Reward

Seeking for n! Derivatives

$1,000$
A remarkable determinant

<table>
<thead>
<tr>
<th></th>
<th>(0,0)</th>
<th>(0,1)</th>
<th>(0,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General definition

\[
\Delta_{\mu}(X,Y) = \det \left| \begin{array}{c}
 \mu_1 \\
 \mu_2 \\
 \vdots \\
 \mu_n
\end{array} \right|
\]

If \((p_1,q_1),(p_2,q_2),\ldots,(p_n,q_n)\) are the cells of the Ferrers diagram of \(\mu\), then

\[
\Delta_{\mu}(X,Y) = \det \left| \begin{array}{cccc}
 x_{p_1} & y_{q_1} & \cdots & x_{p_n} \\
 y_{q_1} & x_{p_1} & \cdots & y_{q_n} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{p_n} & y_{q_n} & \cdots & x_{p_1}
\end{array} \right|
\]
Could it be \prod?

6 independent derivatives!

\[\begin{align*}
\vec{x} - \delta_{r_1} x_1 \delta_{s_1} y_1 \\
\vec{x} + \delta_{r_2} x_2 \delta_{s_2} y_2 \\
\vdots \\
\end{align*} \]

\[\Delta \mu (X,Y) := \prod \delta_{rr} x_r \delta_{ss} y_s \]

As a starter......
The \(n! \) Conjecture

\[\dim [X^n, Y^n] = n! \]

for an "elementary" proof

"Elementary" means:

By calculus or and combinatorics

Give an algorithm

that produces a "triangular" set of \(n! \) derivatives

Reward

\$1,000$

Proved by Mark Haiman using algebraic geometry

\(\dim [X^n, Y^n] = n! \)

For \(n \)

The \(n! \) Conjecture

(1990 - 2000)
The basic construction

Polynomials vanishing at all these tableau points:

\((\frac{1}{2} - \frac{1}{3})(\frac{1}{2} - \frac{1}{3})(\frac{1}{2} - \frac{1}{3})\)

Some polynomials vanishing at this orbit point:

\(\left(\frac{1}{4} - \frac{1}{5}\right)\left(\frac{1}{4} - \frac{1}{5}\right)\left(\frac{1}{4} - \frac{1}{5}\right)\)

From a tableau to a point in 2n dimensional space
An Elementary Method

An Independent Set with 6 ≠ 3 Elements

Kicking for the Shape

\[\Delta_{21}[X,Y] \partial x^3 \Delta_{21}[X,Y] \partial y^1 \Delta_{21}[X,Y] \partial x^2 \Delta_{21}[X,Y] \partial y^3 \]

\[x^2 - \alpha^1 y^1 - \beta^1 x^2 - \alpha^1 y^3 - \beta^2 x^3 - \alpha^1 \]

\[t^2 + t^1 \]

\[\lambda' X \]
The symmetry condition is satisfied

\[\frac{1}{4} + \frac{6}{4} + 10 \frac{1}{4} + \frac{1}{4} \]
\((x_2 - \alpha_1) (x_3 - \alpha_2) (y_3 - \beta_2) (y_1 - \beta_1) (x_4 - \alpha_1) (y_3 - \beta_2) \)
Only Algebraic Combinatorics

Δμ(X,Y) = det \[\begin{vmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \end{vmatrix} \] = \[\text{det} X' X'' \]

If the kicking statistic are symmetric then the top components of the kicking polynomials

Theorem

Compute the kicking statistics.

Step 4

Order the orbit points and construct the kicking polynomials.

Step 3

Construct the corresponding orbit points

Step 2

In this case

5040

Fill the Ferrers diagram of \(\lambda\) with 1, 2, \ldots until possible ways to get to the nil tableau.

Step 1

The Algorithm
The polynomials in a triangular collection are necessarily independent.

\[\text{ldm}(P_1) > \text{ldm}(P_2) > \text{ldm}(P_m) \]

is said to be "triangular" if

\[\{P_1, P_2, \ldots, P_m\} = \{ \text{ldm}(P_1), \text{ldm}(P_2), \ldots, \text{ldm}(P_m) \} \]

is the \text{ldm} highest monomial in \(P \).

