A Level 1 Maass Spezialschar for Modular Forms on SO_8 . Finn McGlade

Joint with Jennifer Johnson-Leung, Isabella Negrini, Aaron Pollack, and Manami Roy

November, 2023, Tucson

Outline

2 A Maass Spezialschar For Modular Forms on Sp₄

4 A Maass Spezialschar For Modular Forms on SO₈

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Contents

2 A Maass Spezialschar For Modular Forms on Sp_4

 \bigcirc Modular Forms on SO₈

[4] A Maass Spezialschar For Modular Forms on ${
m SO}_8$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Siegel Modular Forms

The symplectic group

$$\operatorname{Sp}_4 = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_4(\mathbb{R}) \colon AB^t = BA^t, CD^t = DC^t, \text{ and } AD^t - BC^t = 1 \right\}$$

acts on the complex three-fold

$$\mathcal{H}_2 = \left\{ \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in M_2(\mathbb{C}) \colon \operatorname{im}(\tau), \operatorname{im}(\tau'), \operatorname{im}(\tau) \operatorname{im}(\tau') - \operatorname{im}(z)^2 > 0 \right\}$$

via the biholomorphic transformations $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z = (AZ + B)(CZ + D)^{-1}$.

Siegel Modular Forms

The symplectic group

$$\operatorname{Sp}_4 = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_4(\mathbb{R}) \colon AB^t = BA^t, CD^t = DC^t, \text{ and } AD^t - BC^t = 1 \right\}$$

acts on the complex three-fold

$$\mathcal{H}_2 = \left\{ \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in \mathrm{M}_2(\mathbb{C}) \colon \operatorname{im}(\tau), \operatorname{im}(\tau'), \operatorname{im}(\tau) \operatorname{im}(\tau') - \operatorname{im}(z)^2 > 0 \right\}$$

via the biholomorphic transformations $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z = (AZ + B)(CZ + D)^{-1}$.

Definition (Siegel Modular Forms)

Let $\ell \in \mathbb{Z}_{\geq 0}$ and write $M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ for the space of holomorphic functions

$$F: \mathcal{H}_2 \to \mathbb{C}$$

such that $F(\gamma \cdot Z) = \det(CZ + D)^{\ell}F(Z) \ \forall \ \gamma = (\begin{smallmatrix} A & B \\ C & D \end{smallmatrix}) \in \operatorname{Sp}_4(\mathbb{Z}) \text{ and } Z \in \mathcal{H}_2.$

・ロト・西ト・ヨト ・ヨー うへの

Siegel Modular Forms

The symplectic group

$$\operatorname{Sp}_4 = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_4(\mathbb{R}) \colon AB^t = BA^t, CD^t = DC^t, \text{ and } AD^t - BC^t = 1 \right\}$$

acts on the complex three-fold

$$\mathcal{H}_2 = \left\{ \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in \mathrm{M}_2(\mathbb{C}) \colon \operatorname{im}(\tau), \operatorname{im}(\tau'), \operatorname{im}(\tau) \operatorname{im}(\tau') - \operatorname{im}(z)^2 > 0 \right\}$$

via the biholomorphic transformations $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z = (AZ + B)(CZ + D)^{-1}$.

Definition (Siegel Modular Forms)

Let $\ell \in \mathbb{Z}_{\geq 0}$ and write $M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ for the space of holomorphic functions

 $F: \mathcal{H}_2 \to \mathbb{C}$

such that $F(\gamma \cdot Z) = \det(CZ + D)^{\ell}F(Z) \ \forall \ \gamma = (\begin{smallmatrix} A & B \\ C & D \end{smallmatrix}) \in \operatorname{Sp}_4(\mathbb{Z}) \text{ and } Z \in \mathcal{H}_2.$

• (Koecher Principle) $\Longrightarrow F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ is bounded as $\operatorname{im}(Z) \to \infty$.

We have the abelian unipotent subgroup

$$N(\mathbb{Z}) = \left\{ egin{pmatrix} I & B \ 0 & I \end{pmatrix} : B \in M_2(\mathbb{Z}) \quad ext{and} \ B^t = B
ight\} \subseteq \operatorname{Sp}_4(\mathbb{Z}).$$

・ロト・日本・モト・モト・ ヨー のへぐ

We have the abelian unipotent subgroup

$$N(\mathbb{Z}) = \left\{ egin{pmatrix} I & B \ 0 & I \end{pmatrix} : B \in M_2(\mathbb{Z}) \quad ext{and} \ B^t = B
ight\} \subseteq \operatorname{Sp}_4(\mathbb{Z}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• So if $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ and $B \in M_2(\mathbb{Z})$ satisfies $B = B^t$ then F(Z) = F(Z + B).

