} \\
s_{4} & s_{3,1} & s_{2,2}
\end{array}\right]} \\
\\
\end{gathered}
$$

$$
\tilde{\mathrm{H}}_{[2,2]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]
$$

$$
\left[s_{4}, s_{3,1}, s_{3,1}+s_{2,2}, s_{3,1}+s_{2,1,1}, s_{2,2}+s_{2,1,1}, s_{2,1,1}, s_{1,1,1,1}\right]
$$

The Jig Saw Puzzle

$$
\begin{aligned}
& \tilde{\mathrm{H}}_{[1,1,1,1]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& {\left[\begin{array}{c}
s_{1,1,1,1} \\
s_{2,1,1} \\
s_{2,2}+s_{2,1,1} \\
s_{3,1}+s_{2,1,1} \\
s_{3,1}+s_{2,2} \\
s_{3,1} \\
s_{4}
\end{array}\right]}
\end{aligned}
$$

Frobenius characteristic of the linear span of derivatives of
the Vandermonde determinant

of
 Schur Function Expansions

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2 , 1 , 1}]}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
{\left[\begin{array}{cc}
s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1}+s_{2,2} & s_{2,1,1} \\
s_{3,1} & s_{2,2}+s_{2,1,1} \\
s_{4} & s_{3,1}
\end{array}\right]}
\end{gathered}
$$

What makes
the Schur functions
move???

They are all

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[4]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[\begin{array}{ccc}
s_{2,2} & s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1} & s_{3,1}+s_{2,1,1} & s_{2,1,1} \\
s_{4} & s_{3,1} & s_{2,2}
\end{array}\right]} \\
\\
\end{gathered}
$$ deformations

the Sn Harmonics

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2 , 2}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[s_{4}, s_{3,1}, s_{3,1}+s_{2,2}, s_{3,1}+s_{2,1,1}, s_{2,2}+s_{2,1,1}, s_{2,1,1}, s_{1,1,1,1}\right]}
\end{gathered}
$$

The Jig Saw Puzzle

Frobenius characteristic of the linear span of derivatives of
the Vandermonde determinant

of
 Schur Function Expansions

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2 , 1 , \mathbf { 1 }]}}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
{\left[\begin{array}{cc}
s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1}+s_{2,2} & s_{2,1,1} \\
s_{3,1} & s_{2,2}+s_{2,1,1} \\
s_{4} & s_{3,1}
\end{array}\right]}
\end{gathered}
$$

What makes
the Schur functions
move???

Macdonald Reciprocity

They are all

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[4]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[\begin{array}{ccc}
s_{2,2} & s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1} & s_{3,1}+s_{2,1,1} & s_{2,1,1} \\
s_{4} & s_{3,1} & s_{2,2}
\end{array}\right]} \\
\\
\end{gathered}
$$ deformations

the Sn Harmonics

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2 , 2}]}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
{\left[s_{4}, s_{3,1}, s_{3,1}+s_{2,2}, s_{3,1}+s_{2,1,1}, s_{2,2}+s_{2,1,1}, s_{2,1,1}, s_{1,1,1,1}\right]}
\end{gathered}
$$

The Jig Saw Puzzle

$\tilde{\mathrm{H}}_{[\mathbf{1 , 1 , 1 , \mathbf { 1 }]}}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]$
$\left[\begin{array}{c}s_{1,1,1,1} \\ s_{2,1,1} \\ s_{2,2}+s_{2,1,1} \\ s_{3,1}+s_{2,1,1} \\ s_{3,1}+s_{2,2} \\ s_{3,1} \\ s_{4}\end{array}\right]$

Frobenius characteristic of the linear span of derivatives of
the Vandermonde determinant

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2 , 1 , 1}]}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
{\left[\begin{array}{cc}
s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1}+s_{2,2} & s_{2,1,1} \\
s_{3,1} & s_{2,2}+s_{2,1,1} \\
s_{4} & s_{3,1}
\end{array}\right]}
\end{gathered}
$$

of

Schur Function Expansions

What makes
the Schur functions move???

Macdonald Reciprocity

They are all deformations
the Sn Harmonics

$$
\tilde{\mathrm{H}}_{[2,2]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]
$$

$$
\left[s_{4}, s_{3,1}, s_{3,1}+s_{2,2}, s_{3,1}+s_{2,1,1}, s_{2,2}+s_{2,1,1}, s_{2,1,1}, s_{1,1,1,1}\right]
$$

$$
\begin{aligned}
& \frac{\tilde{\mathrm{H}}_{\mu}\left[\mathrm{B}_{\lambda}(\mathbf{q}, \mathrm{t})\right]}{\Pi_{\mu}(\mathbf{q}, \mathrm{t})}=\frac{\tilde{\mathrm{H}}_{\lambda}\left[\mathrm{B}_{\mu}(\mathbf{q}, \mathrm{t})\right]}{\Pi_{\lambda}(\mathbf{q}, \mathrm{t})} \\
& \tilde{H}_{[4]}[\mathbf{X} ; q, t] \\
& \begin{array}{c}
c \mathrm{H}_{[\mathbf{4}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[\begin{array}{ccc}
s_{2,2} & s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1} & s_{3,1}+s_{2,1,1} & s_{2,1,1} \\
s_{4} & s_{3,1} & s_{2,2}
\end{array}\right]}
\end{array} \\
& \tilde{H}_{[3,1]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& {\left[\begin{array}{cccc}
s_{3,1} & s_{2,2}+s_{2,1,1} & s_{2,1,1} & s_{1,1,1,1} \\
s_{4} & s_{3,1} & s_{3,1}+s_{2,2} & s_{2,1,1}
\end{array}\right]}
\end{aligned}
$$

The Jig Saw Puzzle

$\tilde{\mathrm{H}}_{[\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}]}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]$
$\left[\begin{array}{c}s_{1,1,1,1} \\ s_{2,1,1} \\ s_{2,2}+s_{2,1,1} \\ s_{3,1}+s_{2,1,1} \\ s_{3,1}+s_{2,2} \\ s_{3,1} \\ s_{4}\end{array}\right]$

Frobenius characteristic of the linear span of derivatives of
the Vandermonde determinant

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[\mathbf{2 , 1 , 1}]}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
{\left[\begin{array}{cc}
s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1}+s_{2,2} & s_{2,1,1} \\
s_{3,1} & s_{2,2}+s_{2,1,1} \\
s_{4} & s_{3,1}
\end{array}\right]}
\end{gathered}
$$

of

Schur Function Expansions

What makes
the Schur functions move???

Macdonald Reciprocity

$$
\frac{\tilde{\mathrm{H}}_{\mu}\left[\mathrm{B}_{\lambda}(\mathbf{q}, \mathrm{t})\right]}{\Pi_{\mu}(\mathbf{q}, \mathrm{t})}=\frac{\tilde{\mathrm{H}}_{\lambda}\left[\mathrm{B}_{\mu}(\mathbf{q}, \mathrm{t})\right]}{\Pi_{\lambda}(\mathbf{q}, \mathrm{t})}
$$

They are all deformations
the Sn Harmonics

$$
\begin{gathered}
c \tilde{\mathrm{H}}_{[\mathbf{4}]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[\begin{array}{ccc}
s_{2,2} & s_{2,1,1} & s_{1,1,1,1} \\
s_{3,1} & s_{3,1}+s_{2,1,1} & s_{2,1,1} \\
s_{4} & s_{3,1} & s_{2,2}
\end{array}\right]}
\end{gathered}
$$

What else ?

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[3,1]}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
{\left[\begin{array}{cccc}
s_{3,1} & s_{2,2}+s_{2,1,1} & s_{2,1,1} & s_{1,1,1,1} \\
s_{4} & s_{3,1} & s_{3,1}+s_{2,2} & s_{2,1,1}
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
\tilde{\mathrm{H}}_{[2,2]}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
{\left[s_{4}, s_{3,1}, s_{3,1}+s_{2,2}, s_{3,1}+s_{2,1,1}, s_{2,2}+s_{2,1,1}, s_{2,1,1}, s_{1,1,1,1}\right]}
\end{gathered}
$$

k-Schur expansion of Macdonald Polynomials

k-Schur expansion of Macdonald Polynomials

(for 2 bounded partitions of 4)

k-Schur expansion of Macdonald Polynomials

(for 2 bounded partitions of 4)

H([2,2])

k-Schur expansion of Macdonald Polynomials

(for 2 bounded partitions of 4)
$\mathrm{H}([2,2]) \quad q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2}$

k-Schur expansion of Macdonald Polynomials

(for 2 bounded partitions of 4)

$$
\mathrm{H}([2,2]) \quad q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{ccc}
0 & A_{2,1,1} & 0 \\
A_{2,2} & A_{2,1,1} & A_{1,1,1,1}
\end{array}\right]
$$

k-Schur expansion of Macdonald Polynomials

 (for 2 bounded partitions of 4)$$
\begin{gathered}
\mathrm{H}([2,2]) \quad q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{ccc}
0 & A_{2,1,1} & 0 \\
A_{2,2} & A_{2,1,1} & A_{1,1,1,1}
\end{array}\right] \\
H([2,1,1]
\end{gathered}
$$

k-Schur expansion of Macdonald Polynomials

 (for 2 bounded partitions of 4)$$
\begin{array}{r}
\mathrm{H}([2,2]) \quad q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{ccc}
0 & A_{2,1,1} & 0 \\
A_{2,2} & A_{2,1,1} & A_{1,1,1,1}
\end{array}\right] \\
H\left([2,1,1] \quad t q A_{1,1,1,1}+\left(q+t^{2}\right) A_{2,1,1}+A_{2,2}\right.
\end{array}
$$

k-Schur expansion of Macdonald Polynomials

 (for 2 bounded partitions of 4)$$
\begin{aligned}
& \mathrm{H}\left([\mathbf{2 , 2]}) \quad q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{ccc}
0 & A_{2,1,1} & 0 \\
A_{2,2} & A_{2,1,1} & A_{1,1,1,1}
\end{array}\right]\right. \\
& \mathrm{H}\left([2,1,1] \quad t q A_{1,1,1,1}+\left(q+t^{2}\right) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{cc}
A_{2,1,1} & 0 \\
0 & A_{1,1,1,1} \\
A_{2,2} & A_{2,1,1}
\end{array}\right]\right.
\end{aligned}
$$

k-Schur expansion of Macdonald Polynomials

 (for 2 bounded partitions of 4)$$
\left.\begin{array}{cc}
\mathrm{H}([2,2]) & q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2}
\end{array} \begin{array}{ccc}
0 & A_{2,1,1} & 0 \\
A_{2,2} & A_{2,1,1} & A_{1,1,1,1}
\end{array}\right]\left(\begin{array}{cc}
\\
H\left([2,1,1] \quad t q A_{1,1,1,1}+\left(q+t^{2}\right) A_{2,1,1}+A_{2,2}\right.
\end{array}\left[\begin{array}{cc}
A_{2,1,1} & 0 \\
0 & A_{1,1,1,1} \\
A_{2,2} & A_{2,1,1}
\end{array}\right]\right)
$$

k-Schur expansion of Macdonald Polynomials

 (for 2 bounded partitions of 4)$$
\left.\left.\begin{array}{l}
\mathrm{H}([2,2]) \quad q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{ccc}
0 & A_{2,1,1} & 0 \\
A_{2,2} & A_{2,1,1} & A_{1,1,1,1}
\end{array}\right] \\
H\left([2,1,1] \quad t q A_{1,1,1,1}+\left(q+t^{2}\right) A_{2,1,1}+A_{2,2}\right.
\end{array} \begin{array}{ccc}
A_{2,1,1} & 0 \\
0 & A_{1,1,1,1} \\
A_{2,2} & A_{2,1,1}
\end{array}\right]\right)
$$

k-Schur expansion of Macdonald Polynomials

 (for 2 bounded partitions of 4)$$
\begin{aligned}
& \mathrm{H}\left([\mathbf{2 , 2]}) \quad q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{ccc}
0 & A_{2,1,1} & 0 \\
A_{2,2} & A_{2,1,1} & A_{1,1,1,1}
\end{array}\right]\right. \\
& \mathrm{H}\left([2,1,1] \quad t q A_{1,1,1,1}+\left(q+t^{2}\right) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{cc}
A_{2,1,1} & 0 \\
0 & A_{1,1,1,1} \\
A_{2,2} & A_{2,1,1}
\end{array}\right]\right. \\
& \mathrm{H}([1,1,1,1]) \quad t^{4} A_{1,1,1,1}+\left(t^{2}+t^{3}\right) A_{2,1,1}+A_{2,2}
\end{aligned}
$$

k-Schur expansion of Macdonald Polynomials

 (for 2 bounded partitions of 4)$$
\begin{aligned}
& \mathrm{H}\left([\mathbf{2 , 2]}) \quad q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{ccc}
0 & A_{2,1,1} & 0 \\
A_{2,2} & A_{2,1,1} & A_{1,1,1,1}
\end{array}\right]\right. \\
& \mathrm{H}\left([2,1,1] \quad t q A_{1,1,1,1}+\left(q+t^{2}\right) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{cc}
A_{2,1,1} & 0 \\
0 & A_{1,1,1,1} \\
A_{2,2} & A_{2,1,1}
\end{array}\right]\right. \\
& \mathrm{H}([1,1,1,1]) \quad t^{4} A_{1,1,1,1}+\left(t^{2}+t^{3}\right) A_{2,1,1}+A_{2,2}
\end{aligned}
$$

k-Schur expansion of Macdonald Polynomials

(for 2 bounded partitions of 4)

$$
\left.\left.\left.\begin{array}{rl}
H([2,2]) & q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2}
\end{array}\right]\left[\begin{array}{ccc}
0 & A_{2,1,1} & 0 \\
A_{2,2} & A_{2,1,1} & A_{1,1,1,1}
\end{array}\right]\right]\left[\begin{array}{cc}
A_{2,1,1} & 0 \\
0 & A_{1,1,1,1} \\
A_{2,2} & A_{2,1,1}
\end{array}\right]\right)
$$

(for 2 bounded partitions of 6)

k-Schur expansion of Macdonald Polynomials

(for 2 bounded partitions of 4)
$\mathrm{H}([2,2]) \quad q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{ccc}0 & A_{2,1,1} & 0 \\ A_{2,2} & A_{2,1,1} & A_{1,1,1,1}\end{array}\right]$

$$
\begin{array}{r}
\mathrm{H}\left([2,1,1] \quad t q A_{1,1,1,1}+\left(q+t^{2}\right) A_{2,1,1}+A_{2,2}\left[\begin{array}{cc}
A_{2,1,1} & 0 \\
0 & A_{1,1,1,1} \\
A_{2,2} & A_{2,1,1}
\end{array}\right]\right. \\
\mathrm{H}([1,1,1,1]) \quad t^{4} A_{1,1,1,1}+\left(t^{2}+t^{3}\right) A_{2,1,1}+A_{2,2}
\end{array}
$$

(for 2 bounded partitions of 6)

$$
H_{2,2,2}, \quad->, \quad,\left[\begin{array}{cccc}
0 & A_{2,2,1,1} & A_{2,1,1,1,1} & 0 \\
0 & A_{2,2,1,1} & A_{2,1,1,1,1} & 0 \\
A_{2,2,2} & A_{2,2,1,1} & A_{2,1,1,1,1} & A_{1,1,1,1,1,1}
\end{array}\right]
$$

k-Schur expansion of Macdonald Polynomials

(for 2 bounded partitions of 4)
$\mathrm{H}([2, \mathbf{2}]) \quad q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{ccc}0 & A_{2,1,1} & 0 \\ A_{2,2} & A_{2,1,1} & A_{1,1,1,1}\end{array}\right]$

$$
\begin{gathered}
\mathrm{H}\left([2,1,1] \quad \operatorname{tq} A_{1,1,1,1}+\left(q+t^{2}\right) A_{2,1,1}+A_{2,2}\left[\begin{array}{cc}
A_{2,1,1} & 0 \\
0 & A_{1,1,1,1} \\
A_{2,2} & A_{2,1,1}
\end{array}\right]\right. \\
\mathrm{H}([1,1,1,1]) \quad t^{4} A_{1,1,1,1}+\left(t^{2}+t^{3}\right) A_{2,1,1}+A_{2,2}
\end{gathered}
$$

(for 2 bounded partitions of 6)

$$
H_{2,2,2}, \quad->, \quad,\left[\begin{array}{cccc}
0 & A_{2,2,1,1} & A_{2,1,1,1,1} & 0 \\
0 & A_{2,2,1,1} & A_{2,1,1,1,1} & 0 \\
A_{2,2,2} & A_{2,2,1,1} & A_{2,1,1,1,1} & A_{1,1,1,1,1,1}
\end{array}\right] \quad H_{2,2,1,1},-\cdots,\left[\begin{array}{ccc}
A_{2,2,1,1} & A_{2,1,1,1,1} & 0 \\
0 & A_{2,1,1,1} & 0 \\
0 & A_{2,2,1,1} & A_{1,1,1,1,1,1} \\
A_{2,2,2} & A_{2,2,1,1} & A_{2,1,1,1,1}
\end{array}\right]
$$

k-Schur expansion of Macdonald Polynomials

(for 2 bounded partitions of 4)
$\mathrm{H}([2,2]) \quad q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{ccc}0 & A_{2,1,1} & 0 \\ A_{2,2} & A_{2,1,1} & A_{1,1,1,1}\end{array}\right]$

$$
\begin{array}{r}
\mathrm{H}\left([2,1,1] \quad t q A_{1,1,1,1}+\left(q+t^{2}\right) A_{2,1,1}+A_{2,2}\left[\begin{array}{cc}
A_{2,1,1} & 0 \\
0 & A_{1,1,1,1} \\
A_{2,2} & A_{2,1,1}
\end{array}\right]\right. \\
\mathrm{H}([1,1,1,1]) \quad t^{4} A_{1,1,1,1}+\left(t^{2}+t^{3}\right) A_{2,1,1}+A_{2,2}
\end{array}
$$

(for 2 bounded partitions of 6)

$$
\begin{aligned}
H_{2,2,2}, & -->,
\end{aligned},\left[\begin{array}{cccc}
0 & A_{2,2,1,1} & A_{2,1,1,1,1} & 0 \\
0 & A_{2,2,1,1} & A_{2,1,1,1,1} & 0 \\
A_{2,2,2} & A_{2,2,1,1} & A_{2,1,1,1,1} & A_{1,1,1,1,1,1}
\end{array}\right]\left[\begin{array}{ll}
H_{2,2,1,1}, & -->,
\end{array}\right]\left[\begin{array}{ccc}
A_{2,2,1,1} & A_{2,1,1,1,1} & 0 \\
0 & A_{2,1,1,1,1} & 0 \\
0 & A_{2,2,1,1} & A_{1,1,1,1,1,1} \\
A_{2,2,2} & A_{2,2,1,1} & A_{2,1,1,1,1}
\end{array}\right]
$$

k-Schur expansion of Macdonald Polynomials

(for 2 bounded partitions of 4)
$\mathrm{H}([2,2]) \quad q^{2} A_{1,1,1,1}+(q+t q) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{ccc}0 & A_{2,1,1} & 0 \\ A_{2,2} & A_{2,1,1} & A_{1,1,1,1}\end{array}\right]$

$$
\begin{array}{r}
\mathrm{H}\left([2,1,1] \quad t q A_{1,1,1,1}+\left(q+t^{2}\right) A_{2,1,1}+A_{2,2} \quad\left[\begin{array}{cc}
A_{2,1,1} & 0 \\
0 & A_{1,1,1,1} \\
A_{2,2} & A_{2,1,1}
\end{array}\right]\right. \\
H([1,1,1,1]) \quad t^{4} A_{1,1,1,1}+\left(t^{2}+t^{3}\right) A_{2,1,1}+A_{2,2}
\end{array}
$$

(for 2 bounded partitions of 6)

$$
\begin{aligned}
& H_{2,2,2}, \quad->,\left[\begin{array}{cccc}
0 & A_{2,2,1,1} & A_{2,1,1,1,1} & 0 \\
0 & A_{2,2,1} & A_{2,1,1,1,1} & 0 \\
A_{2,2,2} & A_{2,2,1,1} & A_{2,1,1,1,1} & A_{1,1,1,1,1}
\end{array}\right] \quad H_{2,2,1,1},-->, \quad,\left[\begin{array}{ccc}
A_{2,2,1,1} & A_{2,1,1,1,1} & 0 \\
0 & A_{2,1,1,1} & 0 \\
0 & A_{2,2,1,1} & A_{1,1,1,1,1,1} \\
A_{2,2,2} & A_{2,2,1,1} & A_{2,1,1,1,1}
\end{array}\right] \\
& H_{2,1,1,1,1},->, \quad,\left[\begin{array}{cc}
A_{2,1,1,1,1} & 0 \\
0 & 0 \\
A_{2,2,1,1} & A_{1,1,1,1,1,1} \\
A_{2,2,1,1} & A_{2,1,1,1,1} \\
0 & A_{2,1,1,1,1} \\
0 & 0 \\
A_{2,2,2} & A_{2,2,1,1}
\end{array}\right]
\end{aligned}
$$

Some remarkable determinants

Some remarkable determinants

$(1,0)$	$(1,1)$
$(0,0)$	$(0,1)$

Some remarkable determinants

$(1,0)$	$(1,1)$
$(0,0)$	$(0,1)$

Some remarkable determinants

$(1,0)$	$(1,1)$
$(0,0)$	$(0,1)$

Some remarkable determinants

General definition

Some remarkable determinants

General definition

If $\left(\mathrm{p}_{\mathbf{1}}, \mathrm{q}_{1}\right),\left(\mathrm{p}_{\mathbf{2}}, \mathrm{q}_{\mathbf{2}}\right), \ldots,\left(\mathrm{p}_{\mathbf{n}}, \mathrm{q}_{\mathbf{n}}\right)$ are the cells of the Ferrers diagram of $\mu \vdash \mathbf{n}$ then

Some remarkable determinants

General definition

If $\left(\mathrm{p}_{\mathbf{1}}, \mathrm{q}_{1}\right),\left(\mathrm{p}_{\mathbf{2}}, \mathrm{q}_{\mathbf{2}}\right), \ldots,\left(\mathrm{p}_{\mathbf{n}}, \mathrm{q}_{\mathbf{n}}\right)$ are the cells of the Ferrers diagram of $\mu \vdash \mathbf{n}$ then

$$
\Delta_{\mu}(x, y)=\operatorname{det}\left\|x_{j}^{p_{i}} y_{j}^{q_{i}}\right\|_{i, j=1}^{n}
$$

Some remarkable determinants

General definition

If $\left(\mathrm{p}_{\mathbf{1}}, \mathrm{q}_{1}\right),\left(\mathrm{p}_{\mathbf{2}}, \mathrm{q}_{2}\right), \ldots,\left(\mathrm{p}_{\mathrm{n}}, \mathrm{q}_{\mathbf{n}}\right)$ are the cells of the Ferrers diagram of $\mu \vdash \mathrm{n}$ then

$$
\Delta_{\mu}(x, y)=\operatorname{det}\left\|x_{j}^{p_{i}} y_{j}^{q_{i}}\right\|_{i, j=1}^{n}
$$

The linear span of all the partial derivatives of $\Delta_{\mu}(\mathrm{x}, \mathrm{y})$ is denoted $\mathrm{M}_{\mu}[\mathrm{X}, \mathrm{Y}]$

Some remarkable determinants

General definition

If $\left(\mathrm{p}_{\mathbf{1}}, \mathrm{q}_{1}\right),\left(\mathrm{p}_{\mathbf{2}}, \mathrm{q}_{\mathbf{2}}\right), \ldots,\left(\mathrm{p}_{\mathrm{n}}, \mathrm{q}_{\mathbf{n}}\right)$ are the cells of the Ferrers diagram of $\mu \vdash \mathrm{n}$ then

$$
\Delta_{\mu}(x, y)=\operatorname{det}\left\|x_{j}^{p_{i}} y_{j}^{q_{i}}\right\|_{i, j=1}^{n}
$$

The linear span of all the partial derivatives of $\Delta_{\mu}(\mathrm{x}, \mathrm{y})$ is denoted $\mathrm{M}_{\mu}[\mathrm{X}, \mathrm{Y}]$

$$
\mathbf{M}_{\mu}[X, Y]=\mathcal{L}\left[\partial_{x}^{p} \partial_{y}^{q} \Delta_{\mu}(x, y)\right]
$$

Some remarkable determinants

General definition

If $\left(\mathrm{p}_{\mathbf{1}}, \mathrm{q}_{1}\right),\left(\mathrm{p}_{\mathbf{2}}, \mathrm{q}_{2}\right), \ldots,\left(\mathrm{p}_{\mathrm{n}}, \mathrm{q}_{\mathbf{n}}\right)$ are the cells of the Ferrers diagram of $\mu \vdash \mathrm{n}$ then

$$
\Delta_{\mu}(x, y)=\operatorname{det}\left\|x_{j}^{p_{i}} y_{j}^{q_{i}}\right\|_{i, j=1}^{n}
$$

The linear span of all the partial derivatives of $\Delta_{\mu}(\mathrm{x}, \mathrm{y})$ is denoted $\mathrm{M}_{\mu}[\mathrm{X}, \mathrm{Y}]$
In symbols

$$
\mathbf{M}_{\mu}[X, Y]=\mathcal{L}\left[\partial_{x}^{p} \partial_{y}^{q} \Delta_{\mu}(x, y)\right]
$$

Some remarkable determinants

General definition

If $\left(\mathrm{p}_{\mathbf{1}}, \mathrm{q}_{1}\right),\left(\mathrm{p}_{\mathbf{2}}, \mathrm{q}_{2}\right), \ldots,\left(\mathrm{p}_{\mathrm{n}}, \mathrm{q}_{\mathbf{n}}\right)$ are the cells of the Ferrers diagram of $\mu \vdash \mathrm{n}$ then

$$
\Delta_{\mu}(x, y)=\operatorname{det}\left\|x_{j}^{p_{i}} y_{j}^{q_{i}}\right\|_{i, j=1}^{n}
$$

The linear span of all the partial derivatives of $\Delta_{\mu}(\mathrm{x}, \mathrm{y})$ is denoted $\mathrm{M}_{\mu}[\mathrm{X}, \mathrm{Y}]$
In symbols

$$
\mathbf{M}_{\mu}[X, Y]=\mathcal{L}\left[\partial_{x}^{p} \partial_{y}^{q} \Delta_{\mu}(x, y)\right]
$$

Brief review

Theorem (easy)

Brief review

For any $\mu+n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n !