The leading monomial "in a polynomial \(P \)" is a polynomial in \(P \) and

\[\sum_{i=1}^{n} c_i x_i^{d_i} \]

where we have \(d_i \) for some \(i \) and only if for some \(i \) and

\[d_i \]

and

\[\text{degree}(x_d) > \text{degree}(x_e) \]

The degree-lexicographic order

A typical term order

Triangularity
A basic tool

\[
\begin{pmatrix}
\delta x & \frac{\partial}{\partial x} & 1 & 0 \\
\delta \tau & \frac{\partial}{\partial \tau} & 0 & 1 \\
\delta \theta & \frac{\partial}{\partial \theta} & 0 & 0 \\
1 & 1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
\delta p \\
\delta \tau \\
\delta \theta \\
1
\end{pmatrix}
= \begin{pmatrix} [x]^{\delta f} \nabla \end{pmatrix}
\]

This proves the nil conjecture for \(n = 1 \) in

\[e_{-\delta x} x^{\delta f} \geq e_{-\delta p} x^{\delta f} \iff e_{\delta x} x^{\delta f} \geq e_{\delta p} x^{\delta f} \]

Note: because

\[
\begin{align*}
\ldots & = \tau - u x \cdots \delta \tau - u x \delta \tau - u x \\
& = (u x, \ldots, \tau x, \nabla) \frac{\tau - u x}{\delta x} \cdots \frac{\tau - u x}{\delta x} \tau - u x \\
\end{align*}
\]

then

\[
I \geq I - u a \geq 0, \ldots, \delta I \geq 0, I - u a \geq 0
\]

thus if

\[
\ldots \frac{\tau - u x}{\delta x} \cdots \frac{\tau - u x}{\delta x} \tau - u x \\
= (u x, \ldots, \tau x, \nabla) \frac{\tau - u x}{\delta x} \cdots \frac{\tau - u x}{\delta x} \tau - u x \\
\]

Proof

The Vandermonde determinant of \((u x, \ldots, \tau x, \nabla)\) has \(n \) independent derivatives.

Theorem

A collection of polynomials with distinct leading monomials

\[\nabla \phi \]

then \(\dim \phi = \dim \bigwedge \phi \) if and only if we can find \(\phi = \bigwedge \phi \). Let \(\Lambda \) be a vector space of polynomials and suppose that \(\dim \phi = \dim \bigwedge \phi \).
Here and after we set that are homogeneous of degree \(m \) in \(X_1, x_2, \ldots, x_n \) and degree \(j \) in \(\lambda x_1, \lambda x_2, \ldots, \lambda x_n \) and denote \(S \) the linear span of derivatives of \(\Lambda \) with \(n = \text{dim } \mathsf{H}^n(\Lambda, X) \).

Our spaces \(\mathsf{H}^n(\Lambda, X) \) are bidualized, that is, we have the double decomposition

\[
\frac{\text{dim } \mathsf{H}^n(\Lambda, X)}{1} = (\Lambda)^{\text{dim } \mathsf{H}^n(\Lambda, X)} = \bigoplus_{0 \leq \nu < m} (\Lambda)^{\nu} H \bigoplus \bigoplus_{\nu = m} (\Lambda)^{\nu} H.
\]

In this case

\[
[m = \nu d + \cdots + \nu d + r d : a d x \cdots z d x, 1 x] = (\Lambda)^{\text{dim } \mathsf{H}^n(\Lambda, X)}
\]

for instance for \(H = \mathsf{H}^n(\Lambda, X) \) we have \([\nu x, \cdots, \nu x] = (\Lambda)^{\nu} H \).

If \(\text{dim } \mathsf{H}^n(\Lambda, X) = \infty \), for all \(m \), we set

\[
(\Lambda)^{\nu} H \bigoplus \cdots \bigoplus (\Lambda)^{\nu} H \bigoplus (\Lambda)^{\nu} H = \Lambda
\]
Some Hilbert Series

Using Maple

Let's use Maple to explore these series.
This explains the symmetry

\[(\neut / \mathfrak{H} / \mathfrak{I}) \wedge \Lambda \Sigma_u \Lambda x = (\mathfrak{H} / \mathfrak{I}) \wedge \Lambda \]

In this case

\((\mathfrak{H} / \mathfrak{I}) \wedge \Lambda \Sigma_u \Lambda x = (\mathfrak{H} / \mathfrak{I}) \wedge \Lambda \)