We have the abelian unipotent subgroup

$$N(\mathbb{Z}) = \left\{ egin{pmatrix} I & B \ 0 & I \end{pmatrix} : B \in M_2(\mathbb{Z}) \quad ext{and} \ B^t = B
ight\} \subseteq \operatorname{Sp}_4(\mathbb{Z}).$$

- So if $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ and $B \in M_2(\mathbb{Z})$ satisfies $B = B^t$ then F(Z) = F(Z + B).
- It follows that $F \in M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ has a Fourier expansion

$$F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ))$$

where T runs over $\left\{ \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} : n, r, m \in \mathbb{Z}, n, m, 4nm - r^2 \ge 0 \right\}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We have the abelian unipotent subgroup

$$N(\mathbb{Z}) = \left\{ egin{pmatrix} I & B \ 0 & I \end{pmatrix} : B \in M_2(\mathbb{Z}) \quad ext{and} \ B^t = B
ight\} \subseteq \operatorname{Sp}_4(\mathbb{Z}).$$

- So if $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ and $B \in M_2(\mathbb{Z})$ satisfies $B = B^t$ then F(Z) = F(Z + B).
- It follows that $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ has a Fourier expansion

$$F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ))$$

where *T* runs over $\left\{ \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} : n, r, m \in \mathbb{Z}, n, m, 4nm - r^2 \ge 0 \right\}$.

• Alternatively, *T* can be thought of as the binary quadratic form $[n, r, m] = nx^2 + rxy + my^2$

• We have the abelian unipotent subgroup

$$N(\mathbb{Z}) = \left\{ egin{pmatrix} I & B \ 0 & I \end{pmatrix} : B \in M_2(\mathbb{Z}) \quad ext{and} \ B^t = B
ight\} \subseteq \operatorname{Sp}_4(\mathbb{Z}).$$

- So if $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ and $B \in M_2(\mathbb{Z})$ satisfies $B = B^{\ell}$ then F(Z) = F(Z + B).
- It follows that $F \in M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ has a Fourier expansion

$$F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ))$$

where *T* runs over $\left\{ \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} : n, r, m \in \mathbb{Z}, n, m, 4nm - r^2 \ge 0 \right\}$.

• Alternatively, *T* can be thought of as the binary quadratic form $[n, r, m] = nx^2 + rxy + my^2$

Say *T* is **primitive** if the content $e(T) := \gcd(n, r, m) = 1$.

• Sp_4 acts transitively on \mathcal{H}_2 and iI_2 has stabilizer

$$K = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} : AB^t = BA^t, AA^t + BB^t = I_2 \right\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• Sp_4 acts transitively on \mathcal{H}_2 and iI_2 has stabilizer

$$K = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} : AB^{t} = BA^{t}, AA^{t} + BB^{t} = I_{2} \right\}.$$

• Given an arbitrary function $F: \mathcal{H}_2 = \operatorname{Sp}_4/K \to \mathbb{C}$ define

$$\varphi_F \colon \operatorname{Sp}_4 \to \mathbb{C}, \qquad \varphi_F(g) = j(g,i)^{-\ell} F(g \cdot iI_2)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where $j(\begin{pmatrix} A & B \\ C & D \end{pmatrix}, i) = \det(Ci + D)$.

• Sp_4 acts transitively on \mathcal{H}_2 and iI_2 has stabilizer

$$K = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} : AB^{t} = BA^{t}, AA^{t} + BB^{t} = I_{2} \right\}.$$

• Given an arbitrary function $F: \mathcal{H}_2 = \operatorname{Sp}_4/K \to \mathbb{C}$ define

$$\varphi_F \colon \operatorname{Sp}_4 \to \mathbb{C}, \qquad \varphi_F(g) = j(g,i)^{-\ell} F(g \cdot iI_2)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where $j(\begin{pmatrix} A & B \\ C & D \end{pmatrix}, i) = \det(Ci + D)$.

• Then $F \in M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ if and only if φ_F satisfies:

• Sp_4 acts transitively on \mathcal{H}_2 and iI_2 has stabilizer

$$K = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} : AB^{t} = BA^{t}, AA^{t} + BB^{t} = I_{2} \right\}.$$

• Given an arbitrary function $F: \mathcal{H}_2 = \operatorname{Sp}_4/K \to \mathbb{C}$ define

$$\varphi_F \colon \operatorname{Sp}_4 \to \mathbb{C}, \qquad \varphi_F(g) = j(g,i)^{-\ell} F(g \cdot iI_2)$$

where $j(\begin{pmatrix} A & B \\ C & D \end{pmatrix}, i) = \det(Ci + D)$.