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

For example

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols

$$
\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!
$$

For example [using MAPLE]

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n !
In symbols

$$
\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!
$$

For example [using MAPLE]

DDmu ([2, 1]);

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols

$$
\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!
$$

For example [using MAPLE]
DDmu (2,1$]$);

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
y I & y 2 & y 3 \\
x I & x 2 & x 3
\end{array}\right]
$$

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols

$$
\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!
$$

For example [using MAPLE]

$$
\operatorname{DDmu}([2,1]) ; \quad\left[\begin{array}{ccc}
1 & 1 & 1 \\
y I & y 2 & y 3 \\
x I & x 2 & x 3
\end{array}\right]
$$

```
D21:=det(");
```


Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

```
For example [ using MAPLE]
DDmu([2,1]);
D21:=det(");
    D2I:= y2 x3 - y3 x2 - yI x3 + yI x2 + xI y3 - xI y2
```


Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

```
For example [ using MAPLE]
DDmu([2,1]);
D21:=\operatorname{det("): D2I:= y2 x3-y3 x2-yI x3+yI x2 + xI y3 - xI y2}
    [ [11 cccc
diff(D21,x1);
```


Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

```
For example [ using MAPLE]
DDmu([2,1]);
D21:=\operatorname{det("): D2I:= y2 x3-y3 x2-yI x3+yI x2 + xI y3 - xI y2}
D21:=det("); D2I:= y2 x3-y3x2-yIx3+yIx2+xI y3-xI y2
diff(D21,x1);
```



```
\[
y 3-y 2
\]
```


Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

```
For example [ using MAPLE]
DDmu([2,1]);
D21:=det(");
    D2I:= y2 x3-y3x2-yI x3 + yI x2 + xI y3-xI y2
diff(D21,x1);
    y3-y2
diff(D21,x3);
```


Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

```
For example [ using MAPLE]
DDmu([2,1]);
                                [ [11 ccc
D21:=det("); D2I:= y2 x3-y3 x2-yl x3 + yl x2 + xI y3-xl y2
diff(D21,x1);
    y3-y2
    y2-yI
```


Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

```
For example [ using MAPLE]
DDmu([2,1]);
D21:=det("); D2I:= y2 x3-y3x2-y1 x3+yl x2+xI y3-x1 y2
diff(D21,x1);
    y3-y2
diff(D21,x3);
    y2-yI
```


Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

```
For example [ using MAPLE]
DDmu([2,1]);
D21:=det("); D2I:= y2 x3-y3x2-yI x3+yI x2 + xI y3-xI y2
diff(D21,x1);
    y3-y2
diff(D21,x3);
diff(D21,Y1);
                                [ [11 ccc
    y2-yI
    -x3+x2
```


Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

```
For example [ using MAPLE]
DDmu([2,1]);
D21:=det("); D2I:= y2 x3-y3x2-y1 x3+yl x2+xI y3-x1 y2
diff(D21,x1);
    y3-y2
diff(D21,x3);
diff(D21,Y1);
    y2-yI
    -x3+x2
```


Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

```
For example [ using MAPLE]
DDmu([2,1]);
D21:=\operatorname{det ("); D2I:= y2 x3-y3x2-y1 x3+y1 x2 + xI y3-x1 y2}
diff(D21,x1);
diff(D21,x3);
diff(D21,Y1);
diff(D21,y3);
\[
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
y I & y 2 & y 3 \\
x I & x 2 & x 3
\end{array}\right]} \\
& D 2 I:=y 2 x 3-y 3 x 2-y I x 3+y I x 2+x I y 3-x I y 2 \\
& y 3-y 2 \\
& y 2-y I \\
& -x 3+x 2 \\
& -x 2+x I
\end{aligned}
\]
```


Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

```
For example [ using MAPLE]
DDmu([2,1]);
                                [ [11 ccc
D21:=det("); D2I:= y2 x3-y3 x2-yl x3 + yl x2 + xI y3-xl y2
diff(D21,x1);
    y3-y2
diff(D21,x3);
diff(D21,Y1);
diff(D21,y3);
    y2-yI
    -x3+x2
    -x2+xI
```


Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

```
For example [ using MAPLE]
DDmu([2,1]);
                                [ [11 ccc
D21:=det("); D2I:= y2 x3-y3 x2-yl x3 + yl x2 + xI y3-xI y2
diff(D21,x1);
diff(D21,x3);
diff(D21,Y1);
diff(D21,y3);
diff(D21,x3,y2);
\[
\begin{gathered}
y 3-y 2 \\
y 2-y 1 \\
-x 3+x 2 \\
-x 2+x I
\end{gathered}
\]
```

$$
1
$$

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$
For example [using MAPLE]
DDmu([2,1]);
D21:= $\operatorname{det}(") ;$
$\operatorname{diff(D21,~} x 1) ;$
$\operatorname{diff}(\mathrm{D} 21, x 3) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{Y} 1) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{Y} 3) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{x} 3, \mathrm{Y} 2) ;$

$$
\begin{aligned}
& D 2 I:=\left[\begin{array}{ccc}
1 & 1 & 1 \\
y I & y 2 & y 3 \\
x I & x 2 & x 3
\end{array}\right] \\
& y 2 x 3-y 3 x 2-y l x 3+y l x 2+x l y 3-x I y 2 \\
& y 3-y 2 \\
& y 2-y I \\
&-x 3+x 2 \\
&-x 2+x I
\end{aligned}
$$

1

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$
For example [using MAPLE]
DDmu($[2,1])$;
$\left[\begin{array}{ccc}1 & 1 & 1 \\ y 1 & y 2 & y 3 \\ x I & x 2 & x 3\end{array}\right]$
D21:=det (") ;
$\operatorname{diff}(\mathrm{D} 21, x 1)$;
$\operatorname{diff}(\mathrm{D} 21, x 3) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{Y} 1) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{Y} 3) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{x} 3, \mathrm{Y} 2)$;
$D 2 I:=y 2 x 3-y 3 x 2-y 1 x 3+y 1 x 2+x I y 3-x 1 y 2$
$-x 3+x 2$
$-x 2+x 1$
1

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$
For example [using MAPLE] $\operatorname{DDmu}([2,1]) ;$ $\left[\begin{array}{ccc}1 & 1 & 1 \\ y 1 & y 2 & y 3 \\ x 1 & x 2 & x 3\end{array}\right]$
D21:= $\operatorname{det}(") ;$
$\operatorname{diff(D21,x1);}$
$\operatorname{diff}(\mathrm{D} 21, x 3) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{Y} 1) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{Y} 3) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{x} 3, \mathrm{Y} 2)$;

$$
\begin{aligned}
& -x 3+x 2 \\
& -x 2+x 1
\end{aligned}
$$

$$
1
$$

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$
For example [using MAPLE]
$\operatorname{DDmu}([2,1]) ;$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ y 1 & y 2 & y 3 \\ x I & x 2 & x 3\end{array}\right]$
D21:=det (") ;
$\operatorname{diff}(\mathrm{D} 21, x 1)$;
$\operatorname{diff}(\mathrm{D} 21, x 3) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{y} 1) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{Y} 3) ;$

$$
-x 3+x 2
$$

$$
-x 2+x 1
$$

1

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$
For example [using MAPLE]
$\operatorname{DDmu}([2,1]) ;$
D21: $=\operatorname{det}(") ;$
$\operatorname{diff(D21,~} x 1) ;$
$\operatorname{diff}(\mathrm{D} 21, x 3) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{y} 1) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{Y} 3) ;$
$\operatorname{diff}(\mathrm{D} 21, \mathrm{x} 3, \mathrm{Y} 2) ;$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ y I & y 2 & y 3 \\ x I & x 2 & x 3\end{array}\right]$

1

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

For $\mu \vdash n$

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

For $\mu \vdash n \quad \operatorname{dim} M_{\mu}[X, Y]=n!$

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

For $\mu \vdash n \quad \operatorname{dim} M_{\mu}[X, Y]=n!$
Proved by Mark Haiman using algebraic geometry

Theorem (easy)

Brief review

For any $\mu \vdash n$ the dimension of the linear span of the derivatives of $\Delta_{\mu}(X, Y)$ is at most n ! In symbols $\operatorname{dim} \mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}] \leq \mathbf{n}!$

$$
\text { For } \mu \vdash n \quad \operatorname{dim} M_{\mu}[X, Y]=n!
$$

Proved by Mark Haiman using algebraic geometry

Hilbert series

Hilbert series

A vector space V is called "graded" if and only if

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{o}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{o}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{o}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " $\mathrm{m}^{\text {th }}$ homogeneous component" of V . its elements are called homogeneous of degree m

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{o}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " $\mathrm{m}^{\text {th }}$ homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{o}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " $\mathrm{m}^{\text {th }}$ homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathbf{m} \geq 0} \mathrm{t}^{\mathbf{m}} \operatorname{dim} \mathrm{H}_{\mathbf{m}}(\mathrm{V})
$$

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{o}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set the "Hilbert series" of V

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m} \geq 0} \mathrm{t}^{\mathbf{m}} \operatorname{dim} \mathrm{H}_{\mathbf{m}}(\mathrm{V})
$$

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{o}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set the "Hilbert series" of V

For instance for $R=\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ we have

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set the "Hilbert series" of V

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots$

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set the "Hilbert series" of V $\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathbf{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})$
For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $\quad R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots \quad$ with

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $\quad R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots \quad$ with

$$
\mathrm{H}_{\mathrm{m}}(\mathrm{R})=\mathrm{L}\left[\mathrm{x}_{1}^{\mathrm{P} 1} \mathrm{x}_{2}^{\mathrm{P} 2} \cdots \mathrm{x}_{\mathrm{n}}^{\mathrm{Pn}}: \mathrm{p}_{1}+\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{n}}=\mathrm{m}\right]
$$

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $\quad R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots \quad$ with

$$
\mathrm{H}_{\mathrm{m}}(\mathrm{R})=\mathrm{L}\left[\mathrm{x}_{1}^{\mathrm{P} 1} \mathrm{x}_{2}^{\mathrm{P} 2} \cdots \mathrm{x}_{\mathrm{n}}^{\mathrm{Pn}}: \mathrm{p}_{1}+\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{n}}=\mathrm{m}\right]
$$

In this case

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $\quad R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots \quad$ with

$$
\mathrm{H}_{\mathrm{m}}(\mathrm{R})=\mathrm{L}\left[\mathrm{x}_{1}^{\mathrm{P} 1} \mathrm{x}_{2}^{\mathrm{P} 2} \cdots \mathrm{x}_{\mathrm{n}}^{\mathrm{Pn}}: \mathrm{p}_{1}+\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{n}}=\mathrm{m}\right]
$$

In this case

$$
\operatorname{dim} H_{m}(R)=\binom{m+n-1}{n-1}
$$

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $\quad R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots \quad$ with

$$
\mathrm{H}_{\mathrm{m}}(\mathrm{R})=\mathrm{L}\left[\mathrm{x}_{1}^{\mathrm{P} 1} \mathrm{x}_{2}^{\mathrm{P} 2} \cdots \mathrm{x}_{\mathrm{n}}^{\mathrm{Pn}}: \mathrm{p}_{1}+\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{n}}=\mathrm{m}\right]
$$

In this case

$$
\operatorname{dim} H_{m}(R)=\binom{m+n-1}{n-1} \quad \text { and }
$$

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $\quad R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots \quad$ with

$$
H_{m}(R)=L\left[x_{1}^{\mathrm{P} 1} x_{2}^{\mathrm{P}_{2}} \cdots \mathrm{x}_{\mathrm{n}}^{\mathrm{Pn}}: \mathrm{p}_{1}+\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{n}}=\mathrm{m}\right]
$$

In this case

$$
\operatorname{dim} H_{m}(R)=\binom{m+n-1}{n-1} \quad \text { and } \quad F_{R}(t)=\frac{1}{(1-t)^{n}}
$$

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $\quad R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots \quad$ with

$$
\mathrm{H}_{\mathrm{m}}(\mathrm{R})=\mathrm{L}\left[\mathrm{x}_{1}^{\mathrm{P} 1} \mathrm{x}_{2}^{\mathrm{P} 2} \cdots \mathrm{x}_{\mathrm{n}}^{\mathrm{Pn}}: \mathrm{p}_{1}+\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{n}}=\mathrm{m}\right]
$$

In this case

$$
\operatorname{dim} H_{m}(R)=\binom{m+n-1}{n-1} \quad \text { and } \quad F_{R}(t)=\frac{1}{(1-t)^{n}}
$$

Our spaces $\mathrm{M}[\mathrm{X}, \mathrm{Y}]$ are "bigraded " that is we have the double decomposition

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $\quad R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots \quad$ with

$$
\mathrm{H}_{\mathrm{m}}(\mathrm{R})=\mathrm{L}\left[\mathrm{x}_{1}^{\mathrm{P} 1} \mathrm{x}_{2}^{\mathrm{P} 2} \cdots \mathrm{x}_{\mathrm{n}}^{\mathrm{Pn}}: \mathrm{p}_{1}+\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{n}}=\mathrm{m}\right]
$$

In this case

$$
\operatorname{dim} H_{m}(R)=\binom{m+n-1}{n-1} \quad \text { and } \quad F_{R}(t)=\frac{1}{(1-t)^{n}}
$$

Our spaces $\mathrm{M}[\mathrm{X}, \mathrm{Y}]$ are "bigraded " that is we have the double decomposition

$$
\mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}]=\bigoplus_{\mathbf{r}=0}^{\mathbf{n}(\mu)} \bigoplus_{\mathrm{s}=0} \bigoplus_{\mathrm{n}}\left(\mu^{\prime}\right) \mathbf{H} \mathrm{H}_{\mathbf{r}, \mathrm{s}}\left(\mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}]\right)
$$

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $\quad R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots \quad$ with

$$
\mathrm{H}_{\mathrm{m}}(\mathrm{R})=\mathrm{L}\left[\mathrm{x}_{1}^{\mathrm{P} 1} \mathrm{x}_{2}^{\mathrm{P} 2} \cdots \mathrm{x}_{\mathrm{n}}^{\mathrm{Pn}}: \mathrm{p}_{1}+\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{n}}=\mathrm{m}\right]
$$

In this case

$$
\operatorname{dim} H_{m}(R)=\binom{m+n-1}{n-1} \quad \text { and } \quad F_{R}(t)=\frac{1}{(1-t)^{n}}
$$

Our spaces $\mathrm{M}[\mathrm{X}, \mathrm{Y}]$ are "bigraded" that is we have the double decomposition

$$
\mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}]=\bigoplus_{\mathbf{r}=0}^{\mathbf{n}(\mu)} \bigoplus_{\mathrm{s}=0}^{\mathbf{n}\left(\mu^{\prime}\right)} \mathrm{H}_{\mathrm{r}, \mathrm{~s}}\left(\mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}]\right)
$$

With $\mathrm{H}_{\mathbf{r}, \boldsymbol{s}}\left(\mathrm{M}_{\mu}[\mathbf{X}, \mathrm{Y}]\right)$ the linear span of derivatives of $\Delta_{\mu}(\mathbf{x}, \mathbf{y})$

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $\quad R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots \quad$ with

$$
\mathrm{H}_{\mathrm{m}}(\mathrm{R})=\mathrm{L}\left[\mathrm{x}_{1}^{\mathrm{P} 1} \mathrm{x}_{2}^{\mathrm{P} 2} \cdots \mathrm{x}_{\mathrm{n}}^{\mathrm{Pn}}: \mathrm{p}_{1}+\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{n}}=\mathrm{m}\right]
$$

In this case

$$
\operatorname{dim} H_{m}(R)=\binom{m+n-1}{n-1} \quad \text { and } \quad F_{R}(t)=\frac{1}{(1-t)^{n}}
$$

Our spaces $\mathrm{M}[\mathrm{X}, \mathrm{Y}]$ are "bigraded" that is we have the double decomposition

$$
\mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}]=\bigoplus_{\mathbf{r}=0}^{\mathbf{n}(\mu)} \bigoplus_{\mathrm{s}=0} \bigoplus_{\mathrm{n}}\left(\mu^{\prime}\right) \mathbf{H} \mathrm{H}_{\mathbf{r}, \mathrm{s}}\left(\mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}]\right)
$$

With $\mathrm{H}_{\mathbf{r}, \boldsymbol{s}}\left(\mathrm{M}_{\mu}[\mathbf{X}, \mathrm{Y}]\right)$ the linear span of derivatives of $\Delta_{\mu}(\mathbf{x}, \mathbf{y})$
that are homogeneous of degree r in $x_{1}, x_{2}, \ldots, x_{n}$ and degree S in $y_{1}, y_{2}, \ldots, y_{n}$

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $\quad R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots \quad$ with

$$
\mathrm{H}_{\mathrm{m}}(\mathrm{R})=\mathrm{L}\left[\mathrm{x}_{1}^{\mathrm{P} 1} \mathrm{x}_{2}^{\mathrm{P} 2} \cdots \mathrm{x}_{\mathrm{n}}^{\mathrm{Pn}}: \mathrm{p}_{1}+\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{n}}=\mathrm{m}\right]
$$

In this case

$$
\operatorname{dim} H_{m}(R)=\binom{m+n-1}{n-1} \quad \text { and } \quad F_{R}(t)=\frac{1}{(1-t)^{n}}
$$

Our spaces $\mathrm{M}[\mathrm{X}, \mathrm{Y}]$ are "bigraded" that is we have the double decomposition

$$
\mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}]=\bigoplus_{\mathbf{r}=0}^{\mathbf{n}(\mu)} \bigoplus_{\mathrm{s}=0} \bigoplus_{\mathrm{n}}\left(\mu^{\prime}\right) \mathbf{H} \mathrm{H}_{\mathbf{r}, \mathrm{s}}\left(\mathbf{M}_{\mu}[\mathbf{X}, \mathrm{Y}]\right)
$$

With $\mathrm{H}_{\mathbf{r}, \boldsymbol{s}}\left(\mathrm{M}_{\mu}[\mathbf{X}, \mathrm{Y}]\right)$ the linear span of derivatives of $\Delta_{\mu}(\mathbf{x}, \mathbf{y})$
that are homogeneous of degree r in $x_{1}, x_{2}, \ldots, x_{n}$ and degree S in $y_{1}, y_{2}, \ldots, y_{n}$
Here and after we set

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $\quad R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots \quad$ with

$$
\mathrm{H}_{\mathrm{m}}(\mathrm{R})=\mathrm{L}\left[\mathrm{x}_{1}^{\mathrm{P} 1} \mathrm{x}_{2}^{\mathrm{P} 2} \cdots \mathrm{x}_{\mathrm{n}}^{\mathrm{Pn}}: \mathrm{p}_{1}+\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{n}}=\mathrm{m}\right]
$$

In this case

$$
\operatorname{dim} H_{m}(R)=\binom{m+n-1}{n-1} \quad \text { and } \quad F_{R}(t)=\frac{1}{(1-t)^{n}}
$$

Our spaces $\mathrm{M}[\mathrm{X}, \mathrm{Y}]$ are "bigraded" that is we have the double decomposition

$$
\mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}]=\bigoplus_{\mathbf{r}=\mathbf{0}}^{\mathbf{n}(\mu) \mathbf{n}\left(\mu_{\mathrm{s}} \mu_{0}^{\prime}\right)} \mathrm{H}_{\mathrm{r}, \mathrm{~s}}\left(\mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}]\right)
$$

With $\mathrm{H}_{\mathbf{r}, \boldsymbol{s}}\left(\mathrm{M}_{\mu}[\mathbf{X}, \mathrm{Y}]\right)$ the linear span of derivatives of $\Delta_{\mu}(\mathbf{x}, \mathbf{y})$
that are homogeneous of degree r in $x_{1}, x_{2}, \ldots, x_{n}$ and degree S in $y_{1}, y_{2}, \ldots, y_{n}$
Here and after we set

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathrm{r}=0}^{\mathbf{n}(\mu) \mathbf{n}\left(\mu_{\mathrm{s}=\mathbf{0}}\right)} \mathrm{t}^{\mathrm{r}} \boldsymbol{q}^{\mathrm{s}} \operatorname{dim} \mathrm{H}_{\mathrm{r}, \mathrm{~s}}\left(\mathrm{M}_{\mu}[\mathbf{X}, \mathrm{Y}]\right)
$$

Hilbert series

A vector space V is called "graded" if and only if

$$
\mathbf{V}=\mathrm{H}_{\mathbf{o}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{1}}(\mathbf{V}) \oplus \mathrm{H}_{\mathbf{2}}(\mathbf{V}) \oplus \cdots \oplus \mathrm{H}_{\mathbf{m}}(\mathbf{V}) \oplus \cdots
$$

The subspace " $\mathrm{H}_{\mathrm{m}}(\mathrm{V})$ " is called the " m th homogeneous component" of V .
its elements are called homogeneous of degree m
If $\operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{V})<\infty$ for all m , we set

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\sum_{\mathrm{m}>0} \mathrm{t}^{\mathrm{m}} \operatorname{dim} \mathrm{H}_{\mathrm{m}}(\mathrm{~V})
$$

For instance for $\mathbf{R}=\mathbb{Q}\left[\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ we have $R=H_{0}(R) \oplus H_{1}(R) \oplus H_{2}(R) \oplus \cdots$
with

$$
\mathrm{H}_{\mathrm{m}}(\mathrm{R})=\mathrm{L}\left[\mathrm{x}_{1}^{\mathrm{P} 1} \mathrm{x}_{2}^{\mathrm{P} 2} \cdots \mathrm{x}_{\mathrm{n}}^{\mathrm{Pn}}: \mathrm{p}_{1}+\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{n}}=\mathrm{m}\right]
$$

In this case

$$
\operatorname{dim} H_{m}(R)=\binom{m+n-1}{n-1} \quad \text { and } \quad F_{R}(t)=\frac{1}{(1-t)^{n}}
$$

Our spaces $\mathrm{M}[\mathrm{X}, \mathrm{Y}]$ are "bigraded" that is we have the double decomposition

$$
\mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}]=\bigoplus_{\mathbf{r}=\mathbf{0}}^{\mathbf{n}(\mu) \mathbf{n}\left(\mu_{\mathrm{s}=0}\right)} \mathrm{H}_{\mathrm{r}, \mathrm{~s}}\left(\mathbf{M}_{\mu}[\mathbf{X}, \mathrm{Y}]\right)
$$

With $\mathrm{H}_{\mathbf{r}, \boldsymbol{s}}\left(\mathrm{M}_{\mu}[\mathbf{X}, \mathbf{Y}]\right)$ the linear span of derivatives of $\boldsymbol{\Delta}_{\mu}(\mathbf{x}, \mathbf{y})$
that are homogeneous of degree r in $x_{1}, x_{2}, \ldots, x_{n}$ and degree S in $y_{1}, y_{2}, \ldots, y_{n}$
Here and after we set