Note that this implies that \(\Lambda \) is a cone with summit a bilinear homogeneous polynomial

\[(\Lambda, x) \nabla \]

The same is true if \(\Lambda \) is a cone with summit a bilinear homogeneous polynomial.

\[(\Lambda, x) \nabla \]

In this case

\[0 = (x) \Lambda \]

Thus

\[0 = (x) \Lambda (x) \nabla \]

and

\[0 = (x) \nabla (x) \nabla \]

Note this is a non-singular linear map of \(\Lambda \) onto \(\Lambda \) and

\[(x) \nabla (x) \nabla \]

We say that a vector space \(\Lambda \) of polynomials is a "cone" if it is the linear span

\[(x) \nabla \]

Definition
Now the miracles
More miracles
Some facts about ideals of polynomials

Gordan:

We say that \(x' \) contains \(x' \) if and only if \(p_1 > q_1, p_2 > q_2, \ldots, p_n > q_n \).
Orthogonal complements of Ideals

The assertion in (3) holds because the elements of \(I \) can be taken as representables.

and the assertion in (1) follows from Taylor's Theorem.

\[
0 = \frac{\partial^{u_x \cdot \cdots \cdot \partial_x} (u_x, \cdots, \partial_x) \phi}{\partial^u \phi \cdots \partial_x \phi}
\]

For all \(p \in J \) and all \(p_1, p_2, \ldots, p_n \) we have

\[
\{ f \in p : 0 = (u_x, \cdots, \partial_x) \phi \} = \langle \phi, d \rangle = \| \phi \|
\]

\(f \in p \)

\(\{ f \in p : 0 = \langle \phi, d \rangle \} = \| f \|
\]

For homogeneous Theorem

For any homogeneous ideal \(J \) set

\[
\left| \frac{\partial^{u_x \cdot \cdots \cdot \partial_x} (u_x, \cdots, \partial_x) \phi}{\partial^u \phi \cdots \partial_x \phi} \right| = \langle \phi, d \rangle
\]

(3) For \(p \in \{ u_x, \cdots, \partial_x \} \) set

(1) An ideal is called "homogeneous" if it is generated by homogeneous polynomials.

Definitions:
Next,

\[|\mathcal{CG}|/|\mathcal{C}| = \mathcal{C} \subseteq H = \mathcal{C} \subseteq \mathcal{H} = \mathcal{C} \subseteq \mathcal{H} \]

Now it follows that

and call the elements of this space the "orbit harmonics".

\[\mathcal{R}[\mathcal{C}] \subseteq H \]

We also set

\[\mathcal{R}[\mathcal{C}] \subseteq \mathcal{R} \]

and

\[\mathcal{R}[\mathcal{C}] \subseteq \mathcal{R} \]

In any case we set

\[\mathcal{R}[\mathcal{C}] \subseteq \mathcal{R} \]

In general we have

\[\mathcal{R}[\mathcal{C}] \subseteq \mathcal{R} \]

If \(\mathcal{C} \) is trivial then \(a \) is called "regular" and the orbit \([a] \) has cardinality \(|\mathcal{C}| \).

If \(\mathcal{C} \) is trivial then \(a \) is called "regular" and the orbit \([a] \) has cardinality \(|\mathcal{C}| \).

is called the "stabilizer" of \(a \).

\[\{ a \in \mathcal{C} : \mathcal{C} \ni a \} = \mathcal{C} \]

and call it the "orbit" of \(a \) under \(\mathcal{C} \). The subgroup

\[\{ a \in \mathcal{C} : \mathcal{C} \ni a \} = \mathcal{C} \]

This given, we let

\[(a_{1}, a_{2}, \ldots, a_{n}) = a \]

and a vector \(a = (a_{1}, a_{2}, \ldots, a_{n}) \) we set

Let \(G \) be a group of permutations of \(\{1, 2, \ldots, n\} \) given an element

\[(\nu, \nu', \ldots, \nu') \in G \]
next

Theorem

(!!)

\[H^b \mid \mathcal{P} \parallel q, \frac{a}{b} \sum_{\mathcal{P} \parallel q} \mathcal{P}^b \hat{H} = (b) \mathcal{P}^b \hat{H} = (b) \mathcal{P}^b \hat{H} \parallel \mathcal{P} \parallel q \]