• Then $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ if and only if φ_F satisfies:

(i) If $\gamma \in \operatorname{Sp}_4(\mathbb{Z})$, $g \in \operatorname{Sp}_4$, and $k \in K$ then

$$\varphi_F(\gamma g) = \varphi_F(g)$$
 and $\varphi_F(gk) = j(k,i)^{-\ell}\varphi_F(g).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

• Sp_4 acts transitively on \mathcal{H}_2 and iI_2 has stabilizer

$$K = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} : AB^{t} = BA^{t}, AA^{t} + BB^{t} = I_{2} \right\}.$$

• Given an arbitrary function $F: \mathcal{H}_2 = \operatorname{Sp}_4/K \to \mathbb{C}$ define

$$\varphi_F \colon \operatorname{Sp}_4 \to \mathbb{C}, \qquad \varphi_F(g) = j(g,i)^{-\ell} F(g \cdot iI_2)$$

where $j(\begin{pmatrix} A & B \\ C & D \end{pmatrix}, i) = \det(Ci + D)$.

- Then $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ if and only if φ_F satisfies:
 - (i) If $\gamma \in \operatorname{Sp}_4(\mathbb{Z})$, $g \in \operatorname{Sp}_4$, and $k \in K$ then

 $\varphi_F(\gamma g) = \varphi_F(g)$ and $\varphi_F(gk) = j(k,i)^{-\ell}\varphi_F(g).$

(ii) φ_F satisfies a Cauchy Riemann type equation $D_{CR}\varphi_F \equiv 0$.

・ロト・西ト・市・ 市・ うらぐ

• Sp_4 acts transitively on \mathcal{H}_2 and iI_2 has stabilizer

$$K = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} : AB^{t} = BA^{t}, AA^{t} + BB^{t} = I_{2} \right\}.$$

• Given an arbitrary function $F: \mathcal{H}_2 = \operatorname{Sp}_4/K \to \mathbb{C}$ define

$$\varphi_F \colon \operatorname{Sp}_4 \to \mathbb{C}, \qquad \varphi_F(g) = j(g,i)^{-\ell} F(g \cdot iI_2)$$

where $j(\begin{pmatrix} A & B \\ C & D \end{pmatrix}, i) = \det(Ci + D)$.

- Then $F \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ if and only if φ_F satisfies:
 - (i) If $\gamma \in \operatorname{Sp}_4(\mathbb{Z})$, $g \in \operatorname{Sp}_4$, and $k \in K$ then

 $\varphi_F(\gamma g) = \varphi_F(g)$ and $\varphi_F(gk) = j(k,i)^{-\ell}\varphi_F(g).$

(ii) φ_F satisfies a Cauchy Riemann type equation $D_{CR}\varphi_F \equiv 0$.

 The above generalizes to an arbitrary semi-simple real Lie group G provided the maximal compact K ≤ G contains a central copy of C¹.

Contents

(2) A Maass Spezialschar For Modular Forms on Sp_4

- \bigcirc Modular Forms on SO₈
- ${f 4}$ A Maass Spezialschar For Modular Forms on ${f SO}_8$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

In 1977 Saito and Kurokawa formulated a conjecture concerning a lift

 $\mathrm{SK}^* \colon M_{\ell-1/2}(\Gamma_0(4)) \to M_\ell(\mathrm{Sp}_4(\mathbb{Z})), \quad h \mapsto \mathrm{SK}^*(h).$

Here $M_{\ell-1/2}(\Gamma_0(4)) = \{ \text{weight } \ell - 1/2 \text{ elliptic modular forms on } \Gamma_0(4) \}.$

In 1977 Saito and Kurokawa formulated a conjecture concerning a lift

 $\mathrm{SK}^* \colon M_{\ell-1/2}(\Gamma_0(4)) \to M_\ell(\mathrm{Sp}_4(\mathbb{Z})), \quad h \mapsto \mathrm{SK}^*(h).$

Here $M_{\ell-1/2}(\Gamma_0(4)) = \{ \text{weight } \ell - 1/2 \text{ elliptic modular forms on } \Gamma_0(4) \}.$

Theorem (Maass 1979)

• Fix *h* a modular form on $\Gamma_0(4)$ of weight $\ell - 1/2$ with Fourier series

$$h(z) = \sum_{n=0}^{\infty} c(n)e^{2\pi i n z}, \qquad (z \in \mathbb{C} \colon \operatorname{Im}(z) > 0).$$