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathrm{r}=0}^{\mathbf{n}(\mu)} \sum_{\mathrm{s}=\mathbf{0}}^{\mathbf{n}\left(\mu^{\prime}\right)} \mathrm{t}^{\mathrm{r}} \boldsymbol{q}^{\mathrm{s}} \operatorname{dim} \mathrm{H}_{\mathbf{r}, \mathrm{s}}\left(\mathrm{M}_{\mu}[\mathrm{X}, \mathrm{Y}]\right)
$$

The Macdonald Polynomials as Frobenius Characteristics

The Macdonald Polynomials as Frobenius Characteristics

$$
\mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

The Macdonald Polynomials as Frobenius Characteristics

$$
\mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

The Frobenius map

The Macdonald Polynomials as Frobenius Characteristics

$$
\mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

The Frobenius map

$$
\mathrm{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]
$$

The Macdonald Polynomials as Frobenius Characteristics

$$
\begin{aligned}
& \qquad \mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right) \\
& \text { The Frobenius map } \quad \mathrm{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]
\end{aligned}
$$

It follows from the n!-Theorem that

The Macdonald Polynomials as Frobenius Characteristics

$$
\mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

The Frobenius map $\quad \mathbf{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]$
It follows from the n!-Theorem that

$$
\widetilde{H}_{\mu}[X ; q, t]=\sum_{r=0}^{n(\mu)} \sum_{s=0}^{n\left(\mu^{\prime}\right)} t^{r} q^{s} \mathbf{F} \operatorname{char} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

The Macdonald Polynomials as Frobenius Characteristics

$$
\begin{aligned}
& \mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right) \\
& \text { is map } \quad \mathrm{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]
\end{aligned}
$$

The Frobenius map
It follows from the n!-Theorem that

$$
\widetilde{H}_{\mu}[X ; q, t]=\sum_{r=0}^{n(\mu)} \sum_{s=0}^{n\left(\mu^{\prime}\right)} t^{r} q^{s} \mathbf{F} \operatorname{char} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

Moreover the Frobenius characteristic of restriction of $M_{\mu}[\mathrm{X}, \mathrm{Y}]$ to $\mathrm{S}_{\mathbf{n}-\mathbf{1}}$

The Macdonald Polynomials as Frobenius Characteristics

$$
\begin{aligned}
& \mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right) \\
& \text { is map } \quad \mathrm{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]
\end{aligned}
$$

The Frobenius map
It follows from the n!-Theorem that

$$
\widetilde{H}_{\mu}[X ; q, t]=\sum_{r=0}^{n(\mu)} \sum_{s=0}^{n\left(\mu^{\prime}\right)} t^{r} q^{s} \mathbf{F} \operatorname{char} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

Moreover the Frobenius characteristic of restriction of $M_{\mu}[\mathrm{X}, \mathrm{Y}]$ to $\mathrm{S}_{\mathbf{n}-\mathbf{1}}$ is given by the polynomial

The Macdonald Polynomials as Frobenius Characteristics

$$
\begin{aligned}
& \mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right) \\
& \text { is map } \quad \mathrm{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]
\end{aligned}
$$

The Frobenius map
It follows from the n!-Theorem that

$$
\widetilde{H}_{\mu}[X ; q, t]=\sum_{r=0}^{n(\mu)} \sum_{s=0}^{n\left(\mu^{\prime}\right)} t^{r} q^{s} \mathbf{F} \operatorname{char} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

Moreover the Frobenius characteristic of restriction of $M_{\mu}[X, Y]$ to S_{n-1} is given by the polynomial

$$
\partial_{p_{1}} \widetilde{H}_{\mu}[X ; q, t]
$$

The Macdonald Polynomials as Frobenius Characteristics

$$
\mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

The Frobenius map

$$
\mathbf{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]
$$

It follows from the n!-Theorem that

$$
\widetilde{H}_{\mu}[X ; q, t]=\sum_{r=0}^{n(\mu)} \sum_{s=0}^{n\left(\mu^{\prime}\right)} t^{r} q^{s} \mathbf{F} \operatorname{char} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

Moreover the Frobenius characteristic of restriction of $M_{\mu}[X, Y]$ to S_{n-1} is given by the polynomial

$$
\partial_{p_{1}} \widetilde{H}_{\mu}[X ; q, t]
$$

$$
\widetilde{H}_{2,2}[X ; q, t]=s_{4}+s_{3,1}(q+t+q t)+s_{2,2}\left(q^{2}+t^{2}\right)+s_{2,1,1}\left(q t^{2}+q^{2} t+q t\right)+s_{1,1,1,1} t^{2} q^{2}
$$

The Macdonald Polynomials as Frobenius Characteristics

$$
\mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

The Frobenius map

$$
\mathbf{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]
$$

It follows from the n!-Theorem that

$$
\widetilde{H}_{\mu}[X ; q, t]=\sum_{r=0}^{n(\mu)} \sum_{s=0}^{n\left(\mu^{\prime}\right)} t^{r} q^{s} \mathbf{F} \operatorname{char} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

Moreover the Frobenius characteristic of restriction of $M_{\mu}[\mathrm{X}, \mathrm{Y}]$ to $\mathrm{S}_{\mathbf{n}-\mathbf{1}}$ is given by the polynomial

$$
\partial_{p_{1}} \widetilde{H}_{\mu}[X ; q, t]
$$

$$
\begin{gathered}
\widetilde{H}_{2,2}[X ; q, t]=s_{4}+s_{3,1}(q+t+q t)+s_{2,2}\left(q^{2}+t^{2}\right)+s_{2,1,1}\left(q t^{2}+q^{2} t+q t\right)+s_{1,1,1,1} t^{2} q^{2} \\
\partial_{p_{1}} \widetilde{H}_{2,2}[X ; q, t]=(1+q+t+q t) s_{3}+\left(q^{2}+t^{2}+q t^{2}+q^{2} t+q+t+2 q t\right) s_{2,1}+q t(1+q+t+q t) s_{1,1,1}
\end{gathered}
$$

The Macdonald Polynomials as Frobenius Characteristics

$$
\mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

The Frobenius map

$$
\mathbf{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]
$$

It follows from the n!-Theorem that

$$
\widetilde{H}_{\mu}[X ; q, t]=\sum_{r=0}^{n(\mu)} \sum_{s=0}^{n\left(\mu^{\prime}\right)} t^{r} q^{s} \mathbf{F} \operatorname{char} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

Moreover the Frobenius characteristic of restriction of $M_{\mu}[\mathrm{X}, \mathrm{Y}]$ to $\mathrm{S}_{\mathrm{n}-\mathbf{1}}$ is given by the polynomial

$$
\partial_{p_{1}} \widetilde{H}_{\mu}[X ; q, t]
$$

$$
\begin{aligned}
\widetilde{H}_{2,2}[X ; q, t]= & s_{4}+s_{3,1}(q+t+q t)+s_{2,2}\left(q^{2}+t^{2}\right)+s_{2,1,1}\left(q t^{2}+q^{2} t+q t\right)+s_{1,1,1,1} t^{2} q^{2} \\
\partial_{p_{1}} \widetilde{H}_{2,2}[X ; q, t]= & (1+q+t+q t) s_{3}+\left(q^{2}+t^{2}+q t^{2}+q^{2} t+q+t+2 q t\right) s_{2,1}+q t(1+q+t+q t) s_{1,1,1} \\
& {\left[\begin{array}{ccc}
s_{2,1} & s_{2,1}+s_{1,1,1} & s_{1,1,1} \\
s_{3}+s_{2,1} & s_{3}+2 s_{2,1}+s_{1,1,1} & s_{2,1}+s_{1,1,1} \\
s_{3} & s_{3}+s_{2,1} & s_{2,1}
\end{array}\right] }
\end{aligned}
$$

The Macdonald Polynomials as Frobenius Characteristics

$$
\mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

The Frobenius map

$$
\mathbf{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]
$$

It follows from the n!-Theorem that

$$
\widetilde{H}_{\mu}[X ; q, t]=\sum_{r=0}^{n(\mu)} \sum_{s=0}^{n\left(\mu^{\prime}\right)} t^{r} q^{s} \mathbf{F} \operatorname{char} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

Moreover the Frobenius characteristic of restriction of $M_{\mu}[\mathrm{X}, \mathrm{Y}]$ to $\mathrm{S}_{\mathrm{n}-\mathbf{1}}$ is given by the polynomial

$$
\partial_{p_{1}} \widetilde{H}_{\mu}[X ; q, t]
$$

$$
\begin{gathered}
\widetilde{H}_{2,2}[X ; q, t]=s_{4}+s_{3,1}(q+t+q t)+s_{2,2}\left(q^{2}+t^{2}\right)+s_{2,1,1}\left(q t^{2}+q^{2} t+q t\right)+s_{1,1,1,1} t^{2} q^{2} \\
\partial_{p_{1}} \widetilde{H}_{2,2}[X ; q, t]=(1+q+t+q t) s_{3}+\left(q^{2}+t^{2}+q t^{2}+q^{2} t+q+t+2 q t\right) s_{2,1}+q t(1+q+t+q t) s_{1,1,1} \\
{\left[\begin{array}{ccc}
s_{2,1} & s_{2,1}+s_{1,1,1} & s_{1,1,1} \\
s_{3}+s_{2,1} & s_{3}+2 s_{2,1}+s_{1,1,1} & s_{2,1}+s_{1,1,1} \\
s_{3} & s_{3}+s_{2,1} & s_{2,1}
\end{array}\right] \stackrel{\longleftrightarrow}{\longleftrightarrow} \text { Restriction to } \mathcal{s}_{3}}
\end{gathered}
$$

The Macdonald Polynomials as Frobenius Characteristics

$$
\mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

The Frobenius map

$$
\mathrm{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]
$$

It follows from the n!-Theorem that

$$
\widetilde{H}_{\mu}[X ; q, t]=\sum_{r=0}^{n(\mu)} \sum_{s=0}^{n\left(\mu^{\prime}\right)} t^{r} q^{s} \mathbf{F} \operatorname{char} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

Moreover the Frobenius characteristic of restriction of $M_{\mu}[\mathrm{X}, \mathrm{Y}]$ to $\mathrm{S}_{\mathbf{n}-\mathbf{1}}$ is given by the polynomial

$$
\partial_{p_{1}} \widetilde{H}_{\mu}[X ; q, t]
$$

$$
\begin{aligned}
\widetilde{H}_{2,2}[X ; q, t]= & s_{4}+s_{3,1}(q+t+q t)+s_{2,2}\left(q^{2}+t^{2}\right)+s_{2,1,1}\left(q t^{2}+q^{2} t+q t\right)+s_{1,1,1,1} t^{2} q^{2} \\
\partial_{p_{1}} \widetilde{H}_{2,2}[X ; q, t]= & (1+q+t+q t) s_{3}+\left(q^{2}+t^{2}+q t^{2}+q^{2} t+q+t+2 q t\right) s_{2,1}+q t(1+q+t+q t) s_{1,1,1} \\
& {\left[\begin{array}{ccc}
s_{2,1} & s_{2,1}+s_{1,1,1} & s_{1,1,1} \\
s_{3}+s_{2,1} & s_{3}+2 s_{2,1}+s_{1,1,1} & s_{2,1}+s_{1,1,1} \\
s_{3} & s_{3}+s_{2,1} & s_{2,1}
\end{array}\right] \stackrel{\longleftrightarrow}{\longleftrightarrow} \text { Restriction to } \mathcal{S}_{3} }
\end{aligned}
$$

How does this decompose in terms of the basis $\left\{\tilde{\mathrm{H}}_{\mu}[\mathrm{X} ; \mathrm{q}, \mathrm{t}]\right\}_{\mu+3}$

The Macdonald Polynomials as Frobenius Characteristics

$$
\mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

The Frobenius map

$$
\mathrm{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]
$$

It follows from the n!-Theorem that

$$
\widetilde{H}_{\mu}[X ; q, t]=\sum_{r=0}^{n(\mu)} \sum_{s=0}^{n\left(\mu^{\prime}\right)} t^{r} q^{s} \mathbf{F} \operatorname{char} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

Moreover the Frobenius characteristic of restriction of $M_{\mu}[\mathrm{X}, \mathrm{Y}]$ to $\mathrm{S}_{\mathbf{n}-\mathbf{1}}$ is given by the polynomial

$$
\partial_{p_{1}} \widetilde{H}_{\mu}[X ; q, t]
$$

$$
\begin{aligned}
& \widetilde{H}_{2,2}[X ; q, t]=s_{4}+s_{3,1}(q+t+q t)+s_{2,2}\left(q^{2}+t^{2}\right)+s_{2,1,1}\left(q t^{2}+q^{2} t+q t\right)+s_{1,1,1,1} t^{2} q^{2} \\
& \partial_{p_{1}} \widetilde{H}_{2,2}[X ; q, t]=(1+q+t+q t) s_{3}+\left(q^{2}+t^{2}+q t^{2}+q^{2} t+q+t+2 q t\right) s_{2,1}+q t(1+q+t+q t) s_{1,1,1} \\
& \qquad\left[\begin{array}{ccc}
s_{2,1} & s_{2,1}+s_{1,1,1} & s_{1,1,1} \\
s_{3}+s_{2,1} & s_{3}+2 s_{2,1}+s_{1,1,1} & s_{2,1}+s_{1,1,1} \\
s_{3} & s_{3}+s_{2,1} & s_{2,1}
\end{array}\right] \stackrel{\text { Restriction to } \mathcal{s}_{3}}{ } \\
& \text { How does this decompose in terms of the basis }\left\{\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right\}_{\mu+3} ? ?
\end{aligned}
$$

The Macdonald Polynomials as Frobenius Characteristics

$$
\mathbf{M}_{\mu}[X, Y]=\bigoplus_{r=0}^{n(\mu)} \bigoplus_{s=0}^{n\left(\mu^{\prime}\right)} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

The Frobenius map

$$
\mathrm{F} \chi^{\lambda}=\mathbf{S}_{\lambda}[\mathbf{X}]
$$

It follows from the n!-Theorem that

$$
\widetilde{H}_{\mu}[X ; q, t]=\sum_{r=0}^{n(\mu)} \sum_{s=0}^{n\left(\mu^{\prime}\right)} t^{r} q^{s} \mathbf{F} \operatorname{char} \mathcal{H}_{r, s}\left(\mathbf{M}_{\mu}[X, Y]\right)
$$

Moreover the Frobenius characteristic of restriction of $M_{\mu}[\mathrm{X}, \mathrm{Y}]$ to $\mathrm{S}_{\mathbf{n}-\mathbf{1}}$ is given by the polynomial

$$
\partial_{p_{1}} \widetilde{H}_{\mu}[X ; q, t]
$$

$$
\begin{aligned}
& \widetilde{H}_{2,2}[X ; q, t]=s_{4}+s_{3,1}(q+t+q t)+s_{2,2}\left(q^{2}+t^{2}\right)+s_{2,1,1}\left(q t^{2}+q^{2} t+q t\right)+s_{1,1,1,1} t^{2} q^{2} \\
& \partial_{p_{1}} \widetilde{H}_{2,2}[X ; q, t]=(1+q+t+q t) s_{3}+\left(q^{2}+t^{2}+q t^{2}+q^{2} t+q+t+2 q t\right) s_{2,1}+q t(1+q+t+q t) s_{1,1,1} \\
& \qquad\left[\begin{array}{ccc}
s_{2,1} & s_{2,1}+s_{1,1,1} & s_{1,1,1} \\
s_{3}+s_{2,1} & s_{3}+2 s_{2,1}+s_{1,1,1} & s_{2,1}+s_{1,1,1} \\
s_{3} & s_{3}+s_{2,1} & s_{2,1}
\end{array}\right] \stackrel{\text { Restriction to } \mathcal{S}_{3}}{\rightleftarrows} \\
& \text { How does this decompose in terms of the basis }\left\{\tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]\right\}_{\mu+3} ? ?
\end{aligned}
$$

The Macdonald-Stanley (dual) Pieri Rules

The Macdonald-Stanley [dual) Pieri Rules

$$
\partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]=\sum_{\nu \rightarrow \mu} \mathbf{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{H}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathbf{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{H}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu^{\prime}}} \frac{\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{1}^{\mathbf{l}_{2}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathbf{C}_{\mu^{\mu}}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{a}^{\mathbf{a}_{2}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}}
\end{aligned}
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{H}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu^{\prime}}} \frac{\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{t}^{\mathbf{1}_{2}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathbb{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathbf{t}^{\mathbf{l}_{\nu}(\mathbf{s})+\mathbf{1}}}
\end{aligned}
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu^{\prime}}} \frac{\mathbf{t}^{\mathbf{l}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{t}^{\mathbf{1}_{2}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathbb{C}_{\mu^{\mu}}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{l}_{\nu}(\mathbf{s})+\mathbf{1}}}
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{H}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathbf{c}_{\mu, \nu}(\mathbf{q}, \mathbf{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu^{\prime}}} \frac{\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{1}^{\mathbf{1}_{2}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathbb{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{a}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}}
\end{aligned}
$$

where $\mathrm{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν

The Macdonald-Stanley (dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathbf{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu^{\prime}}} \frac{\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{t}^{\mathbf{1}_{2}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathbb{C}_{\mu^{\prime}}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}}
\end{aligned}
$$

where $\mathrm{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Macdonald-Stanley (dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{H}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]=\sum_{\nu \rightarrow \mu} \mathbf{c}_{\mu, \nu}(\mathbf{q}, \mathbf{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu^{\prime}}} \frac{\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{t}^{\mathbf{1}_{2}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathbf{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}}
\end{aligned}
$$

where $\mathrm{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the
 row and the column of the cell μ / ν.

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathbf{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu^{\prime}}} \frac{\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{t}^{\mathbf{1}_{2}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathbb{C}_{\mu^{\prime}}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}}
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.

The Macdonald-Stanley (dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathbf{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu^{\prime}}} \frac{\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{t}^{\mathbf{1}_{2}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathbb{C}_{\mu^{\prime}}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}}
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathrm{F}_{\mu}(\mathrm{q}, \mathrm{t})$

The Macdonald-Stanley (dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathbf{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu^{\prime}}} \frac{\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{t}^{\mathbf{1}_{2}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathbb{C}_{\mu^{\prime}}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathbf{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}}
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathbf{F}_{\mu}(\mathbf{q}, \mathbf{t})=\partial_{\mathbf{F} \mathbf{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.

$$
\mathbf{F}_{\mu}(\mathbf{q}, \mathbf{t})=\partial_{\mathbf{P} \mathbf{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.

$$
\mathbf{F}_{\mu}(\mathbf{q}, \mathbf{t})=\partial_{\mathbf{p} 1}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \mathrm{F}_{\nu}(\mathbf{q}, \mathrm{t})
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote
the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\partial_{\mathbf{P t}_{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \mathrm{F}_{\nu}(\mathbf{q}, \mathrm{t})$

$$
F_{\mu}(q, t)=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) F_{\nu}(q, t)
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{l}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\partial_{\mathbf{P t}_{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \mathrm{F}_{\nu}(\mathbf{q}, \mathrm{t})$

Using Maple

$$
F_{\mu}(q, t)=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) F_{\nu}(q, t)
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{l}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\partial_{\mathbf{P t}_{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \mathrm{F}_{\nu}(\mathbf{q}, \mathrm{t})$

Using Maple

$$
F_{\mu}(q, t)=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) F_{\nu}(q, t)
$$

```
hilb([3,2]);
```


The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{l}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathrm{F}_{\mu}(\mathbf{q}, \mathbf{t})=\partial_{\mathbf{P} \mathbf{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \mathrm{F}_{\nu}(\mathbf{q}, \mathrm{t})$

Using Maple

$$
F_{\mu}(q, t)=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) F_{\nu}(q, t)
$$

hilb([3,2]);

$$
q^{4} t^{2}+4 q^{4} t+4 q^{3} t^{2}+5 q^{4}+15 q^{3} t+9 q^{2} t^{2}+11 q^{3}+22 q^{2} t+11 q t^{2}+9 q^{2}+15 q t+5 t^{2}+4 q+4 t+1
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{l}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathrm{F}_{\mu}(\mathbf{q}, \mathbf{t})=\partial_{\mathbf{P} \mathbf{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \mathrm{F}_{\nu}(\mathbf{q}, \mathrm{t})$

Using Maple

$$
F_{\mu}(q, t)=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) F_{\nu}(q, t)
$$

hilb([3,2]);

$$
q^{4} t^{2}+4 q^{4} t+4 q^{3} t^{2}+5 q^{4}+15 q^{3} t+9 q^{2} t^{2}+11 q^{3}+22 q^{2} t+11 q t^{2}+9 q^{2}+15 q t+5 t^{2}+4 q+4 t+1
$$

$$
\left[\begin{array}{rrrrr}
5 & 11 & 9 & 4 & 1 \\
4 & 15 & 22 & 15 & 4 \\
1 & 4 & 9 & 11 & 5
\end{array}\right]
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{l}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathrm{F}_{\mu}(\mathbf{q}, \mathbf{t})=\partial_{\mathbf{P} \mathbf{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \mathrm{F}_{\nu}(\mathbf{q}, \mathbf{t})$

Using Maple

$$
F_{\mu}(q, t)=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) F_{\nu}(q, t)
$$

hilb([3,2]);

$$
\left.\begin{array}{rl}
q^{4} t^{2}+4 q^{4} t+4 q^{3} t^{2}+5 q^{4}+15 & q^{3} t+9 \\
2 & q^{2} t^{2}+11 \\
\hline
\end{array} q^{3}+22 q^{2} t+11 q t^{2}+9 q^{2}+15 q t+5 t^{2}+4 q+4 t+1\right)\left[\begin{array}{rrrrr}
5 & 11 & 9 & 4 & 1 \\
4 & 15 & 22 & 15 & 4 \\
1 & 4 & 9 & 11 & 5
\end{array}\right]
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{l}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathrm{F}_{\mu}(\mathbf{q}, \mathbf{t})=\partial_{\mathbf{P} \mathbf{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \mathrm{F}_{\nu}(\mathbf{q}, \mathrm{t})$

Using Maple

$$
F_{\mu}(q, t)=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) F_{\nu}(q, t)
$$

hilb([3,2]);

$$
q^{4} t^{2}+4 q^{4} t+4 q^{3} t^{2}+5 q^{4}+15 q^{3} t+9 q^{2} t^{2}+11 q^{3}+22 q^{2} t+11 q t^{2}+9 q^{2}+15 q t+5 t^{2}+4 q+4 t+1
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{l}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu \nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathrm{F}_{\mu}(\mathbf{q}, \mathbf{t})=\partial_{\mathbf{P} \mathbf{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \mathrm{F}_{\nu}(\mathbf{q}, \mathrm{t})$

Using Maple

$$
F_{\mu}(q, t)=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) F_{\nu}(q, t)
$$

hilb([3,2]);

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathrm{F}_{\mu}(\mathbf{q}, \mathbf{t})=\partial_{\mathbf{P} \mathbf{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \mathrm{F}_{\nu}(\mathbf{q}, \mathrm{t})$

Using Maple

$$
F_{\mu}(q, t)=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) F_{\nu}(q, t)
$$

hilb([3,2]);

$$
\begin{aligned}
& q^{4} t^{2}+4 q^{4} t+4 q^{3} t^{2}+5 q^{4}+\underset{2 \longrightarrow}{15 q^{3} t}+9 q^{2} t^{2}+11 q^{3}+22 q^{2} t+11 q t^{2}+9 q^{2}+15 q t+5 t^{2}+4 q+4 t+1
\end{aligned}
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{l}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathrm{F}_{\mu}(\mathbf{q}, \mathbf{t})=\partial_{\mathbf{P} \mathbf{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \mathrm{F}_{\nu}(\mathbf{q}, \mathbf{t})$

Using Maple

$$
F_{\mu}(q, t)=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) F_{\nu}(q, t)
$$

hilb([3,2]);

$$
\left.\begin{array}{rl}
q^{4} t^{2}+4 q^{4} t+4 q^{3} t^{2}+5 q^{4}+15 & q^{3} t+9 \\
2 & q^{2} t^{2}+11 \\
\hline
\end{array} q^{3}+22 q^{2} t+11 q t^{2}+9 q^{2}+15 q t+5 t^{2}+4 q+4 t+1\right)\left[\begin{array}{rrrrr}
5 & 11 & 9 & 4 & 1 \\
4 & 15 & 22 & 15 & 4 \\
1 & 4 & 9 & 11 & 5
\end{array}\right]
$$

The Macdonald-Stanley [dual) Pieri Rules

$$
\begin{aligned}
& \partial_{\mathbf{p} \mathbf{1}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \tilde{\mathrm{H}}_{\nu}[\mathbf{X} ; \mathbf{q}, \mathrm{t}] \\
& \mathbf{c}_{\mu \nu}(\mathbf{q}, \mathrm{t})=\prod_{\mathbf{s} \in \mathbf{R}_{\mu \nu}} \frac{\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathrm{t}^{\mathbf{l}_{\nu}(\mathbf{s})}-\mathbf{q}^{\mathbf{a}_{2}(\mathbf{s})+\mathbf{1}}} \prod_{\mathbf{s} \in \mathrm{C}_{\mu \nu}} \frac{\mathbf{q}^{\mathbf{a}_{\mu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\mu}(\mathbf{s})+\mathbf{1}}}{\mathbf{q}^{\mathbf{a}_{\nu}(\mathbf{s})}-\mathrm{t}^{\mathbf{1}_{\nu}(\mathbf{s})+\mathbf{1}}},
\end{aligned}
$$

where $\mathbf{R}_{\mu \nu}$ and $\mathrm{C}_{\mu \nu}$ denote the collections of cells of ν
that are respectively in the

The Hilbert series row and the column of the cell μ / ν.
$\mathrm{F}_{\mu}(\mathbf{q}, \mathbf{t})=\partial_{\mathbf{P} \mathbf{1}}^{\mathbf{n}} \tilde{\mathrm{H}}_{\mu}[\mathbf{X} ; \mathbf{q}, \mathbf{t}]=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) \partial_{p_{1}}^{n-1} \widetilde{H}_{\mu}[x ; q, t]=\sum_{\nu \rightarrow \mu} \mathrm{c}_{\mu, \nu}(\mathbf{q}, \mathrm{t}) \mathrm{F}_{\nu}(\mathbf{q}, \mathbf{t})$

Using Maple

$$
F_{\mu}(q, t)=\sum_{\nu \rightarrow \mu} c_{\mu \nu}(q, t) F_{\nu}(q, t)
$$

hilb([3,2]);

$$
\begin{aligned}
& q^{4} t^{2}+4 q^{4} t+4 q^{3} t^{2}+5 q^{4}+15 q^{3} t+9 q^{2} t^{2}+11 q^{3}+22 q^{2} t+11 q t^{2}+9 q^{2}+15 q t+5 t^{2}+4 q+4 t+1
\end{aligned}
$$

How it all started

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $\mathrm{a}(\mathrm{T}), \mathrm{b}(\mathrm{T})$

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $\mathrm{a}(\mathrm{T}), \mathrm{b}(\mathrm{T})$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathbf{I N} \mathbf{I}(\mu)} \mathbf{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $\mathrm{a}(\mathrm{T}), \mathrm{b}(\mathrm{T})$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathbf{I} \mathbf{N} \mathbf{J}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $\mathrm{a}(\mathrm{T}), \mathrm{b}(\mathrm{T})$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathbf{I} \mathbf{N} \mathbf{J}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding S_{n} module M_{μ} is yet to be found.