(!!)

\[\{ \mathcal{P} \subseteq \mathcal{P} : (a) \mathcal{P} \parallel \mathcal{P} \parallel q \} = (b) \mathcal{P} \parallel \mathcal{P} \parallel q \]

(!!)

\[\frac{d}{d^\omega} \mid \mathcal{P} \parallel q, l = 0, l \]

Then the equalities

(!!)

\[\frac{d}{d^\omega} + \cdots + \frac{d}{d^\omega} = \mid \mathcal{P} \parallel q \mid \text{ and } B_{\mathcal{P} \parallel q} \]

Suppose that \(\mathcal{P} \) is a basis for \(R^L \) with

(!!)

\[\omega = \max \deg \mathcal{P} \]

Let \(a \) be a regular point.

Theorem

(!!)

(!!)

(!!)

Conical Orbit Harmonics
where $\mu_{\{X;Y\}}$ comes from $[\lambda^\dagger X]^n \bigvee$. With equality if and only if $H_{\{q,a\}} \subseteq [\lambda^\dagger X]^n M$

This implies

$\mu_{\{q,a\}}^S H \subseteq [\lambda^\dagger X]^n M$

and since $H_{\{q,a\}}$ is closed under differentiation it follows that $\mu_{\{q,a\}}^S H \in [\lambda^\dagger X]^n \bigvee$

$\left\{ \mu_{\{q,a\}}^S \ni \phi : (\mu_{\{q,a\}}^S \phi q, \ldots, \mu_{\{q,a\}}^S \phi q, \mu_{\{q,a\}}^S \phi q, \mu_{\{q,a\}}^S \phi q, \mu_{\{q,a\}}^S \phi q) \right\} = \mu_{\{q,a\}}^S [(q,a)]$

Then

Theorem

Construct the corresponding orbit points

Step 2

Fill the Ferrers diagrams of n with $1,2,\ldots,n$ in all possible ways to get the $n!$ tableaux.

Step 1

Where $\mu_{\{X;Y\}}$ comes from $[\lambda^\dagger X]^n \bigvee$.
The Algorithm

Step 1

Step 2

Construct the corresponding orbit points

2.40

In this case, only Algebraic Combinatorics

No MAGICs?

Step 3

Order the orbit points and construct the kicking polynomials.

Step 4

Compute the kicking statistics.

\[\Delta \mu (X, Y) = \det \left(\begin{array}{cc} x_p & y_q \\ x_p & y_q \end{array} \right) \]

\[\left(\begin{array}{cccc} 1 & 2 & 5 \\ 6 & 0 & 8 \\ 9 & 1 & 3 \\ 12 & 7 & 5 \end{array} \right) \]

Fill the Fierro diagram of \(\lambda \) with 1, 2, \ldots , \lambda in all possible ways to get the nil tableaux.
Can you guess?

It is interesting to know when equality holds

\[\dim G = |G| \]

and thus in full generality we must have

Now if \(a \) is regular we have \(\text{dim} H \leq \text{dim} \mathcal{H} \)

and taking orthogonal complements gives

Thus

\[
\begin{align*}
\mathcal{G} \subseteq & \dim \mathcal{H} \\
(\mathcal{G} \oplus \mathcal{H}) & \subseteq \dim \mathcal{H} \\
& \subseteq \dim \mathcal{H}
\end{align*}
\]

Note that if \(\mathcal{G} \) is any homogeneous \(G \)-invariant polynomial then for any point \(a \in \mathcal{G} \) we have

It is customary to call the elements of \(\mathcal{H} \) "\(G \)-Harmonics".

Let \(\mathcal{H} \) be the ideal generated by the homogeneous \(G \)-invariant polynomials and set

The Group Harmonics
Groups Generated by Reflections

The space H^n_s (Harmonics of S^n) is the linear span of derivatives of

The classical example

G is generated by reflections

H_G is a cone with summit the product of the reflecting hyperplanes,

$\dim H_G = |G|$

$H_{H_G} = H_G$ for all regular points,

any of the statements below implies the remaining ones.

If G is a finite group of $n \times n$ matrices then

Theorem
THE END