In 1977 Saito and Kurokawa formulated a conjecture concerning a lift

 $\mathrm{SK}^* \colon M_{\ell-1/2}(\Gamma_0(4)) \to M_\ell(\mathrm{Sp}_4(\mathbb{Z})), \quad h \mapsto \mathrm{SK}^*(h).$

Here $M_{\ell-1/2}(\Gamma_0(4)) = \{ \text{weight } \ell - 1/2 \text{ elliptic modular forms on } \Gamma_0(4) \}.$

Theorem (Maass 1979)

• Fix *h* a modular form on $\Gamma_0(4)$ of weight $\ell - 1/2$ with Fourier series

$$h(z) = \sum_{n=0}^{\infty} c(n)e^{2\pi i n z}, \qquad (z \in \mathbb{C} \colon \text{Im}(z) > 0).$$

For $T \ge 0$, let $A[T] = \begin{cases} \sum_{d \mid e(T)} d^{\ell-1}c\left(\frac{-4 \det(T)}{d^2}\right), & T \neq 0, \\ \frac{1}{2}\zeta(1-\ell)c(0), & T = 0. \end{cases}$

In 1977 Saito and Kurokawa formulated a conjecture concerning a lift

 $\mathrm{SK}^* \colon M_{\ell-1/2}(\Gamma_0(4)) \to M_\ell(\mathrm{Sp}_4(\mathbb{Z})), \quad h \mapsto \mathrm{SK}^*(h).$

Here $M_{\ell-1/2}(\Gamma_0(4)) = \{ \text{weight } \ell - 1/2 \text{ elliptic modular forms on } \Gamma_0(4) \}.$

Theorem (Maass 1979)

• Fix *h* a modular form on $\Gamma_0(4)$ of weight $\ell - 1/2$ with Fourier series

$$h(z) = \sum_{n=0}^{\infty} c(n)e^{2\pi i n z}, \qquad (z \in \mathbb{C} \colon \text{Im}(z) > 0).$$

For $T \ge 0$, let $A[T] = \begin{cases} \sum_{d \mid e(T)} d^{\ell-1}c\left(\frac{-4 \det(T)}{d^2}\right), & T \neq 0, \\ \frac{1}{2}\zeta(1-\ell)c(0), & T = 0. \end{cases}$

Then the numbers A[T] are the Fourier coefficients of a modular form

 $SK^*(h) \in M_\ell(Sp_4(\mathbb{Z})).$

Given τ in the upper half plane and $Z = \begin{pmatrix} \xi & z \\ z & \xi' \end{pmatrix} \in \mathcal{H}_2$ define

$$\Omega_{\ell}(Z,\tau) = \sum_{N>0} N^{3/2-\ell} w_{N,\ell}(Z) e^{2\pi i N \tau}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

where
$$w_{N,\ell}(Z) = \sum_{\substack{(a,b,c,d,e) \in \mathbb{Z}^5 \\ 4bd-c^2-4ae=N}} \frac{1}{(a(\xi\xi'-z^2)+b\xi+cz+d\xi'+e)^{\ell}}$$

Given τ in the upper half plane and $Z = \begin{pmatrix} \xi & z \\ z & \xi' \end{pmatrix} \in \mathcal{H}_2$ define

$$\Omega_\ell(Z, au) = \sum_{N>0} N^{3/2-\ell} w_{N,\ell}(Z) e^{2\pi i N au}.$$

4

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

where
$$w_{N,\ell}(Z) = \sum_{\substack{(a,b,c,d,e) \in \mathbb{Z}^5 \\ 4bd-c^2-4ae=N}} \frac{1}{(a(\xi\xi'-z^2)+b\xi+cz+d\xi'+e)^{\ell}}$$
.

Using the theory of theta series attached to lattices, Kudla proves

$$\Omega_{\ell}(\cdot, \tau) \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z})) \quad \text{and} \quad \Omega_{\ell}(Z, \cdot) \in S_{\ell-1/2}(\Gamma_0(4)).$$

Given τ in the upper half plane and $Z = \begin{pmatrix} \xi & z \\ z & \xi' \end{pmatrix} \in \mathcal{H}_2$ define

$$\Omega_\ell(Z, au) = \sum_{N>0} N^{3/2-\ell} w_{N,\ell}(Z) e^{2\pi i N au}.$$

where
$$w_{N,\ell}(Z) = \sum_{\substack{(a,b,c,d,e) \in \mathbb{Z}^5 \\ 4bd-c^2-4ae=N}} \frac{1}{(a(\xi\xi'-z^2)+b\xi+cz+d\xi'+e)^{\ell}}$$
.