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $\mathrm{a}(\mathrm{T}), \mathrm{b}(\mathrm{T})$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathbf{I} \mathbf{N} \mathbf{J}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding S_{n} module M_{μ} is yet to be found.
In a new burst of genius Jim conjectured that

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $a(T), b(T)$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathrm{IN} \mathbf{N}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding $S_{\mathbf{n}}$ module M_{μ} is yet to be found.
In a new burst of genius Jim conjectured that

$$
F_{2^{b} 1^{a-b}}(q, t)=
$$

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $a(T), b(T)$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathrm{IN} \mathbf{N}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding $S_{\mathbf{n}}$ module M_{μ} is yet to be found.
In a new burst of genius Jim conjectured that

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)}
$$

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $a(T), b(T)$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathrm{IN} \mathbf{N}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding $S_{\mathbf{n}}$ module M_{μ} is yet to be found.
In a new burst of genius Jim conjectured that

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t}
$$

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $a(T), b(T)$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathrm{IN} \mathbf{N}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding $S_{\mathbf{n}}$ module M_{μ} is yet to be found.
In a new burst of genius Jim conjectured that

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $a(T), b(T)$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathrm{IN} \mathbf{N}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding $S_{\mathbf{n}}$ module M_{μ} is yet to be found.
In a new burst of genius Jim conjectured that

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $a(T), b(T)$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathrm{IN} \mathbf{N}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding $S_{\mathbf{n}}$ module M_{μ} is yet to be found.
In a new burst of genius Jim conjectured that

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

With "dropt (i)" is the number of rows in $\mathrm{T}_{\leq i}$ of the same length as the row that contains i ,

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $a(T), b(T)$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathrm{IN} \mathbf{N}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding $S_{\mathbf{n}}$ module M_{μ} is yet to be found.
In a new burst of genius Jim conjectured that

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

With "dropt (i)" is the number of rows in $\mathrm{T}_{\leq i}$ of the same length as the row that contains i , and " $N W(T)>i$ " gives the number of entries in T strictly NW of i that are larger than i.

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $a(T), b(T)$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathrm{IN} \mathbf{N}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding $S_{\mathbf{n}}$ module M_{μ} is yet to be found.
In a new burst of genius Jim conjectured that

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

With "dropt(i)" is the number of rows in $\mathrm{T}_{\leq i}$ of the same length as the row that contains i , and " $N W(T)>i$ " gives the number of entries in T strictly $N W$ of i that are larger than i.

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $a(T), b(T)$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathrm{IN} \mathbf{N}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding $S_{\mathbf{n}}$ module M_{μ} is yet to be found.
In a new burst of genius Jim conjectured that

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

With "dropt(i)" is the number of rows in $\mathrm{T}_{\leq i}$ of the same length as the row that contains i , and " $N W(T)>i$ " gives the number of entries in T strictly $N W$ of i that are larger than i.

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $a(T), b(T)$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathrm{IN} \mathbf{N}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding $S_{\mathbf{n}}$ module M_{μ} is yet to be found.
In a new burst of genius Jim conjectured that

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

With "dropt(i)" is the number of rows in $\mathrm{T}_{\leq i}$ of the same length as the row that contains i , and " $N W(T)>i$ " gives the number of entries in T strictly $N W$ of i that are larger than i.
and posed me the problem to prove it

How it all started

Recall that from the Haglund-Haiman-Loehr result we now have statistics $a(T), b(T)$

$$
\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})=\sum_{\mathbf{T} \in \mathrm{IN} \mathbf{N}(\mu)} \mathrm{t}^{\mathbf{a}(\mathbf{T})} \mathbf{q}^{\mathbf{b}(\mathbf{T})}
$$

This was established by means of original Macdonald identities
Its relation to the corresponding $S_{\mathbf{n}}$ module M_{μ} is yet to be found.
In a new burst of genius Jim conjectured that

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

With "dropt(i)" is the number of rows in $\mathrm{T}_{\leq i}$ of the same length as the row that contains i , and " $N W(T)>i$ " gives the number of entries in T strictly $N W$ of i that are larger than i.
and posed me the problem to prove it

The recursion underlying the formula

The recursion underlying the formula

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

The recursion underlying the formula

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

The recursion underlying the formula

$$
F_{2^{b_{1} 1^{a-b}}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

The recursion underlying the formula

$$
F_{2^{b_{1} 1^{a-b}}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$\uparrow F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)$

The recursion underlying the formula

$$
\left.F_{2^{b_{1}{ }^{a-b}}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T} \operatorname{drop}_{i}(T)\right]_{t} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

b

The recursion underlying the formula

$$
F_{2^{b_{1} 1^{a-b}}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$\uparrow F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)$

The recursion underlying the formula

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t \in \operatorname{col}_{2}(T)} \prod\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

The recursion underlying the formula

$$
F_{2^{b_{1} 1^{a-b}}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$\uparrow F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)$

The recursion underlying the formula

$$
F_{2^{b_{1} 1^{a-b}}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

The recursion underlying the formula

$$
F_{2^{b_{1} a-b}}(q, t)=\sum_{T \in S T\left(2^{b_{1} 1^{a-b}}\right)} \prod_{i \in T}\left[d r o p_{i}(T)\right]_{t} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

The recursion underlying the formula

$$
F_{2^{b_{1} 1^{a-b}}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

The recursion underlying the formula

$$
F_{2^{b_{1} 1^{a-b}}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$\uparrow F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)$

The recursion underlying the formula

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in \operatorname{col}_{2}(T)} \prod\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

The recursion underlying the formula

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

This is quite remarkable

The recursion underlying the formula

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

This is quite remarkable
in the 20 years since the Macdonald conjectures

The recursion underlying the formula

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

This is quite remarkable
in the 20 years since the Macdonald conjectures we never suspected that we could have

The recursion underlying the formula

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{t} \prod_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

This is quite remarkable
in the 20 years since the Macdonald conjectures we never suspected that we could have
a purely combinatorial recursion for $\mathrm{F}_{\mu}(\mathbf{q}, \mathrm{t})$

The recursion underlying the formula

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

This is quite remarkable
in the 20 years since the Macdonald conjectures we never suspected that we could have a purely combinatorial recursion for $\mathrm{F}_{\mu}(\mathrm{q}, \mathrm{t})$

We will see that this recursion stems right out of

The recursion underlying the formula

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

This is quite remarkable
in the 20 years since the Macdonald conjectures we never suspected that we could have
a purely combinatorial recursion for $\mathrm{F}_{\mu}(\mathrm{q}, \mathrm{t})$
We will see that this recursion stems right out of the Representation Theory of the modules M_{μ}

The recursion underlying the formula

$$
F_{2^{b} 1^{a-b}}(q, t)=\sum_{T \in S T\left(2^{b} 1^{a-b}\right)} \prod_{i \in T}\left[\operatorname{drop}_{i}(T)\right]_{i \in \operatorname{col}_{2}(T)}\left(t^{N W(T)>i}+q\right)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

This is quite remarkable
in the 20 years since the Macdonald conjectures we never suspected that we could have
a purely combinatorial recursion for $\mathrm{F}_{\mu}(\mathrm{q}, \mathrm{t})$
We will see that this recursion stems right out of the Representation Theory of the modules M_{μ}

The underlying representation theoretical identity

The underlying representation
 theoretical identity

The underlying representation
 theoretical identity

The underlying representation

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

The underlying representation

$\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)$

Rationale

Rationale

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Rationale

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Differentiate both sides by $\partial_{p_{1}}^{n-1}$

Rationale

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Differentiate both sides by $\partial_{p_{1}}^{n-1}$

$$
\partial_{p_{1}}^{n} \phi_{a b}(x ; q, t)=(1+q)[b]_{t} \partial_{p_{1}}^{n-1} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \partial_{p_{1}}^{n-1} \phi_{a-1, b}(x ; q / t, t)
$$

Rationale

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Differentiate both sides by $\partial_{p_{1}}^{n-1}$

$$
\partial_{p_{1}}^{n} \phi_{a b}(x ; q, t)=(1+q)[b]_{t} \partial_{p_{1}}^{n-1} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \partial_{p_{1}}^{n-1} \phi_{a-1, b}(x ; q / t, t)
$$

$$
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
$$

Rationale

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Differentiate both sides by $\partial_{p_{1}}^{n-1}$

$$
\begin{gathered}
\partial_{p_{1}}^{n} \phi_{a b}(x ; q, t)=(1+q)[b]_{t} \partial_{p_{1}}^{n-1} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \partial_{p_{1}}^{n-1} \phi_{a-1, b}(x ; q / t, t) \\
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
\end{gathered}
$$

Rationale

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Differentiate both sides by $\partial_{p_{1}}^{n-1}$

$$
\begin{gathered}
\partial_{p_{1}}^{n} \phi_{a b}(x ; q, t)=(1+q)[b] t \partial_{p_{1}}^{n-1} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \partial_{p_{1}}^{n-1} \phi_{a-1, b}(x ; q / t, t) \\
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
\end{gathered}
$$

Rationale

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Differentiate both sides by $\partial_{p_{1}}^{n-1}$

$$
\begin{gathered}
\partial_{p_{1}}^{n} \phi_{a b}(x ; q, t)=(1+q)[b]{ }_{t} \partial_{p_{1}}^{n-1} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \partial_{p_{1}}^{n-1} \phi_{a-1, b}(x ; q / t, t) \\
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
\end{gathered}
$$

Rationale

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Differentiate both sides by $\partial_{p_{1}}^{n-1}$

$$
\begin{gathered}
\partial_{p_{1}}^{n} \phi_{a b}(x ; q, t)=(1+q)[b] t{ }_{t}^{\partial_{p_{1}}^{n-1} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \partial_{p_{1}}^{n-1} \phi_{a-1, b}(x ; q / t, t)} \\
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
\end{gathered}
$$

Some times it is easier to prove more than
to prove less

Rationale

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Differentiate both sides by $\partial_{p_{1}}^{n-1}$

$$
\begin{gathered}
\left.\partial_{p_{1}}^{n} \phi_{a b}(x ; q, t)=(1+q)[b]\right]_{t} \partial_{p_{1}}^{n-1} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \partial_{p_{1}}^{n-1} \phi_{a-1, b}(x ; q / t, t) \\
F_{a, b}(q, t)=(1+q)[b]_{t} F_{a, b-1}(q, t)+t^{b}[a-b]_{t} F_{a-1, b}(q / t, t)
\end{gathered}
$$

Some times it is easier to prove more than
to prove less

The proof of

The proof of

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

The proof of

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Was guided by

The proof of

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Was guided by

Heuristics and conjectures

The proof of

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Was guided by

Heuristics and conjectures gathered during 20 years

The proof of

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Was guided by

Heuristics and conjectures gathered during 20 years of explorations

The proof of

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Was guided by

Heuristics and conjectures gathered during 20 years
of explorations
in the representation theory of

The proof of

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Was guided by

Heuristics and conjectures gathered during 20 years
of explorations
in the representation theory of
the modules

The proof of

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Was guided by

Heuristics and conjectures gathered during 20 years
of explorations
in the representation theory of
the modules
$\mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}]$

The proof of

$$
\partial_{p_{1}} \phi_{a, b}(x ; q, t)=(1+q)[b]_{t} \phi_{a, b-1}(x ; q, t)+t^{b}[a-b]_{t} \phi_{a-1, b}(x ; q / t, t)
$$

Was guided by

Heuristics and conjectures gathered during 20 years
of explorations
in the representation theory of
the modules
$\mathbf{M}_{\mu}[\mathbf{X}, \mathbf{Y}]$

First "Flip"

First "Flip"

Definition

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathrm{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathrm{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x}) \quad \text { and }
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

then

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

then

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathrm{x})
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

then

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

then

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

then

$$
\mathbf{P}\left(\partial_{\mathbf{x}}\right) \mathbf{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

then

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

then

$$
\mathbf{P}\left(\partial_{\mathbf{x}}\right) \mathbf{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\operatorname{flip} \mathrm{P}(\mathrm{x})=0
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

then

$$
\mathbf{P}\left(\partial_{\mathbf{x}}\right) \mathbf{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

then

$$
\mathbf{P}\left(\partial_{\mathbf{x}}\right) \mathbf{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=0 \Longrightarrow \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \quad \Longrightarrow \quad \mathrm{P}(\mathbf{x})=0
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

then

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \quad \Longrightarrow \quad \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone" if it is the linear span of derivatives of a single homogeneous polynomial $\boldsymbol{\Delta}(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})
$$

Note this is a non-singular linear map of V onto V since if

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

then

$$
\mathbf{P}\left(\partial_{\mathbf{x}}\right) \mathbf{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\operatorname{flip} \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \quad \Longrightarrow \quad \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(\mathrm{x})=\mathrm{n}_{\mathrm{o}}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathrm{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathrm{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=0
$$

Thus

$$
\text { flip } \mathrm{P}(\mathrm{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathrm{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathrm{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=0
$$

Thus

$$
\text { flip } \mathrm{P}(\mathrm{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$ of bi-degree $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathrm{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathrm{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\text { flip } \mathrm{P}(\mathrm{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$ of bi-degree n_{x}, n_{y} In this case

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathrm{x})=\mathrm{Q}\left(\partial_{\mathrm{x}}\right) \boldsymbol{\Delta}(\mathrm{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\text { flip } \mathrm{P}(\mathrm{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathrm{x}}\right) \mathrm{P}(\mathrm{x})=0 \Longrightarrow \mathrm{P}(\mathrm{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$ of bi-degree $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$ In this case

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{q}, \mathrm{t})=\mathrm{t}^{\mathbf{n}_{\mathbf{x}}} \mathrm{q}^{\mathbf{n}_{\mathbf{y}}} \mathrm{Fv}_{\mathrm{V}}(1 / \mathrm{q}, 1 / \mathrm{t})
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\text { flip } \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$ of bi-degree $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$ In this case

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{q}, \mathrm{t})=\mathrm{t}^{\mathrm{n}_{\mathrm{x}}} \mathrm{q}^{\mathrm{n}_{\mathrm{y}}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{q}, 1 / \mathrm{t})
$$

This explains the symmetry

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathrm{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\text { flip } \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$ of bi-degree $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$ In this case

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{q}, \mathrm{t})=\mathrm{t}^{\mathrm{n}_{\mathrm{x}}} \mathrm{q}^{\mathrm{n}_{\mathrm{y}}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{q}, 1 / \mathrm{t})
$$

This explains the symmetry

$$
\mathrm{F}_{32}(\mathbf{q}, \mathrm{t})=\left[\begin{array}{rrrrr}
5 & 11 & 9 & 4 & 1 \\
4 & 15 & 22 & 15 & 4 \\
1 & 4 & 9 & 11 & 5
\end{array}\right]
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathrm{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\operatorname{flip} \mathrm{P}(\mathrm{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathrm{x}}\right) \mathrm{P}(\mathrm{x})=0 \Longrightarrow \mathrm{P}(\mathrm{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$ of bi-degree $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$ In this case

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{q}, \mathrm{t})=\mathrm{t}^{\mathrm{n}_{\mathrm{x}}} \mathrm{q}^{\mathrm{n}_{\mathrm{y}}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{q}, 1 / \mathrm{t})
$$

This explains the symmetry

$$
\mathrm{F}_{32}(\mathbf{q}, \mathrm{t})=\left[\begin{array}{rrrrr}
{\left[\begin{array}{l}
5 \\
4
\end{array}\right.} & 11 & 9 & 4 & 1 \\
4 & 15 & 22 & 15 & 4 \\
1 & 4 & 9 & 11 & 5
\end{array}\right]
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathrm{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\text { flip } \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$ of bi-degree $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$ In this case

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{q}, \mathrm{t})=\mathrm{t}^{\mathrm{n}_{\mathrm{x}}} \mathrm{q}^{\mathrm{n}_{\mathrm{y}}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{q}, 1 / \mathrm{t})
$$

This explains the symmetry

$$
\mathrm{F}_{32}(\mathbf{q}, \mathrm{t})=\left[\begin{array}{rrrrr}
5 & 11 & 9 & 4 & 1 \\
4 & 15 & 22 & 15 & 4 \\
1 & 4 & 9 & 11 & 5
\end{array}\right]
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathbf{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\text { flip } \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$ of bi-degree $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$ In this case

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{q}, \mathrm{t})=\mathrm{t}^{\mathrm{n}_{\mathrm{x}}} \mathrm{q}^{\mathrm{n}_{\mathrm{y}}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{q}, 1 / \mathrm{t})
$$

This explains the symmetry

$$
\mathrm{F}_{32}(\mathbf{q}, \mathrm{t})=\left[\begin{array}{rrrrr}
5 & 11 & 9 & \boxed{4} & 1 \\
4 & 15 & 22 & 15 & 4 \\
1 & 4 & 9 & 11 & 5
\end{array}\right]
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathrm{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\text { flip } \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$ of bi-degree $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$ In this case

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{q}, \mathrm{t})=\mathrm{t}^{\mathrm{n}_{\mathrm{x}}} \mathrm{q}^{\mathrm{n}_{\mathrm{y}}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{q}, 1 / \mathrm{t})
$$

This explains the symmetry

$$
\mathrm{F}_{32}(\mathbf{q}, \mathrm{t})=\left[\begin{array}{rrrrr}
5 & 11 & 9 & 4 & 1 \\
4 & 15 & 22 & 15 & 4 \\
1 & 4 & 9 & 11 & 5
\end{array}\right]
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathrm{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\text { flip } \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$ of bi-degree $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$ In this case

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{q}, \mathrm{t})=\mathrm{t}^{\mathrm{n}_{\mathrm{x}}} \mathrm{q}^{\mathrm{n}_{\mathrm{y}}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{q}, 1 / \mathrm{t})
$$

This explains the symmetry

$$
\mathrm{F}_{32}(\mathbf{q}, \mathrm{t})=\left[\begin{array}{rrrrr}
5 & 11 & \frac{9}{9} & 4 & 1 \\
4 & 15 & 22 & 15 & 4 \\
1 & 4 & \boxed{9} & 11 & 5
\end{array}\right]
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathrm{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\text { flip } \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$ of bi-degree $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$ In this case

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{q}, \mathrm{t})=\mathrm{t}^{\mathrm{n}_{\mathrm{x}}} \mathrm{q}^{\mathrm{n}_{\mathrm{y}}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{q}, 1 / \mathrm{t})
$$

This explains the symmetry

$$
\mathrm{F}_{32}(\mathbf{q}, \mathrm{t})=\left[\begin{array}{rrrrr}
5 & 11 & 9 & 4 & 1 \\
4 & 15 & 22 & 15 & 4 \\
1 & 4 & 9 & 11 & 5
\end{array}\right]
$$

Definition

First "Flip"

We say that a vector space V of polynomials is a "cone " if it is the linear span of derivatives of a single homogeneous polynomial $\Delta(\mathrm{x})$.

In this case V has an automorphism "Flip" defined by

$$
\text { flip } \mathrm{P}(\mathrm{x})=\mathrm{P}\left(\partial_{\mathrm{x}}\right) \Delta(\mathrm{x})
$$

Note this is a non-singular linear map of V onto V since if
then

$$
\mathrm{P}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x}) \quad \text { and } \quad \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathrm{x})=0
$$

$$
\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=\mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{Q}\left(\partial_{\mathbf{x}}\right) \boldsymbol{\Delta}(\mathbf{x})=\mathrm{Q}\left(\partial_{\mathbf{x}}\right) \mathrm{P}\left(\partial_{\mathbf{x}}\right) \Delta(\mathbf{x})=0
$$

Thus

$$
\text { flip } \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}\left(\partial_{\mathbf{x}}\right) \mathrm{P}(\mathbf{x})=0 \Longrightarrow \mathrm{P}(\mathbf{x})=0
$$

Note that this implies that if degree $\Delta(x)=n_{o}$ then

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}_{0}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{t})
$$

The same is true if V is a cone with summit a bihomogeneous polynomial $\Delta(\mathrm{x}, \mathrm{y})$ of bi-degree $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$ In this case

$$
\mathrm{F}_{\mathrm{V}}(\mathrm{q}, \mathrm{t})=\mathrm{t}^{\mathrm{n}_{\mathrm{x}}} \mathrm{q}^{\mathrm{n}_{\mathrm{y}}} \mathrm{~F}_{\mathrm{V}}(1 / \mathrm{q}, 1 / \mathrm{t})
$$

This explains the symmetry

$$
\mathrm{F}_{32}(\mathbf{q}, \mathrm{t})=\left[\begin{array}{rrrrr}
5 & 11 & 9 & 4 & 1 \\
4 & 15 & 22 & 15 & 4 \\
1 & 4 & 9 & 11 & 5
\end{array}\right]
$$

next the miracles
next the miracles

next the miracles

next the miracles

next the miracles

next the miracles

next the miracles

next the miracles

next the miracles

next the miracles

next the miracles

next the miracles

next the miracles

next the miracles

next the miracles

next the miracles

$\frac{\mathrm{n}!}{2}$ Conjecture
If $\alpha, \beta \vdash n$ differ only by the position of one corner cell then $\quad \operatorname{dim} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}=\frac{\mathrm{n}!}{2}$
SF Conjecture
If $\alpha, \beta \vdash n$ differ only by the position of one corner cell then

$$
\mathrm{M}_{\alpha}=\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta} \oplus \operatorname{flip}_{\alpha} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}, \quad \mathrm{M}_{\beta}=\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta} \oplus \operatorname{flip}_{\beta} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}
$$

This implies

next the miracles

$\underset{\text { flip }}{\text { m }} \neq \wedge$ 田

$\mathrm{M}_{221}=\mathrm{M}_{32} \wedge \mathrm{M}_{221} \oplus \mathrm{flip}_{221} \mathrm{M}_{32} \wedge \mathrm{M}_{221}$

$$
\mathrm{M}_{32}=\mathrm{M}_{221} \wedge \mathrm{M}_{32} \oplus \operatorname{flip}_{32} \mathrm{M}_{221} \wedge \mathrm{M}_{32}
$$

$\frac{\mathrm{n}!}{2}$ Conjecture
If $\alpha, \beta \vdash n$ differ only by the position of one corner cell then $\quad \operatorname{dim} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}=\frac{\mathrm{n}!}{2}$
SF Conjecture
If $\alpha, \beta \vdash n$ differ only by the position of one corner cell then

$$
\mathrm{M}_{\alpha}=\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta} \oplus \operatorname{flip}_{\alpha} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}, \quad \mathrm{M}_{\beta}=\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta} \oplus \operatorname{flip}_{\beta} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}
$$

This implies

$$
\mathrm{F}_{\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}}(\mathbf{q}, \mathrm{t})=\frac{\mathrm{T}_{\beta} \mathrm{F}_{\mathrm{M}_{\alpha}}(\mathbf{q}, \mathrm{t})-\mathrm{T}_{\alpha} \mathrm{F}_{\mathrm{M}_{\beta}}(\mathbf{q}, \mathrm{t})}{\mathrm{T}_{\alpha}-\mathrm{T}_{\beta}}
$$

next the miracles

$\mathrm{M}_{221}=\mathrm{M}_{32} \wedge \mathrm{M}_{221} \oplus \mathrm{flip}_{221} \mathrm{M}_{32} \wedge \mathrm{M}_{221}$
$\mathrm{M}_{32}=\mathrm{M}_{221} \wedge \mathrm{M}_{32} \oplus$ flip $_{32} \mathrm{M}_{221} \wedge \mathrm{M}_{32}$
$\frac{\mathrm{n}!}{2}$ Conjecture
If $\alpha, \beta \vdash n$ differ only by the position of one corner cell then $\quad \operatorname{dim} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}=\frac{\mathrm{n}!}{2}$
SF Conjecture
If $\alpha, \beta \vdash n$ differ only by the position of one corner cell then

$$
\mathrm{M}_{\alpha}=\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta} \oplus \operatorname{flip}_{\alpha} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}, \quad \mathrm{M}_{\beta}=\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta} \oplus \operatorname{flip}_{\beta} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}
$$

This implies

$$
\mathrm{F}_{\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}}(\mathbf{q}, \mathrm{t})=\frac{\mathrm{T}_{\beta} \mathrm{F}_{\mathrm{M}_{\alpha}}(\mathbf{q}, \mathrm{t})-\mathrm{T}_{\alpha} \mathrm{F}_{\mathrm{M}_{\beta}}(\mathbf{q}, \mathrm{t})}{\mathrm{T}_{\alpha}-\mathrm{T}_{\beta}}
$$

with $\mathrm{T}_{\mu}=\mathbf{t}^{\mathbf{n}(\mu)} \mathbf{q}^{\mathbf{n}\left(\mu^{\prime}\right)}$ and $\mathbf{n}(\mu)=\sum_{\mathbf{i}}(\mathbf{i}-1) \mu_{\mathbf{i}}$

next the miracles

$\frac{\mathrm{n}!}{2}$ Conjecture (still open!)
If $\alpha, \beta \vdash n$ differ only by the position of one corner cell then $\quad \operatorname{dim} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}=\frac{\mathrm{n}!}{2}$

SF Conjecture

If $\alpha, \beta \vdash n$ differ only by the position of one corner cell then

$$
\mathrm{M}_{\alpha}=\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta} \oplus \operatorname{flip}_{\alpha} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}, \quad \mathrm{M}_{\beta}=\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta} \oplus \operatorname{flip}_{\beta} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}
$$

This implies

$$
\mathrm{F}_{\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}}(\mathbf{q}, \mathrm{t})=\frac{\mathrm{T}_{\beta} \mathrm{F}_{\mathrm{M}_{\alpha}}(\mathbf{q}, \mathrm{t})-\mathrm{T}_{\alpha} \mathrm{F}_{\mathrm{M}_{\beta}}(\mathbf{q}, \mathrm{t})}{\mathrm{T}_{\alpha}-\mathrm{T}_{\beta}}
$$

with $\mathrm{T}_{\mu}=\mathbf{t}^{\mathbf{n}(\mu)} \mathbf{q}^{\mathbf{n}\left(\mu^{\prime}\right)}$ and $\mathbf{n}(\mu)=\sum_{\mathbf{i}}(\mathbf{i}-1) \mu_{\mathbf{i}}$

next the miracles

$\frac{\mathrm{n}!}{2}$ Conjecture (still open!)
If $\alpha, \beta \vdash n$ differ only by the position of one corner cell then $\quad \operatorname{dim} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}=\frac{\mathrm{n}!}{2}$
SF Conjecture (still open!)
If $\alpha, \beta \vdash n$ differ only by the position of one corner cell then

$$
\mathrm{M}_{\alpha}=\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta} \oplus \operatorname{flip}_{\alpha} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}, \quad \mathrm{M}_{\beta}=\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta} \oplus \operatorname{flip}_{\beta} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}
$$

This implies

$$
\mathrm{F}_{\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}}(\mathbf{q}, \mathrm{t})=\frac{\mathrm{T}_{\beta} \mathrm{F}_{\mathrm{M}_{\alpha}}(\mathbf{q}, \mathrm{t})-\mathrm{T}_{\alpha} \mathrm{F}_{\mathrm{M}_{\beta}}(\mathbf{q}, \mathrm{t})}{\mathrm{T}_{\alpha}-\mathrm{T}_{\beta}}
$$

with $\mathrm{T}_{\mu}=\mathbf{t}^{\mathbf{n}(\mu)} \mathbf{q}^{\mathbf{n}\left(\mu^{\prime}\right)}$ and $\mathbf{n}(\mu)=\sum_{\mathbf{i}}(\mathbf{i}-1) \mu_{\mathbf{i}}$

next the miracles

$\frac{\mathrm{n}!}{2}$ Conjecture (still open!)
If $\alpha, \beta \vdash n$ differ only by the position of one corner cell then $\quad \operatorname{dim} \mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}=\frac{\mathrm{n}!}{2}$
SF Conjecture (still open!)
If $\alpha, \beta \vdash n$ differ only by the position of one corner cell then

$$
\mathbf{M}_{\alpha}=\mathbf{M}_{\alpha} \wedge \mathbf{M}_{\beta} \oplus \operatorname{flip}_{\alpha} \mathbf{M}_{\alpha} \wedge \mathbf{M}_{\beta}, \quad \mathbf{M}_{\beta}=\mathbf{M}_{\alpha} \wedge \mathbf{M}_{\beta} \oplus \operatorname{flip}_{\beta} \mathbf{M}_{\alpha} \wedge \mathbf{M}_{\beta}
$$

This implies

$$
\mathrm{F}_{\mathrm{M}_{\alpha} \wedge \mathrm{M}_{\beta}}(\mathbf{q}, \mathrm{t})=\frac{\mathrm{T}_{\beta} \mathrm{F}_{\mathrm{M}_{\alpha}}(\mathbf{q}, \mathrm{t})-\mathrm{T}_{\alpha} \mathrm{F}_{\mathrm{M}_{\beta}}(\mathbf{q}, \mathrm{t})}{\mathrm{T}_{\alpha}-\mathrm{T}_{\beta}}
$$

with $\mathrm{T}_{\mu}=\mathbf{t}^{\mathbf{n}(\mu)} \mathbf{q}^{\mathbf{n}\left(\mu^{\prime}\right)}$ and $\mathbf{n}(\mu)=\sum_{\mathbf{i}}(\mathbf{i}-1) \mu_{\mathbf{i}}$

How would you split in one half

How would you split in one half

 aHow would you split in one half a
Left regular representation?

How would you split in one half

 aLeft regular representation?
e_{1}^{n}

How would you split in one half a

Left regular representation?
$e_{1}^{n}=e_{1}^{2} \times e_{1}^{n-2}$

How would you split in one half a

Left regular representation?

$$
\begin{aligned}
e_{1}^{n}=e_{1}^{2} \times e_{1}^{n-2} & \\
& =\left(h_{2}+e_{2}\right) \times e_{1}^{n-2}
\end{aligned}
$$

How would you split in one half a

Left regular representation?
$e_{1}^{n}=e_{1}^{2} \times e_{1}^{n-2}$

$$
=\left(h_{2}+e_{2}\right) \times e_{1}^{n-2}
$$

How would you split in one half a

Left regular representation?
$e_{1}^{n}=e_{1}^{2} \times e_{1}^{n-2}$

$$
=\left(h_{2}+e_{2}\right) \times e_{1}^{n-2}
$$

The basic tool : "gistol" Macdonalds

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:
$\begin{cases}(0) & \mathbf{G}_{\mathrm{D}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathbf{x} ; \mathbf{q}, \mathbf{t}) \\ 1 \\ 1 \\ 1 \\ 1 & \end{cases}$

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:
$\left\{\begin{array}{l}(0) \quad \mathrm{G}_{\mathrm{D}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathbf{x} ; \mathbf{q}, \mathbf{t}) \quad \text { if } \mathrm{D} \text { is the diagram of } \mu \\ 1 \\ 1 \\ 1\end{array}\right.$

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

```
\(\left(\right.\) (0) \(\quad \mathrm{G}_{\mathrm{D}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathbf{x} ; \mathbf{q}, \mathbf{t}) \quad\) if D is the diagram of \(\mu\)
    (1) \(\mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})\)
\(\{1\)
```


The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

$$
\left(\begin{array}{ll}
(0) & \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \\
\text { if } \quad \mathrm{D} \text { is the diagram of } \mu \\
(\mathbf{1}) & \mathrm{G}_{\mathrm{D}_{\mathbf{1}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \\
\text { if } \quad \mathrm{D}_{\mathbf{1}} \approx \mathrm{D}_{2}
\end{array}\right.
$$

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

```
\(\left(\right.\) (0) \(\quad \mathbf{G}_{D}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathbf{x} ; \mathbf{q}, \mathbf{t}) \quad\) if \(\quad \mathrm{D}\) is the diagram of \(\mu\)
    (1) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad\) if \(\quad \mathrm{D}_{1} \approx \mathrm{D}_{2}\)
    (2) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{t}, \mathbf{q})\)
```



```
,
```


The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

```
\(\left(\right.\) (0) \(\quad \mathbf{G}_{D}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathbf{x} ; \mathbf{q}, \mathbf{t}) \quad\) if \(\quad \mathrm{D}\) is the diagram of \(\mu\)
    (1) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad\) if \(\quad \mathrm{D}_{1} \approx \mathrm{D}_{2}\)
    (2) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{t}, \mathbf{q})\)
    if \(\quad D_{2} \approx D_{1}^{\prime}\)
```


The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

```
\(\left(\right.\) (0) \(\quad \mathbf{G}_{D}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathbf{x} ; \mathbf{q}, \mathbf{t}) \quad\) if D is the diagram of \(\mu\)
    (1) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad\) if \(\quad \mathrm{D}_{1} \approx \mathrm{D}_{2}\)
    (2) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{t}, \mathbf{q})\)
        if \(\quad D_{2} \approx D_{1}^{\prime}\)
    (3) \(\quad \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{1}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})\)
```


The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

```
\(\left(\right.\) (0) \(\quad \mathbf{G}_{D}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathbf{x} ; \mathbf{q}, \mathbf{t}) \quad\) if D is the diagram of \(\mu\)
    (1) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad\) if \(\quad \mathrm{D}_{1} \approx \mathrm{D}_{2}\)
    (2) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{t}, \mathbf{q})\)
    if \(\quad D_{2} \approx D_{1}^{\prime}\)
    (3) \(\quad \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad\) if \(\quad \mathrm{D} \approx \mathrm{D}_{\mathbf{1}} \times \mathrm{D}_{\mathbf{2}}\)
```


The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

```
\(\left(\right.\) (0) \(\quad \mathrm{G}_{\mathrm{D}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \quad\) if D is the diagram of \(\mu\)
    (1) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad\) if \(\quad \mathrm{D}_{1} \approx \mathrm{D}_{2}\)
    (2) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{t}, \mathbf{q})\)
    if \(\mathrm{D}_{2} \approx \mathrm{D}_{1}^{\prime}\)
    (3) \(\quad \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad\) if \(\quad \mathrm{D} \approx \mathrm{D}_{\mathbf{1}} \times \mathrm{D}_{\mathbf{2}}\)
    (4) \(\quad \partial_{\mathrm{P}_{1}} \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\sum_{\mathrm{s} \in \mathrm{D}} \mathrm{w}_{\mathrm{s}, \mathrm{D}}(\mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D} / \mathrm{s}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})\),
```


The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

```
\(\left(\right.\) (0) \(\quad \mathrm{G}_{\mathrm{D}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \quad\) if D is the diagram of \(\mu\)
    (1) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad\) if \(\quad \mathrm{D}_{1} \approx \mathrm{D}_{2}\)
    (2) \(\mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{t}, \mathbf{q}) \quad\) if \(\quad \mathrm{D}_{2} \approx \mathrm{D}_{1}^{\prime}\)
    (3) \(\quad \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad\) if \(\quad \mathrm{D} \approx \mathrm{D}_{\mathbf{1}} \times \mathrm{D}_{\mathbf{2}}\)
    (4) \(\quad \partial_{\mathrm{P}_{1}} \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\sum_{\mathrm{s} \in \mathrm{D}} \mathrm{w}_{\mathrm{s}, \mathrm{D}}(\mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D} / \mathrm{s}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})\),
```

Representation theoretical reasons suggest that,

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

```
\(\left(\right.\) (0) \(\quad \mathrm{G}_{\mathrm{D}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \quad\) if D is the diagram of \(\mu\)
    (1) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad\) if \(\quad \mathrm{D}_{1} \approx \mathrm{D}_{2}\)
    (2) \(\quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{t}, \mathbf{q})\)
    if \(\mathrm{D}_{2} \approx \mathrm{D}_{1}^{\prime}\)
    (3) \(\quad \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad\) if \(\quad \mathrm{D} \approx \mathrm{D}_{\mathbf{1}} \times \mathrm{D}_{\mathbf{2}}\)
    (4) \(\quad \partial_{\mathrm{P}_{1}} \mathrm{G}_{\mathrm{D}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\sum_{\mathrm{s} \in \mathrm{D}} \mathbf{w}_{\mathrm{s}, \mathrm{D}}(\mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D} / \mathrm{s}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})\),
```

Representation theoretical reasons suggest that, in the case that D is a skew diagram,

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

$$
\begin{cases}(0) & \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\bar{H}_{\mu}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \\ (\mathbf{1}) & \mathrm{G}_{\mathrm{D}_{\mathbf{1}}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \\ (2) & \text { if } \\ \mathrm{G}_{\mathrm{D}_{\mathbf{1}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{D}_{\mathbf{1}} \approx \mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{t}, \mathbf{q}) & \text { the diagram of } \mu \\ (3) & \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{1}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \\ \text { if } \quad \text { if } \quad \mathrm{D} \approx \mathrm{D}_{\mathbf{2}} \approx \mathrm{D}_{1}^{\prime} \times \mathrm{D}_{2} \\ (4) & \partial_{\mathrm{P}_{1}} \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\sum_{\mathrm{s} \in \mathrm{D}} \mathrm{w}_{\mathrm{s}, \mathrm{D}}(\mathbf{q}, \mathrm{t}) \mathrm{G}_{\mathrm{D} / \mathrm{s}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})\end{cases}
$$

Representation theoretical reasons suggest that,
in the case that D is a skew diagram,
a) $\quad \mathrm{w}_{1}[\mathrm{~s}, \mathrm{D}]=\mathrm{t}^{\mathrm{l}_{\mathrm{D}}(\mathrm{s})} \mathrm{q}^{\mathrm{a}_{\mathrm{D}}(\mathrm{s})}$
and
b) $\quad \mathrm{w}_{2}[\mathrm{~s}, \mathrm{D}]=\mathbf{t}^{\mathrm{l}_{\mathrm{D}}(\mathrm{s})} \boldsymbol{q}^{\mathrm{aDD}_{\mathrm{D}}(\mathrm{s})}$

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

$$
\begin{aligned}
& \left(\begin{array}{l}
(0)
\end{array} \mathrm{G}_{\mathrm{D}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \quad \text { if } \mathrm{D} \text { is the diagram of } \mu\right. \\
& \text { (1) } \quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad \text { if } \quad \mathrm{D}_{1} \approx \mathrm{D}_{2} \\
& \text { (2) } \quad \mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t})=\mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{t}, \mathbf{q}) \\
& \text { if } \mathrm{D}_{2} \approx \mathrm{D}_{1}^{\prime} \\
& \text { (3) } \quad \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \mathrm{G}_{\mathrm{D}_{2}}(\mathrm{x} ; \mathbf{q}, \mathrm{t}) \quad \text { if } \quad \mathrm{D} \approx \mathrm{D}_{\mathbf{1}} \times \mathrm{D}_{2} \\
& \text { (4) } \quad \partial_{\mathrm{P}_{1}} \mathrm{G}_{\mathrm{D}}(\mathbf{x} ; \mathbf{q}, \mathbf{t})=\sum_{\mathrm{s} \in \mathrm{D}} \mathbf{w}_{\mathrm{s}, \mathrm{D}}(\mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D} / \mathrm{s}}(\mathbf{x} ; \mathbf{q}, \mathbf{t}) \text {, }
\end{aligned}
$$

Representation theoretical reasons suggest that,
in the case that D is a skew diagram,
a) $\quad w_{1}[s, D]=t^{l_{D}(s)} q^{a_{D}^{\prime}(s)}$
and
b) $\quad w_{2}[s, D]=\mathbf{t}^{l^{\prime}(s)} q^{a_{D}(s)}$

Note: these properties overdetermine the family $\left\{\mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})\right\}_{\mathrm{D}}$,

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

$$
\begin{cases}(0) & \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \\ (\mathbf{1}) & \mathrm{G}_{\mathrm{D}_{\mathbf{1}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \\ (2) & \text { if } \quad \\ \mathrm{G}_{\mathrm{D}_{\mathbf{1}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{D}_{\mathbf{1}} \approx \mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{t}, \mathbf{q}) & \text { the diagram of } \mu \\ (3) & \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \quad \text { if } \quad \mathrm{D} \approx \mathrm{D}_{\mathbf{1}} \times \mathrm{D}_{2} \\ (4) & \partial_{\mathrm{P}_{1}} \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\sum_{\mathrm{s} \in \mathrm{D}} \mathrm{w}_{\mathrm{s}, \mathrm{D}}(\mathbf{q}, \mathrm{t}) \mathrm{G}_{\mathrm{D} / \mathrm{s}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})\end{cases}
$$

Representation theoretical reasons suggest that,
in the case that D is a skew diagram,
a) $\quad w_{1}[s, D]=t^{l_{D}(s)} q^{a_{D}^{\prime}(s)}$
and
b) $\quad w_{2}[s, D]=\mathbf{t}^{l^{\prime}(s)} q^{a_{D}(s)}$

Note: these properties overdetermine the family $\left\{\mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})\right\}_{\mathrm{D}}$,

> existence is by no means guaranteed.

The basic tool : "gistol" Macdonalds

(1) A "gistol" is a lattice diagram that can be transformed to a skew diagram by row and column interchanges
(2) We postulate the existence of a family of polynomials indexed by gistols with the following basic properties:

$$
\begin{cases}(0) & \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\overline{\mathbf{H}}_{\mu}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \\ (\mathbf{1}) & \mathrm{G}_{\mathrm{D}_{\mathbf{1}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \\ (2) & \text { if } \quad \\ \mathrm{G}_{\mathrm{D}_{\mathbf{1}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{D}_{\mathbf{1}} \approx \mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{t}, \mathbf{q}) & \text { the diagram of } \mu \\ (3) & \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\mathrm{G}_{\mathrm{D}_{1}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \mathrm{G}_{\mathrm{D}_{\mathbf{2}}}(\mathrm{x} ; \mathbf{q}, \mathbf{t}) \quad \text { if } \quad \mathrm{D} \approx \mathrm{D}_{\mathbf{1}} \times \mathrm{D}_{2} \\ (4) & \partial_{\mathrm{P}_{1}} \mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})=\sum_{\mathrm{s} \in \mathrm{D}} \mathrm{w}_{\mathrm{s}, \mathrm{D}}(\mathbf{q}, \mathrm{t}) \mathrm{G}_{\mathrm{D} / \mathrm{s}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})\end{cases}
$$

Representation theoretical reasons suggest that,
in the case that D is a skew diagram,
a) $\quad w_{1}[s, D]=t^{l_{D}(s)} q^{a_{D}^{\prime}(s)}$
and
b) $\quad \mathrm{w}_{2}[\mathrm{~s}, \mathrm{D}]=\mathbf{t}^{\mathrm{l}_{\mathrm{D}}(\mathrm{s})} \boldsymbol{q}^{\mathrm{a}_{\mathrm{D}}(\mathrm{s})}$

Note: these properties overdetermine the family $\left\{\mathrm{G}_{\mathrm{D}}(\mathrm{x} ; \mathbf{q}, \mathbf{t})\right\}_{\mathrm{D}}$,

An example of a use of gistols

An example of a use of gistols

An example of a use of gistols

$\partial_{p_{1}} \square=$

An example of a use of gistols

An example of a use of gistols

An example of a use of gistols

An example of a use of gistols

An example of a use of gistols

An example of a use of gistols

An example of a use of gistols

An example of a use of gistols

An example of a use of gistols

$\left.\partial_{\mathbf{p} \mathbf{1}} \square=\square+\left(\mathrm{t}+\mathrm{t}^{2}\right)^{\square}-(\mathrm{q}+\mathrm{tc})^{\square}\right)^{\square}$

An example of a use of gistols

$\partial_{\mathbf{P i}} \square=\square+\left(\mathbf{t}+\mathbf{t}^{2}\right)^{\square} \square+(\mathbf{q}+\mathbf{t q})^{\square} \square$
$\partial_{\mathbf{P i}} \square=\mathbf{t}^{2} \square+(\mathbf{q}+\mathbf{q})^{\square} \square+(1+\mathbf{t})^{\square} \square$

An example of a use of gistols

$\partial_{P i} \square_{\square}^{\square}=\square+\left(t+t^{2}\right)^{\square} \square+\left(\mathbf{Q}+\mathrm{a}+()^{\square}\right.$
$\partial_{\mathrm{P} \mathbf{1}} \square=\mathrm{t}^{2} \square+(\mathrm{q}+\mathrm{q})^{\square} \square+(1+\mathrm{t})^{\square} \square$

An example of a use of gistols

$\partial_{\mathbf{P} \mathbf{1}} \square=\square+\left(\mathbf{t}+\mathbf{t}^{2}\right)^{\square} \square+(\mathbf{q}+\mathbf{t a}) \square$

An example of a use of gistols

An example of a use of gistols

$\partial_{\mathbf{P i}} \square=\square+\left(\mathbf{t}+\mathbf{t}^{2}\right) \square+(\mathbf{q}+\mathbf{t q}) \square$
$\partial_{\mathrm{Pi}} \square=\mathrm{t}^{2} \square+(\mathbf{q}+\mathrm{q}) \square \square+(1+\mathrm{t}) \square \square=\frac{\square}{\square}=\frac{(1-\mathrm{t}) \square+(\mathrm{a}-1) \square-\square}{\mathrm{a}-\mathrm{t}}$
$\square=\square \Delta \square+\mathrm{t}^{2} \mathrm{q}^{2}+\square \Delta \square=\phi+\mathrm{q}^{\psi}$

An example of a use of gistols

An example of a use of gistols

An example of a use of gistols

$\partial_{\mathbf{P i}} \square=\square+\left(\mathbf{t}+\mathbf{t}^{2}\right)^{\square} \square+(\mathbf{q}+\mathbf{t q})^{\square} \square$

$\square=\square \Delta \square+\mathrm{t}^{2} \mathbf{q}^{2}+\square \Delta \square=\phi+\mathrm{q}^{\omega}$
$\square=\square \Delta \square+\mathrm{t}^{3} \mathrm{q} \downarrow \square \Delta \square=\phi+\mathrm{t} \dot{\square}$

$$
\square=\phi+\psi
$$

An example of a use of gistols

$\partial_{\mathbf{p} \mathbf{1}} \square=\square+\left(\mathrm{t}+\mathrm{t}^{2}\right)^{\square}-(\mathrm{q}+\mathrm{tq})^{\square}$
$\partial_{\mathbf{P} \mathbf{1}} \square=\mathbf{t}^{2} \square+(\mathbf{q}+\mathbf{q}) \square+(1+\mathrm{t}) \square \square=\frac{(1-\mathrm{t}) \square+(\mathbf{q}-1) \square}{\mathbf{q}-\mathrm{t}}$
$\exists=\boxminus \wedge \boxminus+\mathrm{t}^{2} \mathrm{c}^{2} \downarrow \boxminus \wedge \boxminus=\phi+\mathrm{q} \psi$
$\boxminus=\boxminus \wedge \theta+\mathrm{t}^{3} \mathrm{q}+\boxminus \wedge \boxminus=\phi+\mathrm{t} \psi$ $\square=\phi+\psi$

$\partial_{\mathbf{P} \mathbf{i}} \boxminus=\mathbf{t}^{2}(\phi+\mathbf{q} \psi)+(\mathbf{q}+\mathbf{q} \mathbf{t})(\phi+\psi)+(1+\mathrm{t})(\phi+\mathrm{t} \psi)$

An example of a use of gistols

$\partial_{\mathbf{P i}} \square=\square+\left(\mathbf{t}+\mathbf{t}^{2}\right)^{\square} \square+(\mathbf{q}+\mathbf{t c})^{\square} \square$

$\square=\square \Delta \square+\mathrm{t}^{2} \mathbf{q}^{2}+\square \Delta \square=\phi+\mathbf{q}^{\omega}$
$\square=\square \Delta \square+\mathrm{t}^{3} \mathrm{a}+\square \Delta \square=\phi+\mathrm{t} \dot{\square}$

$\partial_{\mathbf{P} \mathbf{1}} \square^{\square}=\mathbf{t}^{2}(\phi+\mathbf{q} \psi)+(\mathbf{q}+\mathbf{q})(\phi+\psi)+(1+\mathbf{t})(\phi+\mathbf{t} \psi)$

$$
=\left(t^{2}+\mathbf{q}+\mathbf{q}+1+\mathrm{t}\right) \phi+\left(\mathrm{t}^{2} \mathrm{a}+\mathrm{q}+\mathrm{q} \mathrm{t}+\mathrm{t}+\mathrm{t}^{2}\right) \phi
$$

An example of a use of gistols

$\partial_{\mathbf{P i}} \square=\square+\left(\mathrm{t}+\mathrm{t}^{2}\right)^{\square} \square+(\mathbf{q}+\mathbf{t a})^{\square} \square$

$\square=\square \Delta \square+\mathrm{t}^{2} \mathbf{q}^{2}+\square \Delta \square=\phi+\mathbf{q}^{\omega}$
$\square=\square \Delta \square+\mathrm{t}^{3} \mathrm{a}+\square \Delta \square=\phi+\mathrm{t} \dot{\square}$

$$
\begin{array}{r}
\partial_{\mathbf{p} \mathbf{t}} \boxminus=\mathrm{t}^{2}(\phi+\mathbf{q} \psi)+(\mathbf{q}+\mathbf{q t})(\phi+\psi)+(1+\mathrm{t})(\phi+\mathrm{t} \psi) \\
=\left(\mathrm{t}^{2}+\mathbf{q}+\mathbf{q} \mathbf{t}+1+\mathrm{t}\right) \phi+\left(\mathrm{t}^{2} \mathbf{q}+\mathbf{q}+\mathbf{q} \mathbf{t}+\mathrm{t}+\mathrm{t}^{2}\right) \psi \\
=\left((1+\mathrm{t})(1+\mathbf{q})+\mathrm{t}^{2}\right) \phi+(\mathrm{t}(1+\mathrm{t})(1+\mathbf{q})+\mathbf{q}) \psi
\end{array}
$$

An example of a use of gistols

$\partial_{\mathbf{P i}} \square=\square+\left(\mathrm{t}+\mathrm{t}^{2}\right)^{\square} \square+(\mathbf{q}+\mathbf{t a})^{\square} \square$

$\square=\square \Delta \square+\mathrm{t}^{2} \mathbf{q}^{2}+\square \Delta \square=\phi+\mathbf{q}^{\omega}$
$\square=\square \Delta \square+\mathrm{t}^{3} \mathrm{a}+\square \Delta \square=\phi+\mathrm{t} \dot{\square}$

$$
\begin{array}{r}
\partial_{\mathbf{p} \mathbf{t}} \boxminus=\mathrm{t}^{2}(\phi+\mathbf{q} \psi)+(\mathbf{q}+\mathbf{q t})(\phi+\psi)+(1+\mathrm{t})(\phi+\mathrm{t} \psi) \\
=\left(\mathrm{t}^{2}+\mathbf{q}+\mathbf{q} \mathbf{t}+1+\mathrm{t}\right) \phi+\left(\mathrm{t}^{2} \mathbf{q}+\mathbf{q}+\mathbf{q} \mathbf{t}+\mathrm{t}+\mathrm{t}^{2}\right) \psi \\
=\left((1+\mathrm{t})(1+\mathbf{q})+\mathrm{t}^{2}\right) \phi+(\mathrm{t}(1+\mathrm{t})(1+\mathbf{q})+\mathbf{q}) \psi \\
=(1+\mathrm{t})(1+\mathbf{q}) \operatorname{t}+\mathrm{t}^{2} \phi+\mathbf{q} \psi
\end{array}
$$

An example of a use of gistols

\section*{| | | | |
| :--- | :--- | :--- | :--- |
| | | | |
| - | | A | t^{l} |$q^{a^{\prime}}$}

$\partial_{\mathbf{p} 1} \square=\square+\left(\mathrm{t}+\mathrm{t}^{2}\right)^{\square} \square+(\mathbf{q}+\mathrm{tq})^{\square}$
$\partial_{\mathrm{P} \mathbf{1}} \square=\mathrm{t}^{2} \square+(\mathrm{q}+\mathrm{qt}) \square+(1+\mathrm{t}) \square \mathrm{\square} \square=\frac{(1-\mathrm{t}) \square+(\mathrm{q}-1) \square}{\mathrm{q}-\mathrm{t}}$
$\boxminus=\boxminus \wedge \boxminus+\mathrm{t}^{2} \mathrm{c}^{2} \downarrow \boxminus \wedge \boxminus=\phi+\mathrm{q} \psi$ $\boxminus=\boxminus \wedge \boxminus+\mathrm{t}^{3} \mathrm{q}+\boxminus \wedge \boxminus=\phi+\mathrm{t} \psi$

$\partial_{\mathbf{P} \mathbf{1}} \square=\mathrm{t}^{2}(\phi+\mathrm{q} \psi)+(\mathbf{q}+\mathbf{q} \mathrm{t})(\phi+\psi)+(1+\mathrm{t})(\phi+\mathrm{t} \psi)$

$$
\begin{gathered}
=\left(\mathrm{t}^{2}+\mathrm{q}+\mathrm{q} \mathrm{t}+1+\mathrm{t}\right) \phi+\left(\mathrm{t}^{2} \mathrm{q}+\mathrm{q}+\mathrm{q} \mathrm{t}+\mathrm{t}+\mathrm{t}^{2}\right) \psi \\
=\left((1+\mathrm{t})(1+\mathrm{q})+\mathrm{t}^{2}\right) \phi+(\mathrm{t}(1+\mathrm{t})(1+\mathrm{q})+\mathrm{q}) \psi \\
=(1+\mathrm{t})(1+\mathrm{q}) \\
=+\mathrm{t}^{2} \phi+\mathrm{q} \psi
\end{gathered}
$$

An example of a use of gistols

$\partial_{\mathbf{P i}}{ }^{\square}=\boxminus+\left(\mathbf{t}+\mathrm{t}^{2}\right)^{\square} \square+(\mathbf{q}+\mathrm{tq})^{\square}$

$\exists=\boxminus \wedge \boxminus+\mathrm{t}^{2} \mathrm{c}^{2} \downarrow \boxminus \wedge \boxminus=\phi+\mathrm{q} \psi$
$\boxminus=\boxminus \wedge \boxminus+\mathrm{t}^{3} \mathrm{q}+\boxminus \wedge \boxminus=\phi+\mathrm{t} \psi$

$$
\begin{array}{r}
\partial_{\mathbf{P} \mathbf{1}} \square=\mathrm{t}^{2}(\phi+\mathbf{q} \psi)+(\mathbf{q}+\mathbf{q} \mathrm{t})(\phi+\psi)+(1+\mathrm{t})(\phi+\mathrm{t} \psi) \\
=\left(\mathrm{t}^{2}+\mathbf{q}+\mathbf{q}+1+\mathbf{t}\right) \phi+\left(\mathrm{t}^{2} \mathbf{q}+\mathbf{q}+\mathbf{q} \mathbf{t}+\mathrm{t}+\mathrm{t}^{2}\right) \psi \\
=\left((1+\mathrm{t})(1+\mathbf{q})+\mathrm{t}^{2}\right) \phi+(\mathrm{t}(1+\mathrm{t})(1+\mathbf{q})+\mathbf{q}) \psi \\
=(1+\mathrm{t})(1+\mathbf{q})-\left(\mathrm{t}^{2} \phi+\mathbf{q}^{\psi} \psi\right.
\end{array}
$$

An example of a use of gistols

\section*{| | | | |
| :--- | :--- | :--- | :--- |
| | | | |
| - | | A | t^{l} |$q^{a^{\prime}}$}

 $+a t$

$\square=\square=\square+\square+t^{2} \mathbf{c}^{2}+\square \square=\square \square=\phi+\square$

$\partial_{\mathbf{P} \mathbf{1}} \boxminus=\mathrm{t}^{2}(\phi+\mathbf{q} \psi)+(\mathbf{q}+\mathbf{q} \mathrm{t})(\phi+\psi)+(1+\mathrm{t})(\phi+\mathrm{t} \psi)$

$$
\begin{aligned}
& =\left(\mathrm{t}^{2}+\mathrm{q}+\mathrm{q} \mathrm{t}+1+\mathrm{t}\right) \phi+\left(\mathrm{t}^{2} \mathrm{q}+\mathrm{q}+\mathrm{qt}+\mathrm{t}+\mathrm{t}^{2}\right) \psi \\
& =\left((1+\mathrm{t})(1+\mathrm{q})+\mathrm{t}^{2}\right) \phi+(\mathrm{t}(1+\mathrm{t})(1+\mathrm{q})+\mathrm{q}) \psi
\end{aligned}
$$

An example of a use of gistols

$\partial_{\mathbf{P i}} \square=\square+\left(\mathbf{t}+\mathbf{t}^{2}\right)^{\square} \square+(\mathbf{a}+\mathbf{t c})^{\square} \square$
$\partial_{\mathbf{P i}} \square=\mathrm{t}^{2} \square+(\mathbf{q}+\mathrm{q})^{\square} \square+(1+\mathrm{t}) \square \square=\frac{(1-\mathrm{t}) \square+(\mathrm{a}-1) \square-\square}{\mathrm{a}}=\frac{\square-\mathrm{a}}{\square}$
$\square=\square \Delta \square+\mathrm{t}^{2} \mathbf{q}^{2}+\square \Delta \square=\phi+\mathbf{q}^{\omega}$ $\square=\square \Delta \square+\mathrm{t}^{3} \mathrm{a}+\square \Delta \square=\phi+\mathrm{t} \dot{\square}$

$$
\begin{aligned}
& \partial_{\mathbf{P i}} \square=\mathbf{t}^{2}(\phi+\mathbf{q} \psi)+(\mathbf{q}+\mathbf{q} \mathbf{t})(\phi+\psi)+(1+\mathbf{t})(\phi+\mathbf{t} \psi) \\
& =\left(\mathrm{t}^{2}+\mathbf{q}+\mathbf{q} t+1+\mathrm{t}\right) \phi+\left(\mathrm{t}^{2} \mathrm{a}+\mathrm{q}+\mathrm{q} \mathrm{t}+\mathrm{t}+\mathrm{t}^{2}\right) \phi \\
& =\left((1+\mathrm{t})(1+\mathrm{q})+\mathrm{t}^{2}\right) \phi+(\mathrm{t}(1+\mathrm{t})(1+\mathrm{q})+\mathrm{q}) \psi
\end{aligned}
$$

An example of a use of gistols

$\partial_{\mathbf{P i}} \square=\square+\left(\mathbf{t}+\mathbf{t}^{2}\right)^{\square} \square+(\mathbf{a}+\mathbf{t c})^{\square} \square$

$\square=\square \Delta \square+\mathrm{t}^{2} \mathbf{q}^{2}+\square \Delta \square=\phi+\mathbf{q}^{\omega}$ $\square=\square \Delta \square+\mathrm{t}^{3} \mathrm{a}+\square \Delta \square=\phi+\mathrm{t} \dot{\square}$

$\partial_{\mathbf{P i}} \square=\mathbf{t}^{2}(\phi+\mathbf{c} \psi)+(\mathbf{c}+\mathbf{q} \mathbf{t})(\phi+\psi)+(1+\mathbf{t})(\phi+\mathbf{t} \psi)$

$$
\begin{aligned}
& =\left(\mathrm{t}^{2}+\mathrm{q}+\mathrm{q} \mathrm{t}+1+\mathrm{t}\right) \phi+\left(\mathrm{t}^{2} \mathrm{q}+\mathrm{q}+\mathrm{q} \mathrm{t}+\mathrm{t}+\mathrm{t}^{2}\right) \psi \\
& =\left((1+\mathrm{t})(1+\mathrm{q})+\mathrm{t}^{2}\right) \phi+(\mathrm{t}(1+\mathrm{t})(1+\mathrm{q})+\mathrm{q}) \psi
\end{aligned}
$$

$$
\square=(1+t)(1+q) \square+t^{2} \phi+q \omega=(1+t)(1+q) \square+t^{2} \square(\mathrm{q} / \mathrm{t}, \mathrm{t})
$$

The General case

The General case

The General case

The General case

The General case

The General case

The General case

The General case

The General case

The General case

The General case

$\because=\phi_{\mathrm{ab}}+\mathrm{t}^{\mathrm{a}-\mathrm{b}} \psi_{\mathrm{ab}}$

The General case

$$
\begin{aligned}
& \stackrel{\square}{\square}{ }_{\partial_{\mathbf{P}}}^{\square}=\mathbf{t}^{\mathbf{b}}[\mathrm{a}-\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathbf{q} \psi_{\mathbf{a b}}\right)+\mathbf{q}[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\psi_{\mathbf{a b}}\right)+[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathrm{t}^{\mathbf{a - b}} \psi_{\mathbf{a b}}\right) \\
& \psi_{\mathrm{ab}}: q\left(t^{b}[a-b]_{t}+[b]_{t}\right)+t^{a-b}[b]_{t}
\end{aligned}
$$

The General case

$$
\begin{aligned}
& \left.\partial_{\mathbf{p} 1}{ }^{\square}=\mathrm{t}^{\mathbf{b}}[\mathrm{a}-\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathbf{q} \psi_{\mathbf{a b}}\right)+\mathrm{q}^{[\mathrm{b}}\right]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\psi_{\mathbf{a b}}\right)+[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathrm{t}^{\mathbf{a - b}} \psi_{\mathbf{a b}}\right) \\
& \begin{array}{c}
\psi_{\mathrm{ab}}: q\left(t^{b}[a-b]_{t}+[b]_{t}\right)+t^{a-b}[b]_{t} \\
{[b]_{t}+t^{b}[a-b]_{t}=1+t+\cdots+t^{a-1}=[a-b]_{t}+t^{a-b}[b]_{t}}
\end{array}
\end{aligned}
$$

The General case

$$
\begin{array}{r}
\partial_{\mathbf{p} \mathbf{t}}=\mathrm{t}^{\mathbf{b}}[\mathbf{a}-\mathbf{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathbf{q} \psi_{\mathbf{a b}}\right)+\mathbf{q}^{[\mathrm{b}} \mathbf{t}_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\psi_{\mathbf{a b}}\right)+[\mathbf{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathrm{t}^{\mathbf{a - b}} \psi_{\mathbf{a b}}\right) \\
\psi_{\mathbf{a b}}: q\left(t^{b}[a-b]_{t}+[b]_{t}\right)+t^{a-b}[b]_{t} \\
{[b]_{t}+t^{b}[a-b]_{t}=1+t+\cdots+t^{a-1}=[a-b]_{t}+t^{a-b}[b]_{t}} \\
\psi_{\mathbf{a b}}: q\left([a-b]_{t}+t^{a-b}[b]_{t}\right)+t^{a-b}[b]_{t}
\end{array}
$$

The General case

$$
\begin{array}{r}
\partial_{\mathbf{p} \mathbf{t}}=\mathrm{t}^{\mathbf{b}}[\mathbf{a}-\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathbf{q} \psi_{\mathbf{a b}}\right)+\mathbf{q}^{[\mathrm{b}} \mathbf{t}_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\psi_{\mathbf{a b}}\right)+[\mathbf{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathrm{t}^{\mathbf{a - b}} \psi_{\mathbf{a b}}\right) \\
\psi_{\mathbf{a b}}: q\left(t^{b}[a-b]_{t}+[b]_{t}\right)+t^{a-b}[b]_{t} \\
{[b]_{t}+t^{b}[a-b]_{t}=1+t+\cdots+t^{a-1}=[a-b]_{t}+t^{a-b}[b]_{t}} \\
\psi_{\mathbf{a b}}: q\left([a-b]_{t}+t^{a-b}[b]_{t}\right)+t^{a-b}[b]_{t} \\
\psi_{\mathbf{a b}}: q[a-b]_{t}+(1+q) t^{a-b}[b]_{t}
\end{array}
$$

The General case

$\partial_{\mathbf{P} \mathbf{t}}^{\square}=\mathrm{t}^{\mathrm{b}}[\mathrm{a}-\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathbf{q} \psi_{\mathbf{a b}}\right)+\mathbf{q}[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\psi_{\mathbf{a b}}\right)+[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathrm{t}^{\mathbf{a - b}} \psi_{\mathbf{a b}}\right)$

$$
\phi_{\mathrm{ab}}: t^{b}[a-b]_{t}+(1+q)[b]_{t}
$$

$$
\begin{aligned}
\psi_{\mathrm{ab}} & : q\left(t^{b}[a-b]_{t}+[b]_{t}\right)+t^{a-b}[b]_{t} \\
{[b]_{t}+t^{b}[a-b]_{t} } & =1+t+\cdots+t^{a-1}=[a-b]_{t}+t^{a-b}[b]_{t} \\
\psi_{\mathrm{ab}} & : q\left([a-b]_{t}+t^{a-b}[b]_{t}\right)+t^{a-b}[b]_{t} \\
\psi_{\mathbf{a b}} & : q[a-b]_{t}+(1+q) t^{a-b}[b]_{t}
\end{aligned}
$$

The General case

$=\phi_{\mathrm{ab}}+\psi_{\mathrm{ab}}$
$\begin{array}{r}\square \\ \partial_{\mathbf{p} \mathbf{1}} \\ \square\end{array}=\mathrm{t}^{\mathbf{b}}[\mathbf{a}-\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathbf{q} \psi_{\mathbf{a b}}\right)+\mathbf{q}[\mathbf{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\psi_{\mathbf{a b}}\right)+[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathrm{t}^{\mathbf{a}-\mathbf{b}} \psi_{\mathbf{a b}}\right)$

$$
\phi_{\mathrm{ab}}: t^{b}[a-b]_{t}+(1+q)[b]_{t}
$$

$$
\begin{aligned}
\psi_{\mathrm{ab}} & : q\left(t^{b}[a-b]_{t}+[b]_{t}\right)+t^{a-b}[b]_{t} \\
{[b]_{t}+t^{b}[a-b]_{t} } & =1+t+\cdots+t^{a-1}=[a-b]_{t}+t^{a-b}[b]_{t} \\
\psi_{\mathrm{ab}} & : q\left([a-b]_{t}+t^{a-b}[b]_{t}\right)+t^{a-b}[b]_{t} \\
\psi_{\mathrm{ab}} & : q[a-b]_{t}+(1+q) t^{a-b}[b]_{t}
\end{aligned}
$$

$$
\partial_{\mathbf{p}_{1}} \stackrel{B}{B}_{\square}^{B}=(1+\mathbf{q})[\mathbf{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathbf{t}^{\mathbf{a}-\mathbf{b}} \psi_{\mathbf{a b}}\right)+[\mathbf{a}-\mathbf{b}]_{\mathbf{t}}\left(\mathbf{t}^{\mathbf{b}} \phi_{\mathbf{a b}}+\mathbf{q} \psi_{\mathbf{a b}}\right)
$$

The General case

$=\phi_{\mathrm{ab}}+\psi_{\mathrm{ab}}$
$\begin{array}{r}\square \\ \partial_{\mathbf{p} \mathbf{1}} \\ \square\end{array}=\mathrm{t}^{\mathbf{b}}[\mathbf{a}-\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathbf{q} \psi_{\mathbf{a b}}\right)+\mathbf{q}[\mathbf{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\psi_{\mathbf{a b}}\right)+[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathrm{t}^{\mathbf{a}-\mathbf{b}} \psi_{\mathbf{a b}}\right)$

$$
\begin{gathered}
\psi_{\mathrm{ab}}: q\left(t^{b}[a-b]_{t}+[b]_{t}\right)+t^{a-b}[b]_{t} \\
{[b]_{t}+t^{b}[a-b]_{t}=1+t+\cdots+t^{a-1}=[a-b]_{t}+t^{a-b}[b]_{t}} \\
\psi_{\mathrm{ab}}: q\left([a-b]_{t}+t^{a-b}[b]_{t}\right)+t^{a-b}[b]_{t}
\end{gathered}
$$

$$
\phi_{\mathrm{ab}}: t^{b}[a-b]_{t}+(1+q)[b]_{t} \quad \quad \psi_{\mathrm{ab}}: q[a-b]_{t}+(1+q) t^{a-b}[b]_{t}
$$

$$
\partial_{\mathbf{p} 1} \boxminus=(1+\mathrm{q})[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathrm{ab}}+\mathrm{t}^{\mathbf{a - b}} \psi_{\mathbf{a b}}\right)+[\mathrm{a}-\mathrm{b}]_{\mathbf{t}}\left(\mathrm{t}^{\mathbf{b}} \phi_{\mathbf{a b}}+\mathbf{q} \psi_{\mathbf{a b}}\right)
$$

The General case

$=\mathrm{t}^{\mathrm{b}}[\mathrm{a}-\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathrm{q} \psi_{\mathbf{a b}}\right)+\mathbf{q}[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\psi_{\mathbf{a b}}\right)+[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathrm{t}^{\mathbf{a}-\mathbf{b}} \psi_{\mathbf{a b}}\right)$

$$
\begin{gathered}
\psi_{\mathrm{ab}}: q\left(t^{b}[a-b]_{t}+[b]_{t}\right)+t^{a-b}[b]_{t} \\
{[b]_{t}+t^{b}[a-b]_{t}=1+t+\cdots+t^{a-1}=[a-b]_{t}+t^{a-b}[b]_{t}} \\
\psi_{\mathrm{ab}}: q\left([a-b]_{t}+t^{a-b}[b]_{t}\right)+t^{a-b}[b]_{t}
\end{gathered}
$$

$$
\phi_{\mathrm{ab}}: t^{b}[a-b]_{t}+(1+q)[b]_{t} \quad \quad \psi_{\mathrm{ab}}: q[a-b]_{t}+(1+q) t^{a-b}[b]_{t}
$$

The General case

$=\mathrm{t}^{\mathrm{b}}[\mathrm{a}-\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathrm{ab}}+\mathrm{q} \psi_{\mathbf{a b}}\right)+\mathrm{q}[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\psi_{\mathrm{ab}}\right)+[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathrm{t}^{\mathbf{a}-\mathbf{b}} \psi_{\mathbf{a b}}\right)$

$$
\begin{array}{r}
\psi_{\mathbf{a b}}: q\left(t^{b}[a-b]_{t}+[b]_{t}\right)+t^{a-b}[b]_{t} \\
\phi_{\mathbf{a b}}: t^{t^{b}[a-b]_{t}+(1+q)[b]_{t}} \begin{array}{r}
{[b]_{t}+t^{b}[a-b]_{t}=1+t+\cdots+t^{a-1}=[a-b]_{t}+t^{a-b}[b]_{t}} \\
\psi_{\mathbf{a b}}: q\left([a-b]_{t}+t^{a-b}[b]_{t}\right)+t^{a-b}[b]_{t} \\
\psi_{\mathbf{a b}}: q[a-b]_{t}+(1+q) t^{a-b}[b]_{t}
\end{array} \\
\partial_{\partial_{\mathbf{p} 1}}=(1+\mathbf{q})[\mathbf{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathbf{t}^{\mathbf{a - b}} \psi_{\mathbf{a b}}\right)+[\mathbf{a - b}]_{\mathbf{t}}\left(\mathbf{t}^{\mathbf{b}} \phi_{\mathbf{a b}}+\mathbf{q} \psi_{\mathbf{a b}}\right)
\end{array}
$$

The General case

$=\mathrm{t}^{\mathrm{b}}[\mathrm{a}-\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathrm{ab}}+\mathrm{q} \psi_{\mathbf{a b}}\right)+\mathrm{q}[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\psi_{\mathrm{ab}}\right)+[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathrm{t}^{\mathbf{a}-\mathbf{b}} \psi_{\mathbf{a b}}\right)$

$$
\begin{gathered}
\psi_{\mathrm{ab}}: q\left(t^{b}[a-b]_{t}+[b]_{t}\right)+t^{a-b}[b]_{t} \\
{[b]_{t}+t^{b}[a-b]_{t}=1+t+\cdots+t^{a-1}=[a-b]_{t}+t^{a-b}[b]_{t}} \\
\psi_{\mathrm{ab}}: q\left([a-b]_{t}+t^{a-b}[b]_{t}\right)+t^{a-b}[b]_{t}
\end{gathered}
$$

$$
\phi_{\mathrm{ab}}: t^{b}[a-b]_{t}+(1+q)[b]_{t} \quad \psi_{\mathrm{ab}}: q[a-b]_{t}+(1+q) t^{a-b}[b]_{t}
$$

$$
\partial_{\mathbf{p} \mathbf{1}}{ }_{B}^{B}=(1+\mathrm{q})[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathbf{t}^{\mathbf{a}-\mathbf{b}} \psi_{\mathbf{a b}}\right)+[\mathrm{a}-\mathrm{b}]_{\mathbf{t}}\left(\mathrm{t}^{\mathbf{b}} \phi_{\mathbf{a b}}+\mathrm{q} \psi_{\mathbf{a b}}\right)
$$

The General case

$=\mathrm{t}^{\mathrm{b}}[\mathrm{a}-\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathrm{ab}}+\mathrm{q} \psi_{\mathbf{a b}}\right)+\mathrm{q}[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\psi_{\mathrm{ab}}\right)+[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathrm{t}^{\mathbf{a}-\mathbf{b}} \psi_{\mathbf{a b}}\right)$

$$
\begin{gathered}
\psi_{\mathrm{ab}}: q\left(t^{b}[a-b]_{t}+[b]_{t}\right)+t^{a-b}[b]_{t} \\
{[b]_{t}+t^{b}[a-b]_{t}=1+t+\cdots+t^{a-1}=[a-b]_{t}+t^{a-b}[b]_{t}} \\
\psi_{\mathrm{ab}}: q\left([a-b]_{t}+t^{a-b}[b]_{t}\right)+t^{a-b}[b]_{t}
\end{gathered}
$$

$$
\left.\phi_{\mathrm{ab}}: t^{b}[a-b]_{t}+(1+q)[b]_{t} \quad \psi_{\mathrm{ab}}: q[a-b]_{t}+1+q\right) t^{a-b}[b]_{t}
$$

$$
\partial_{\mathbf{p}_{1}} \exists^{B}=(1+\mathbf{q})[\mathrm{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathbf{t}^{\mathbf{a}-\mathbf{b}} \psi_{\mathbf{a b}}\right)+[\mathrm{a}-\mathrm{b}]_{\mathbf{t}}\left(\mathbf{t}^{\mathbf{b}} \phi_{\mathbf{a b}}+\mathbf{q} \psi_{\mathbf{a b}}\right)
$$

the next step

the next step

the next step

While my representation theoretical extension of the Haglund conjecture is

the next step

$$
{ }_{\partial_{\mathbf{p}}} B=(1+\mathbf{q})[\mathbf{b}]_{\mathbf{t}}\left(\phi_{\mathbf{a b}}+\mathbf{t}^{\mathbf{a}-\mathbf{b}} \psi_{\mathbf{a b}}\right)+[\mathrm{a}-\mathrm{b}]_{\mathbf{t}}\left(\mathrm{t}^{\mathbf{b}} \phi_{\mathbf{a b}}+\mathbf{q} \psi_{\mathbf{a b}}\right)
$$

While my representation theoretical extension of the Haglund conjecture is

the next step

While my representation theoretical extension of the Haglund conjecture is

the next step

While my representation theoretical extension of the Haglund conjecture is

the next step

While my representation theoretical extension of the Haglund conjecture is

so we are reduced to proving the identity

the next step

While my representation theoretical extension of the Haglund conjecture is

so we are reduced to proving the identity

the next step

While my representation theoretical extension of the Haglund conjecture is

so we are reduced to proving the identity

k-schur visualization of the $a=3 b=2$ case
k-schur visualization of the $a=3 b=2$ case

$$
\partial_{\mathrm{p} 1} \boxplus_{(\mathrm{q}, \mathrm{t})}=(1+\mathrm{t})(1+\mathrm{q}) \exists_{(\mathrm{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

k-schur visualization of the $a=3 b=2$ case

$$
\partial_{\mathrm{p} \mathbf{1}} \boxplus_{(\mathrm{q}, \mathrm{t})}=(1+\mathrm{t})(1+\mathrm{q}) \exists_{(\mathrm{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}
$$

k-schur visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p} \mathbf{1}} \boxplus_{(\mathbf{q}, \mathrm{t})}=(1+\mathbf{t})(1+\mathbf{q}) \boxplus_{(\mathbf{q}, \mathbf{t})}+\mathbf{t}^{2} \boxplus_{(\mathbf{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}
$$

$$
\text { 母 }=\phi_{32}+\mathrm{t} \psi_{32}
$$

k-schur visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p} \mathbf{1}} \boxplus_{(\mathbf{q}, \mathbf{t})}=(1+\mathbf{t})(1+\mathbf{q}) \boxplus_{(\mathbf{q}, \mathbf{t})}+\mathbf{t}^{2} \boxplus_{(\mathbf{q} / \mathrm{t}, \mathbf{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}
$$

母 $=\phi_{32}+\mathrm{t} \psi_{32}$
$\boxplus=\phi_{32}+\mathbf{q} \psi_{s 2}$

k-schur visualization of the $a=3 b=2$ case

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}
$$

$$
\boxminus=\phi_{32}+\mathrm{t} \psi_{32}
$$

$$
\theta=\phi_{32}+\mathrm{q} \psi_{32}
$$

Now in terms of 2 -Schur we get

k-schur visualization of the $a=3 b=2$ case

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}
$$

$$
\boxminus=\phi_{32}+\mathrm{t} \psi_{32}
$$

$$
\boxminus=\phi_{32}+\mathrm{q} \psi_{32}
$$

Now in terms of 2 -Schur we get

$$
\phi_{32}=\boxminus \wedge \boxminus=\frac{\mathrm{q} \boxminus-\mathrm{t} \boxminus}{\mathrm{q}-\mathrm{t}}
$$

k－schur visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p} 1} \boxplus_{(\mathbf{q}, \mathbf{t})}=(1+\mathrm{t})(1+\mathrm{q}) \exists_{(\mathbf{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{\mathrm{s} 2}+\mathbf{q} \psi_{\mathrm{s} 2}
$$

$$
母=\phi_{32}+\mathbf{t} \psi_{32} \quad \boxplus=\phi_{32}+\mathbf{q} \psi_{32}
$$

Now in terms of 2 －Schur we get

$$
\phi_{32}=母 \wedge \boxplus=\frac{\mathrm{q}^{母}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{22}+\mathrm{q}^{\mathrm{A}} \mathbf{A}_{21}
$$

k－schur visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p} 1} \boxplus_{(\mathrm{q}, \mathrm{t})}=(1+\mathrm{t})(1+\mathrm{q}) ظ_{(\mathrm{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathbf{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{\mathrm{s} 2}+\mathbf{q} \psi_{\mathrm{s} 2}
$$

$$
\text { 母 }=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+\mathbf{q} \psi_{s 2}
$$

Now in terms of 2 －Schur we get

$$
\begin{aligned}
& \phi_{32}=母 \wedge \boxminus=\frac{\mathrm{q} 母-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{22}+\mathrm{q}^{\mathrm{A}} \mathbf{A}_{211} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{22} & \mathbf{A}_{211} & 0
\end{array}\right]
\end{aligned}
$$

k－schur visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p} 1} \boxplus_{(\mathbf{q}, \mathbf{t})}=(1+\mathrm{t})(1+\mathbf{q}) \boxplus_{(\mathbf{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathbf{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathbf{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{\mathrm{s} 2}+\mathbf{q} \psi_{\mathrm{s} 2}
$$

$$
\text { 母 }=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+\mathbf{q} \psi_{s 2}
$$

Now in terms of 2 －Schur we get

$$
\begin{aligned}
& \phi_{32}=母 \wedge \boxplus=\frac{\mathrm{q} \hbar-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q A}_{\mathbf{2 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$k-s c h u r$ visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p} 1} \boxplus_{(\mathbf{q}, \mathbf{t})}=(1+\mathrm{t})(1+\mathbf{q}) \exists_{(\mathbf{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{\mathrm{s} 2}+\mathrm{q} \psi_{\mathrm{s} 2}
$$

$$
\text { 母 }=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+\mathrm{q} \psi_{\mathrm{s} 2}
$$

Now in terms of 2 －Schur we get

$$
\begin{aligned}
\phi_{32} & =母 \wedge \boxplus=\frac{\mathrm{q} 母-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{22}+\mathrm{q}_{\mathbf{2 1 1}} \\
\phi_{32} & =\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{22} & \mathbf{A}_{211} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$k-s c h u r$ visualization of the $a=3 b=2$ case

$$
\partial_{\mathrm{p} \mathbf{1}} \boxplus_{(\mathrm{q}, \mathrm{t})}=(1+\mathrm{t})(1+\mathrm{q}) \exists_{(\mathrm{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{\mathrm{s} 2}
$$

$$
\text { 母 }=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+\mathrm{q} \psi_{s 2}
$$

Now in terms of 2 －Schur we get

$$
\begin{aligned}
& \phi_{32}=母 \wedge \boxplus=\frac{\mathrm{q}^{母}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q}_{\mathbf{A} \mathbf{2 1 1}} \quad \psi_{32}=\frac{母-母}{\mathrm{q}-\mathrm{t}}=\mathrm{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathbf{q} \mathbf{A}_{\mathbf{1 1 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

k－schur visualization of the $a=3 b=2$ case

$$
\partial_{\mathrm{p} \mathbf{1}} \boxplus_{(\mathrm{q}, \mathrm{t})}=(1+\mathrm{t})(1+\mathrm{q}) \exists_{(\mathrm{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{\mathrm{s} 2}
$$

$$
\text { 母 }=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+\mathrm{q} \psi_{32}
$$

Now in terms of 2 －Schur we get

$$
\begin{aligned}
& \phi_{32}=母 \wedge \boxplus=\frac{\mathrm{q}^{母}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q A}_{\mathbf{2 1 1}} \quad \psi_{32}=\frac{母-母}{\mathrm{q}-\mathrm{t}}=\mathbf{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathbf{q} \mathbf{A}_{\mathbf{1 1 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{22} & \mathbf{A}_{\mathbf{2 1 1}} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mathbf{A}_{211} & 0 & 0 \\
0 & \mathbf{A}_{1111} & 0
\end{array}\right]
\end{aligned}
$$

k－schur visualization of the $a=3 b=2$ case

$$
\partial_{\mathrm{p} \mathbf{1}} \boxplus_{(\mathrm{q}, \mathrm{t})}=(1+\mathrm{t})(1+\mathrm{q}) \exists_{(\mathrm{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{\mathrm{s} 2}
$$

$$
\text { 母 }=\phi_{32}+\mathrm{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+\mathbf{q} \psi_{32}
$$

Now in terms of 2 －Schur we get

$$
\begin{aligned}
& \phi_{32}=母 \wedge \boxplus=\frac{\mathrm{q}^{母}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q}_{\mathbf{A}} \mathbf{A}_{\mathbf{2 1}} \quad \psi_{32}=\frac{母-母}{\mathrm{q}-\mathrm{t}}=\mathrm{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathbf{q} \mathbf{A}_{\mathbf{1 1 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{211} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mathbf{A}_{211} & 0 & 0 \\
0 & \mathbf{A}_{1111} & 0
\end{array}\right] \quad \mathrm{q} \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
\end{aligned}
$$

k－schur visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p} \mathbf{1}} \boxplus_{(\mathbf{q}, \mathbf{t})}=(1+\mathbf{t})(1+\mathbf{q}) \boxplus_{(\mathbf{q}, \mathbf{t})}+\mathbf{t}^{2} \boxplus_{(\mathbf{q} / \mathrm{t}, \mathbf{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{\mathrm{s} 2}
$$

$$
\text { 母 }=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+q \psi_{32}
$$

Now in terms of 2 －Schur we get
thus

$$
\begin{aligned}
& \phi_{32}=母 \wedge \boxplus=\frac{\mathrm{q}^{母}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q}_{\mathbf{A} \mathbf{2 1 1}} \quad \psi_{32}=\frac{母-母}{\mathrm{q}-\mathrm{t}}=\mathrm{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathbf{q} \mathbf{A}_{\mathbf{1 1 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mathbf{A}_{211} & 0 & 0 \\
0 & \mathbf{A}_{1111} & 0
\end{array}\right] \quad \mathrm{q} \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
\end{aligned}
$$

k－schur visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p i}_{1}} \nexists_{(\mathrm{q}, \mathrm{t})}=(1+\mathbf{t})(1+\mathrm{q}) \nexists_{(\mathrm{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{\mathrm{s} 2}
$$

$$
\mathrm{B}_{1}=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+\mathbf{q} \psi_{32}
$$

Now in terms of 2 －Schur we get
thus

$$
\boxminus=\mathbf{A}_{22}+\mathrm{q} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{qt} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q}^{2} \mathbf{A}_{\mathbf{1 1 1 1}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
\mathbf{A}_{22} & \mathbf{A}_{\mathbf{2 1 1}} & \mathbf{A}_{\mathbf{1 1 1 1}}
\end{array}\right]
$$

$$
\begin{aligned}
& \phi_{32}=母 \wedge \boxplus=\frac{\mathrm{q}^{母}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q}_{\mathbf{A}}^{\mathbf{2 1 1}} \quad \psi_{32}=\frac{母-母}{\mathrm{q}-\mathrm{t}}=\mathbf{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathbf{q} \mathbf{A}_{\mathbf{1 1 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{22} & \mathbf{A}_{211} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mathbf{A}_{211} & 0 & 0 \\
0 & \mathbf{A}_{1111} & 0
\end{array}\right] \quad \mathrm{q} \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
\end{aligned}
$$

k－schur visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p},} \boxplus_{(\mathbf{q}, \mathrm{t})}=(1+\mathbf{t})(1+\mathrm{q}) \boxplus_{(\mathbf{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{\mathrm{s} 2}
$$

$$
母^{B}=\phi_{32}+\mathrm{t} \psi_{32} \quad \boxplus=\phi_{32}+\mathrm{q} \psi_{32}
$$

Now in terms of 2 －Schur we get

$$
\begin{aligned}
& \phi_{32}=母 \wedge \boxplus=\frac{\mathrm{q}^{母}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q}_{\mathbf{A}}^{\mathbf{2 1 1}} \quad \psi_{32}=\frac{母-母}{\mathrm{q}-\mathrm{t}}=\mathbf{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathbf{q} \mathbf{A}_{\mathbf{1 1 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{22} & \mathbf{A}_{\mathbf{2 1 1}} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mathbf{A}_{211} & 0 & 0 \\
0 & \mathbf{A}_{1111} & 0
\end{array}\right] \quad \mathrm{q} \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
\end{aligned}
$$

thus
and thus

$$
\boxminus=\mathbf{A}_{22}+\mathrm{q}^{\mathbf{A}_{211}}+\mathrm{qt} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q}^{2} \mathbf{A}_{\mathbf{1 1 1 1}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
\mathbf{A}_{22} & \mathbf{A}_{\mathbf{2 1 1}} & \mathbf{A}_{\mathbf{1 1 1 1}}
\end{array}\right]
$$

$k-s c h u r$ visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p l}_{1}} \nexists_{(\mathrm{q}, \mathrm{t})}=(1+\mathrm{t})(1+\mathrm{q}) \nexists_{(\mathrm{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}
$$

$$
\xi=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+q \psi_{32}
$$

Now in terms of 2 -Schur we get
thus

$$
\boxminus=\mathbf{A}_{22}+\mathrm{q}^{\mathbf{A}_{211}}+\mathrm{qt} \mathbf{A}_{211}+\mathrm{q}^{2} \mathbf{A}_{1111}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
\mathbf{A}_{22} & \mathbf{A}_{211} & \mathbf{A}_{1111}
\end{array}\right]
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \mathbf{A}_{22}+\mathrm{tq} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{t}^{2} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q}^{2} \mathbf{A}_{\mathbf{1 1 1 1}}=\left[\begin{array}{ccc}
\mathrm{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
$$

$$
\begin{aligned}
& \phi_{32}=母_{\wedge} \oplus=\frac{\mathrm{q}^{\boxminus}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q} \mathbf{A}_{\mathbf{2 1 1}} \quad \psi_{32}=\frac{\boxplus-\boxminus}{\mathrm{q}-\mathrm{t}}=\mathbf{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathbf{q} \mathbf{A}_{\mathbf{1 1 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mathbf{A}_{211} & 0 & 0 \\
0 & \mathbf{A}_{\mathbf{1 1 1 1}} & 0
\end{array}\right] \quad \mathrm{q} \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
\end{aligned}
$$

$k-s c h u r$ visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p} \mathbf{1}} \boxplus_{(\mathbf{q}, \mathbf{t})}=(1+\mathbf{t})(1+\mathbf{q}) \boxplus_{(\mathbf{q}, \mathbf{t})}+\mathbf{t}^{2} \boxplus_{(\mathbf{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}
$$

$$
\text { 母 }=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+q \psi_{32}
$$

Now in terms of 2 －Schur we get
thus
and thus

$$
\boxminus=\mathbf{A}_{22}+\mathrm{q}^{\mathbf{A}} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{qt} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q}^{2} \mathbf{A}_{\mathbf{1 1 1 1}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{\mathbf{2 1 1}} & 0 \\
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & \mathbf{A}_{\mathbf{1 1 1 1}}
\end{array}\right]
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \mathbf{A}_{22}+\mathrm{tq} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{t}^{2} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q}^{2} \mathbf{A}_{\mathbf{1 1 1 1}}=\left[\begin{array}{ccc}
\mathrm{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
$$

$$
\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}
$$

$$
\begin{aligned}
& \phi_{32}=\boxminus \wedge \boxplus=\frac{\mathrm{q}^{母}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q} \mathbf{A}_{\mathbf{2 1 1}} \quad \psi_{32}=\frac{\boxplus-母}{\mathrm{q}-\mathrm{t}}=\mathbf{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathbf{q} \mathbf{A}_{\mathbf{1 1 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mathbf{A}_{211} & 0 & 0 \\
0 & \mathbf{A}_{\mathbf{1 1 1 1}} & 0
\end{array}\right] \quad \mathrm{q} \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
\end{aligned}
$$

$k-s c h u r$ visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p r}_{1}} \boxplus_{(\mathrm{q}, \mathrm{t})}=(1+\mathrm{t})(1+\mathrm{q}) \nexists_{(\mathrm{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}
$$

$$
\xi=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+\mathbf{q} \psi_{32}
$$

Now in terms of 2 -Schur we get
thus
and thus

$$
\boxminus=\mathbf{A}_{22}+\mathrm{q}^{\mathbf{A}} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{qt} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q}^{2} \mathbf{A}_{\mathbf{1 1 1 1}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
\mathbf{A}_{22} & \mathbf{A}_{\mathbf{2 1 1}} & \mathbf{A}_{\mathbf{1 1 1 1}}
\end{array}\right]
$$

$$
\mathrm{t}^{2} \boxminus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \mathbf{A}_{22}+\mathrm{tq} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{t}^{2} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q}^{2} \mathbf{A}_{1111}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
$$

$$
\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}=\mathrm{t}^{2}\left(\mathbf{A}_{22}+\mathrm{q}_{\mathbf{2 1 1}}\right)+\mathrm{q}\left(\mathrm{t} \mathbf{A}_{211}+\mathrm{q}^{1} \mathbf{A}_{1111}\right)
$$

$$
\begin{aligned}
& \phi_{32}=母_{\wedge} \oplus=\frac{\mathrm{q}^{\boxminus}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q} \mathbf{A}_{\mathbf{2 1 1}} \quad \psi_{32}=\frac{\boxplus-\boxminus}{\mathrm{q}-\mathrm{t}}=\mathbf{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathbf{q} \mathbf{A}_{\mathbf{1 1 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{211} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mathbf{A}_{211} & 0 & 0 \\
0 & \mathbf{A}_{1111} & 0
\end{array}\right] \quad \mathrm{q} \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
\end{aligned}
$$

$k-s c h u r$ visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p r}_{1}} \boxplus_{(\mathrm{q}, \mathrm{t})}=(1+\mathrm{t})(1+\mathrm{q}) \nexists_{(\mathrm{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}
$$

$$
\text { 母 }=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+\mathbf{q} \psi_{32}
$$

Now in terms of 2 －Schur we get
thus

$$
\boxminus=\mathbf{A}_{22}+\mathrm{q}^{\mathbf{A}_{211}}+\mathrm{q} \mathbf{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q}^{2} \mathbf{A}_{\mathbf{1 1 1 1}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
\mathbf{A}_{22} & \mathbf{A}_{211} & \mathbf{A}_{1111}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { and thus } \\
& \qquad \mathrm{t}^{2} \boxminus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \mathbf{A}_{22}+\mathrm{tq} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{t}^{2} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q}^{2} \mathbf{A}_{\mathbf{1 1 1 1}}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right] \\
& \mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}=\mathrm{t}^{2}\left(\mathbf{A}_{\mathbf{2 2}}+\mathrm{q}_{\mathbf{2 1 1}}\right)+\mathrm{q}\left(\mathrm{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q} \mathbf{A}_{\mathbf{1 1 1 1}}\right)=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{\mathbf{1 1 1 1}}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{32}=母 \wedge \boxplus=\frac{\mathrm{q}^{母}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q A}_{\mathbf{2 1 1}} \quad \psi_{32}=\frac{母-母}{\mathrm{q}-\mathrm{t}}=\mathbf{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathbf{q} \mathbf{A}_{\mathbf{1 1 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mathbf{A}_{211} & 0 & 0 \\
0 & \mathbf{A}_{\mathbf{1 1 1 1}} & 0
\end{array}\right] \quad \mathrm{q} \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
\end{aligned}
$$

$k-s c h u r$ visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p r}_{1}} \boxplus_{(\mathrm{q}, \mathrm{t})}=(1+\mathrm{t})(1+\mathrm{q}) \nexists_{(\mathrm{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}
$$

$$
\text { 母 }=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+\mathbf{q} \psi_{32}
$$

Now in terms of 2 －Schur we get
thus

$$
\boxminus=\mathbf{A}_{22}+\mathrm{q}^{\mathbf{A}_{211}}+\mathrm{q} \mathbf{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q}^{2} \mathbf{A}_{\mathbf{1 1 1 1}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
\mathbf{A}_{22} & \mathbf{A}_{211} & \mathbf{A}_{1111}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { and thus } \\
& \qquad \mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \mathbf{A}_{22}+\mathrm{tq} \mathbf{A}_{211}+\mathrm{t}^{2} \mathbf{A}_{211}+\mathrm{q}^{2} \mathbf{A}_{1111}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right] \\
& \mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}=\mathrm{t}^{2}\left(\mathbf{A}_{22}+\mathrm{q}_{\mathbf{2 1 1}}\right)+\mathrm{q}\left(\mathrm{t} \mathbf{A}_{211}+\mathrm{q} \mathbf{A}_{1111}\right)=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{32}=母 \wedge \boxplus=\frac{\mathrm{q}^{母}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q A}_{\mathbf{2 1 1}} \quad \psi_{32}=\frac{母-母}{\mathrm{q}-\mathrm{t}}=\mathbf{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathbf{q} \mathbf{A}_{\mathbf{1 1 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mathbf{A}_{211} & 0 & 0 \\
0 & \mathbf{A}_{\mathbf{1 1 1 1}} & 0
\end{array}\right] \quad \mathrm{q} \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
\end{aligned}
$$

$k-s c h u r$ visualization of the $a=3 b=2$ case

$$
\partial_{\mathbf{p r}_{1}} \boxplus_{(\mathrm{q}, \mathrm{t})}=(1+\mathrm{t})(1+\mathrm{q}) \nexists_{(\mathrm{q}, \mathrm{t})}+\mathrm{t}^{2} \boxplus_{(\mathrm{q} / \mathrm{t}, \mathrm{t})}
$$

$$
\mathrm{t}^{2} \boxplus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}
$$

$$
\text { 母 }=\phi_{32}+\mathbf{t} \psi_{32}
$$

$$
\boxplus=\phi_{32}+q \psi_{32}
$$

Now in terms of 2 －Schur we get
thus

$$
\boxminus=\mathbf{A}_{22}+\mathrm{q}^{\mathbf{A}_{211}}+\mathrm{q} \mathbf{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q}^{2} \mathbf{A}_{\mathbf{1 1 1 1}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
\mathbf{A}_{22} & \mathbf{A}_{211} & \mathbf{A}_{1111}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { and thus } \\
& \qquad \mathrm{t}^{2} \boxminus(\mathrm{q} / \mathrm{t}, \mathrm{t})=\mathrm{t}^{2} \mathbf{A}_{22}+\mathrm{tq} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{t}^{2} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q}^{2} \mathbf{A}_{\mathbf{1 1 1 1}}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right] \\
& \mathrm{t}^{2} \phi_{32}+\mathrm{q} \psi_{32}=\mathrm{t}^{2}\left(\mathbf{A}_{22}+\mathrm{q}_{\mathbf{2 1 1}}\right)+\mathrm{q}\left(\mathrm{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathrm{q} \mathbf{A}_{\mathbf{1 1 1 1}}\right)=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{32}=母 \wedge \boxplus=\frac{\mathrm{q}^{母}-\mathrm{t} \boxplus}{\mathrm{q}-\mathrm{t}}=\mathbf{A}_{\mathbf{2 2}}+\mathbf{q A}_{\mathbf{2 1 1}} \quad \psi_{32}=\frac{母-母}{\mathrm{q}-\mathrm{t}}=\mathbf{t} \mathbf{A}_{\mathbf{2 1 1}}+\mathbf{q} \mathbf{A}_{\mathbf{1 1 1 1}} \\
& \phi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{A}_{\mathbf{2 2}} & \mathbf{A}_{\mathbf{2 1 1}} & 0
\end{array}\right] \quad \mathrm{t}^{2} \phi_{32}=\left[\begin{array}{ccc}
\mathbf{A}_{22} & \mathbf{A}_{211} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mathbf{A}_{211} & 0 & 0 \\
0 & \mathbf{A}_{\mathbf{1 1 1 1}} & 0
\end{array}\right] \quad \mathrm{q} \psi_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathbf{A}_{211} & 0 \\
0 & 0 & \mathbf{A}_{1111}
\end{array}\right]
\end{aligned}
$$

A simpler question?

A simpler question?

Count the number of permutations of S_{n}

A simpler question?

Count the number of permutations of S_{n} whose first $n-k$ entries are increasing

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence
Let $\mathrm{C}_{\mathbf{n}, \mathrm{k}}$ be a collection of "colored permutations" of $\mathrm{S}_{\mathbf{n}}$ such that

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence
Let $\mathrm{C}_{\mathbf{n}, \mathrm{k}}$ be a collection of "colored permutations" of $\mathrm{S}_{\mathbf{n}}$ such that

1) each element is red or blue

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence
Let $\mathrm{C}_{\mathbf{n}, \mathrm{k}}$ be a collection of "colored permutations" of $\mathrm{S}_{\mathbf{n}}$ such that

1) each element is red or blue
2) the blue entries are increasing

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence
Let $\mathrm{C}_{\mathbf{n}, \mathbf{k}}$ be a collection of "colored permutations" of $\mathrm{S}_{\mathbf{n}}$ such that

1) each element is red or blue
2) the blue entries are increasing
3) only a subset of the last k entries can be red

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence
Let $\mathrm{C}_{\mathbf{n}, \mathbf{k}}$ be a collection of "colored permutations" of $\mathrm{S}_{\mathbf{n}}$ such that

1) each element is red or blue
2) the blue entries are increasing
3) only a subset of the last k entries can be red
4) the sign of a colored permutation is (-1) \#blue

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence
Let $\mathrm{C}_{\mathbf{n}, \mathrm{k}}$ be a collection of "colored permutations" of S_{n} such that

1) each element is red or blue
2) the blue entries are increasing
3) only a subset of the last k entries can be red

4) the sign of a colored permutation is (-1) \#blue

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence
Let $\mathrm{C}_{\mathbf{n}, \mathbf{k}}$ be a collection of "colored permutations" of $\mathrm{S}_{\mathbf{n}}$ such that

1) each element is red or blue
2) the blue entries are increasing
3) only a subset of the last k entries can be red
4) the sign of a colored permutation is (-1) \#blue

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence
Let $\mathrm{C}_{\mathbf{n}, \mathbf{k}}$ be a collection of "colored permutations" of $\mathrm{S}_{\mathbf{n}}$ such that

1) each element is red or blue
2) the blue entries are increasing
3) only a subset of the last k entries can be red
4) the sign of a colored permutation is (-1) \#blue

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence
Let $\mathrm{C}_{\mathbf{n}, \mathbf{k}}$ be a collection of "colored permutations" of $\mathrm{S}_{\mathbf{n}}$ such that

1) each element is red or blue
2) the blue entries are increasing
3) only a subset of the last k entries can be red
4) the sign of a colored permutation is (-1) \#blue

$$
\sum_{a \in C_{n, k}} \operatorname{sign}(a)=\sum_{r=0}^{k}\binom{k}{r}(-1)^{k-r} n(n-1) \cdots(n-r+1)
$$

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence
Let $\mathrm{C}_{\mathbf{n}, \mathbf{k}}$ be a collection of "colored permutations" of $\mathrm{S}_{\mathbf{n}}$ such that

1) each element is red or blue
2) the blue entries are increasing
3) only a subset of the last k entries can be red
4) the sign of a colored permutation is (-1) \#blue

Theorem

$$
\sum_{a \in C_{n, k}} \operatorname{sign}(a)=\sum_{r=0}^{k}\binom{k}{r}(-1)^{k-r} n(n-1) \cdots(n-r+1)
$$

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence
Let $\mathrm{C}_{\mathbf{n}, \mathrm{k}}$ be a collection of "colored permutations" of S_{n} such that

1) each element is red or blue
2) the blue entries are increasing
3) only a subset of the last k entries can be red
4) the sign of a colored permutation is (-1) \#blue

Theorem

$$
\# \boldsymbol{\Pi}_{\mathbf{n}, \mathbf{k}}=\sum_{a \in C_{n, k}} \operatorname{sign}(a)=\sum_{r=0}^{k}\binom{k}{r}(-1)^{k-r} n(n-1) \cdots(n-r+1)
$$

A simpler question?

Count the number of permutations of S_{n}
whose first $n-k$ entries are increasing
and have no increasing subsequence of length greater than $n-k$
In symbols, we want $\# \Pi_{n, k}$ where

$$
\Pi_{n, k}=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S_{n}: a_{1}<a_{2}<\cdots<a_{n-k} \& \operatorname{LI}(a)=n-k\right\}
$$

$L I(a)$ denotes the length of the longest increasing subsequence
Let $\mathrm{C}_{\mathbf{n}, \mathbf{k}}$ be a collection of "colored permutations" of $\mathrm{S}_{\mathbf{n}}$ such that

1) each element is red or blue
2) the blue entries are increasing
3) only a subset of the last k entries can be red
4) the sign of a colored permutation is (-1) \#bue

Theorem

$$
\# \boldsymbol{\Pi}_{\mathbf{n}, \mathbf{k}}=\sum_{a \in C_{n, k}} \operatorname{sign}(a)=\sum_{r=0}^{k}\binom{k}{r}(-1)^{k-r} n(n-1) \cdots(n-r+1)
$$

Do you think that was enough?

Do you think that was enough? no!

Do you think that was enough? no!
here is more

Do you think that was enough? no! here is more

$$
\sum_{a \in \Pi_{n, k}} q^{\operatorname{maj}\left(a^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[n]_{\mathbf{q}}[n-1]_{\mathbf{q}} \cdots[n-r+1] \mathbf{q}
$$

Do you think that was enough? no! here is more

$$
\sum_{a \in \Pi_{n, k}} q^{m a j\left(a^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[n]_{\mathbf{q}}[n-1]_{q} \cdots[n-r+1] \mathbf{q}
$$

Proof (sketch)

Do you think that was enough? no! here is more

$$
\sum_{\mathbf{a} \in \Pi_{n, k}} q^{\operatorname{maj}\left(\mathbf{a}^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[n]_{\mathbf{q}}[n-1]_{\mathbf{q}} \cdots[n-r+1] \mathbf{q}
$$

Proof (sketch)

From a theorem of Schensted it follows that

Do you think that was enough? no! here is more

$$
\sum_{a \in \Pi_{n, k}} q^{\operatorname{maj}\left(a^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[\mathbf{n}]_{\mathbf{q}}[n-1]_{\mathbf{q}} \cdots[n-r+1] \mathbf{q}
$$

Proof (sketch)

From a theorem of Schensted it follows that
$\sum_{\mathbf{a} \in \boldsymbol{\Pi}_{\mathbf{n}, \mathbf{k}}} \mathbf{q}^{\operatorname{maj}\left(\mathbf{a}^{-1}\right)}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu} \sum_{\mathbf{T} \in \mathbf{S T}(\mathbf{n}-\mathbf{k}, \mu)} \mathbf{q}^{\operatorname{maj}(\mathbf{T})}$

Do you think that was enough? no! here is more

$$
\sum_{a \in \Pi_{n, k}} q^{\operatorname{maj}\left(a^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[\mathbf{n}]_{\mathbf{q}}[n-1]_{\mathbf{q}} \cdots[n-r+1] \mathbf{q}
$$

Proof (sketch)

From a theorem of Schensted it follows that
$\sum_{\mathbf{a} \in \boldsymbol{\Pi}_{\mathbf{n}, \mathbf{k}}} \mathbf{q}^{\operatorname{maj}\left(\mathbf{a}^{-1}\right)}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu} \sum_{\mathbf{T} \in \mathbf{S T}(\mathbf{n}-\mathbf{k}, \mu)} \mathbf{q}^{\operatorname{maj}(\mathbf{T})}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{S}_{\mathbf{n}-\mathbf{k}, \mu}\right\rangle$

Do you think that was enough? no! here is more

$$
\sum_{a \in \Pi_{n, k}} q^{\operatorname{maj}\left(a^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[\mathbf{n}]_{\mathbf{q}}[n-1]_{\mathbf{q}} \cdots[n-r+1] \mathbf{q}
$$

Proof (sketch)
From a theorem of Schensted it follows that
$\sum_{\mathbf{a} \in \boldsymbol{\Pi}_{\mathbf{n}, \mathbf{k}}} \mathbf{q}^{\mathbf{m a j}\left(\mathbf{a}^{-\mathbf{1}}\right)}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu} \sum_{\mathbf{T} \in \mathbf{S T}(\mathbf{n}-\mathbf{k}, \mu)} \mathbf{q}^{\mathbf{m a j}(\mathbf{T})}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{S}_{\mathbf{n}-\mathbf{k}, \mu}\right\rangle$

Do you think that was enough? no! here is more

$$
\sum_{a \in \Pi_{n, k}} q^{\operatorname{maj}\left(a^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[\mathbf{n}]_{\mathbf{q}}[n-1]_{\mathbf{q}} \cdots[n-r+1] \mathbf{q}
$$

Proof (sketch)

From a theorem of Schensted it follows that

$$
\begin{aligned}
\sum_{\mathbf{a} \in \boldsymbol{\Pi}_{\mathbf{n}, \mathbf{k}}} \mathbf{q}^{\mathbf{m a j}\left(\mathbf{a}^{-1}\right)} & =\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu} \sum_{\mathbf{T} \in \mathbf{S T}(\mathbf{n}-\mathbf{k}, \mu)} \mathbf{q}^{\mathbf{m a j}(\mathbf{T})}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{S}_{\mathbf{n}-\mathbf{k}, \mu}\right\rangle \\
& =\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{V}_{\mathbf{n}-\mathbf{k}} \mathbf{S}_{\mu}\right\rangle
\end{aligned}
$$

Do you think that was enough? no! here is more

$$
\sum_{a \in \Pi_{n, k}} q^{\operatorname{maj}\left(a^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[\mathbf{n}]_{\mathbf{q}}[n-1]_{\mathbf{q}} \cdots[n-r+1] \mathbf{q}
$$

Proof (sketch)

From a theorem of Schensted it follows that

$$
\begin{aligned}
\sum_{\mathbf{a} \in \boldsymbol{\Pi}_{\mathbf{n}, \mathbf{k}}} \mathbf{q}^{\operatorname{maj}\left(\mathbf{a}^{-1}\right)} & =\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu} \sum_{\mathbf{T} \in \mathbf{S T}(\mathbf{n}-\mathbf{k}, \mu)} \mathbf{q}^{\operatorname{maj}(\mathbf{T})}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\underset{\mathbf{H}_{\mathbf{n}}[\mathbf{X}]}{ }, \mathbf{S}_{\mathbf{n}-\mathbf{k}, \mu}\right\rangle \\
& =\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{V}_{\mathbf{n}-\mathbf{k}} \mathbf{S}_{\mu}\right\rangle \quad \text { with } \quad \mathbf{V}_{\mathbf{m}}=\sum_{\mathbf{s} \geq \mathbf{0}}(-\mathbf{1})^{\mathbf{s}} \mathbf{h}_{\mathbf{m}+\mathbf{s}} \mathbf{e}_{\mathbf{s}}^{\perp}
\end{aligned}
$$

Do you think that was enough? no! here is more

$$
\sum_{a \in \Pi_{n, k}} q^{\operatorname{maj}\left(a^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[\mathbf{n}]_{\mathbf{q}}[n-1]_{\mathbf{q}} \cdots[n-r+1] \mathbf{q}
$$

Proof (sketch)

From a theorem of Schensted it follows that

$$
\begin{aligned}
\sum_{\mathbf{a} \in \boldsymbol{\Pi}_{\mathbf{n}, \mathbf{k}}} \mathbf{q}^{\mathbf{m a j}\left(\mathbf{a}^{-\mathbf{1}}\right)} & =\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu} \sum_{\mathbf{T} \in \mathbf{S T}(\mathbf{n}-\mathbf{k}, \mu)} \mathbf{q}^{\mathbf{m a j}(\mathbf{T})}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\mathbf{H}_{\mathbf{n}}^{\downarrow}[\mathbf{X}], \mathbf{S}_{\mathbf{n}-\mathbf{k}, \mu}\right\rangle \\
& =\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{V}_{\mathbf{n}-\mathbf{k}} \mathbf{S}_{\mu}\right\rangle \quad \text { with } \mathbf{V}_{\mathbf{m}}=\sum_{\mathbf{s} \geq \mathbf{0}}(-\mathbf{1})^{\mathbf{s}} \mathbf{h}_{\mathbf{m}+\mathbf{s}} \mathbf{e}_{\mathbf{s}}^{\perp} \\
& =\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{V}_{\mathbf{n}-\mathbf{k}} \mathbf{e}_{\mathbf{1}}^{\mathbf{k}}\right\rangle
\end{aligned}
$$

Do you think that was enough? no! here is more

$$
\sum_{a \in \Pi_{n, k}} q^{\operatorname{maj}\left(a^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[\mathbf{n}]_{\mathbf{q}}[n-1]_{\mathbf{q}} \cdots[n-r+1] \mathbf{q}
$$

Proof (sketch)

the Frobenius Characteristic of Sn Harmonics

From a theorem of Schensted it follows that

$$
\begin{aligned}
\sum_{\mathbf{a} \in \boldsymbol{\Pi}_{\mathbf{n}, \mathbf{k}}} \mathbf{q}^{\operatorname{maj}\left(\mathbf{a}^{-1}\right)} & =\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu} \sum_{\mathbf{T} \in \mathbf{S T}(\mathbf{n}-\mathbf{k}, \mu)} \mathbf{q}^{\operatorname{maj}(\mathbf{T})}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{S}_{\mathbf{n}-\mathbf{k}, \mu}\right\rangle \\
& =\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{V}_{\mathbf{n}-\mathbf{k}} \mathbf{S}_{\mu}\right\rangle \quad \text { with } \mathbf{V}_{\mathbf{m}}=\sum_{\mathbf{s} \geq \mathbf{0}}(-\mathbf{1})^{\mathbf{s}} \mathbf{h}_{\mathbf{m}+\mathbf{s}} \mathbf{e}_{\mathbf{s}}^{\perp} \\
& =\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{V}_{\mathbf{n}-\mathbf{k}} \mathbf{e}_{\mathbf{1}}^{\mathbf{k}}\right\rangle=\sum_{\mathbf{s} \geq \mathbf{0}}(-\mathbf{1})^{\mathbf{s}}\binom{\mathbf{k}}{\mathbf{s}}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{h}_{\mathbf{n}-\mathbf{k}+\mathbf{s}} \mathbf{e}_{\mathbf{1}}^{\mathbf{k}-\mathbf{s}}\right\rangle
\end{aligned}
$$

Do you think that was enough? no! here is more

$$
\begin{equation*}
\sum_{a \in \Pi_{n, k}} q^{\operatorname{maj}\left(a^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[\mathbf{n}]_{\mathbf{q}}[n-1]_{\mathbf{q}} \cdots[n-r+1] \mathbf{q} \tag{*}
\end{equation*}
$$

Proof (sketch)

the Frobenius Characteristic of Sn Harmonics
From a theorem of Schensted it follows that

$$
\begin{aligned}
& \sum_{\mathbf{a} \in \boldsymbol{\Pi}_{\mathbf{n}, \mathbf{k}}} \mathbf{q}^{\mathbf{m a j}\left(\mathbf{a}^{-1}\right)}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu} \sum_{\mathbf{T} \in \mathbf{S T}(\mathbf{n}-\mathbf{k}, \mu)} \mathbf{q}^{\operatorname{maj}(\mathbf{T})}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\underset{\mathbf{H}_{\mathbf{n}}[\mathbf{X}]}{ }, \mathbf{S}_{\mathbf{n}-\mathbf{k}, \mu}\right\rangle \\
&=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{V}_{\mathbf{n}-\mathbf{k}} \mathbf{S}_{\mu}\right\rangle \quad \text { with } \mathbf{V}_{\mathbf{m}}=\sum_{\mathbf{s} \geq \mathbf{0}}(-\mathbf{1})^{\mathbf{s}} \mathbf{h}_{\mathbf{m}+\mathbf{s}} \mathbf{e}_{\mathbf{s}}^{\perp} \\
&=\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{V}_{\mathbf{n}-\mathbf{k}} \mathbf{e}_{\mathbf{1}}^{\mathbf{k}}\right\rangle=\sum_{\mathbf{s} \geq \mathbf{0}}(-\mathbf{1})^{\mathbf{s}}\binom{\mathbf{k}}{\mathbf{s}}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{h}_{\mathbf{n}-\mathbf{k}+\mathbf{s}} \mathbf{e}_{\mathbf{1}}^{\mathbf{k}-\mathbf{s}}\right\rangle \\
& \quad \text { and (*) follows easily from this }
\end{aligned}
$$

Do you think that was enough? no! here is more

$$
\begin{equation*}
\sum_{a \in \Pi_{n, k}} q^{\operatorname{maj}\left(a^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[\mathbf{n}]_{\mathbf{q}}[n-1]_{\mathbf{q}} \cdots[n-r+1] \mathbf{q} \tag{*}
\end{equation*}
$$

Proof (sketch)
the Frobenius Characteristic of Sn Harmonics
From a theorem of Schensted it follows that

$$
\begin{aligned}
& \sum_{\mathbf{a} \in \boldsymbol{\Pi}_{\mathbf{n}, \mathbf{k}}} \mathbf{q}^{\mathbf{m a j}\left(\mathbf{a}^{-1}\right)}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu} \sum_{\mathbf{T} \in \mathbf{S T}(\mathbf{n}-\mathbf{k}, \mu)} \mathbf{q}^{\mathbf{m a j}(\mathbf{T})}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\underset{\mathbf{H}_{\mathbf{n}}[\mathbf{X}]}{ }, \mathbf{S}_{\mathbf{n}-\mathbf{k}, \mu}\right\rangle \\
&=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{V}_{\mathbf{n}-\mathbf{k}} \mathbf{S}_{\mu}\right\rangle \quad \text { with } \quad \mathbf{V}_{\mathbf{m}}=\sum_{\mathbf{s} \geq \mathbf{0}}(-\mathbf{1})^{\mathbf{s}} \mathbf{h}_{\mathbf{m}+\mathbf{s}} \mathbf{e}_{\mathbf{s}}^{\perp} \\
&=\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{V}_{\mathbf{n}-\mathbf{k}} \mathbf{e}_{\mathbf{1}}^{\mathbf{k}}\right\rangle=\sum_{\mathbf{s} \geq \mathbf{0}}(-\mathbf{1})^{\mathbf{s}}\binom{\mathbf{k}}{\mathbf{s}}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{h}_{\mathbf{n}-\mathbf{k}+\mathbf{s}} \mathbf{e}_{\mathbf{1}}^{\mathbf{k}-\mathbf{s}}\right\rangle \\
& \quad \text { and (*) follows easily from this }
\end{aligned}
$$

Problem: Get a Combinatorial interpretation when $\mathrm{Hn}[\mathrm{X}]$ is replaced by one of our Macdonald polynomials

Do you think that was enough? no! here is more

$$
\begin{equation*}
\sum_{a \in \Pi_{n, k}} q^{\operatorname{maj}\left(a^{-1}\right)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}[\mathbf{n}]_{\mathbf{q}}[n-1]_{\mathbf{q}} \cdots[n-r+1] \mathbf{q} \tag{*}
\end{equation*}
$$

Proof (sketch)
the Frobenius Characteristic of Sn Harmonics
From a theorem of Schensted it follows that

$$
\begin{aligned}
& \sum_{\mathbf{a} \in \boldsymbol{\Pi}_{\mathbf{n}, \mathbf{k}}} \mathbf{q}^{\mathbf{m a j}\left(\mathbf{a}^{-1}\right)}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu} \sum_{\mathbf{T} \in \mathbf{S T}(\mathbf{n}-\mathbf{k}, \mu)} \mathbf{q}^{\mathbf{m a j}(\mathbf{T})}=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\underset{\mathbf{H}_{\mathbf{n}}[\mathbf{X}]}{ }, \mathbf{S}_{\mathbf{n}-\mathbf{k}, \mu}\right\rangle \\
&=\sum_{\mu \vdash \mathbf{k}} \mathbf{f}_{\mu}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{V}_{\mathbf{n}-\mathbf{k}} \mathbf{S}_{\mu}\right\rangle \quad \text { with } \quad \mathbf{V}_{\mathbf{m}}=\sum_{\mathbf{s} \geq \mathbf{0}}(-\mathbf{1})^{\mathbf{s}} \mathbf{h}_{\mathbf{m}+\mathbf{s}} \mathbf{e}_{\mathbf{s}}^{\perp} \\
&=\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{V}_{\mathbf{n}-\mathbf{k}} \mathbf{e}_{\mathbf{1}}^{\mathbf{k}}\right\rangle=\sum_{\mathbf{s} \geq \mathbf{0}}(-\mathbf{1})^{\mathbf{s}}\binom{\mathbf{k}}{\mathbf{s}}\left\langle\mathbf{H}_{\mathbf{n}}[\mathbf{X}], \mathbf{h}_{\mathbf{n}-\mathbf{k}+\mathbf{s}} \mathbf{e}_{\mathbf{1}}^{\mathbf{k}-\mathbf{s}}\right\rangle \\
& \quad \text { and (*) follows easily from this }
\end{aligned}
$$

Problem: Get a Combinatorial interpretation when $\mathrm{Hn}[\mathrm{X}]$ is replaced by one of our Macdonald polynomials

THE END

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

More miracles

$$
\operatorname{dim} \mathbf{M}_{\alpha_{\mathbf{1}}} \wedge \mathbf{M}_{\alpha_{2}} \wedge \cdots \wedge \mathbf{M}_{\alpha_{\mathbf{k}}}=\frac{\mathrm{n}!}{\mathbf{k}}
$$

Etc Etc Etc

More miracles

$$
\operatorname{dim} \mathbf{M}_{\alpha_{\mathbf{1}}} \wedge \mathbf{M}_{\alpha_{2}} \wedge \cdots \wedge \mathbf{M}_{\alpha_{\mathbf{k}}}=\frac{\mathrm{n}!}{\mathrm{k}}
$$

Etc Etc Etc

More miracles

$$
\operatorname{dim} \mathrm{M}_{\alpha_{\mathbf{1}}} \wedge \mathrm{M}_{\alpha_{\mathbf{2}}} \wedge \cdots \wedge \mathrm{M}_{\alpha_{\mathbf{k}}}=\frac{\mathrm{n}!}{\mathrm{k}}
$$

Etc Etc Etc