Using the theory of theta series attached to lattices, Kudla proves

$$\Omega_{\ell}(\cdot,\tau) \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z})) \quad \text{and} \quad \Omega_{\ell}\left(Z,\cdot\right) \in S_{\,\ell-1/2}(\Gamma_0(4)).$$

• If $h \in S_{\ell-1/2}(\Gamma_0(4))$ then $SK^*(h)$ is the Petersson inner product $SK^*(h): Z \mapsto \int_{\Gamma_0(4)\setminus\mathcal{H}} h(u+iv)\Omega_\ell(Z,u-iv) v^{\ell-1/2} \frac{dudv}{v^2}.$

・ロト・西ト・ヨト・ヨー うへぐ

Given τ in the upper half plane and $Z = \begin{pmatrix} \xi & z \\ z & \xi' \end{pmatrix} \in \mathcal{H}_2$ define

$$\Omega_\ell(Z, au) = \sum_{N>0} N^{3/2-\ell} w_{N,\ell}(Z) e^{2\pi i N au}.$$

where
$$w_{N,\ell}(Z) = \sum_{\substack{(a,b,c,d,e) \in \mathbb{Z}^5 \\ 4bd-c^2-4ae=N}} \frac{1}{(a(\xi\xi'-z^2)+b\xi+cz+d\xi'+e)^{\ell}}$$
.

Using the theory of theta series attached to lattices, Kudla proves

$$\Omega_{\ell}(\cdot,\tau) \in M_{\ell}(\mathrm{Sp}_4(\mathbb{Z})) \quad \text{and} \quad \Omega_{\ell}\left(Z,\cdot\right) \in S_{\,\ell-1/2}(\Gamma_0(4)).$$

• If $h \in S_{\ell-1/2}(\Gamma_0(4))$ then $SK^*(h)$ is the Petersson inner product

$$\mathrm{SK}^*(h)\colon Z\mapsto \int_{\Gamma_0(4)\setminus\mathcal{H}} h(u+iv)\Omega_\ell\left(Z,u-iv\right)v^{\ell-1/2}\frac{dudv}{v^2}.$$

This realizes SK* in the general theory of theta correspondences.
 From this perspective, one wants to characterize the image of SK*.

The image of SK* can be characterized via classical Fourier coefficients.

The image of SK* can be characterized via classical Fourier coefficients.

Theorem (Maass-Zagier (1980))

Suppose $F(Z) \in M_{\ell}(\operatorname{Sp}_{4}(\mathbb{Z}))$ with Fourier expansion

$$F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ)).$$

The following are equivalent.

The image of SK* can be characterized via classical Fourier coefficients.

Theorem (Maass-Zagier (1980))

Suppose $F(Z) \in M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ with Fourier expansion

$$F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ)).$$

The following are equivalent.

(a) There exists $h \in M_{\ell-1/2}(\Gamma_0(4))$ such that $F = SK^*(h)$.

The image of SK* can be characterized via classical Fourier coefficients.

Theorem (Maass-Zagier (1980))

Suppose $F(Z) \in M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ with Fourier expansion

$$F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ)).$$

The following are equivalent.

(a) There exists $h \in M_{\ell-1/2}(\Gamma_0(4))$ such that $F = SK^*(h)$.

(b) If
$$T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} \ge 0$$
 is non-zero then

$$A[T] = \sum_{d \in \mathbb{Z}_{\ge 1}: d | \gcd(n,r,m)} d^{\ell-1} A\left[\begin{pmatrix} nm/d^2 & r/(2d) \\ r/(2d) & 1 \end{pmatrix}\right].$$
 (Maass Relation)

The image of SK* can be characterized via classical Fourier coefficients.

Theorem (Maass-Zagier (1980))

Suppose $F(Z) \in M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ with Fourier expansion

$$F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ)).$$

The following are equivalent.

(a) There exists $h \in M_{\ell-1/2}(\Gamma_0(4))$ such that $F = SK^*(h)$.

(b) If
$$T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} \ge 0$$
 is non-zero then

$$A[T] = \sum_{d \in \mathbb{Z}_{\ge 1}: d | \gcd(n,r,m)} d^{\ell-1} A\left[\begin{pmatrix} nm/d^2 & r/(2d) \\ r/(2d) & 1 \end{pmatrix} \right].$$
 (Maass Relation)

(c) If $T_1, T_2 \ge 0$ are primitive and $\det(T_1) = \det(T_2)$ then $A[T_1] = A[T_2]$.

The trivial implications (a) \implies (c) & (a) \implies (b).

Suppose $F = SK^*(h)$ and write $F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ))$.

Suppose $F = SK^*(h)$ and write $F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ))$.

(i) If $T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} \ge 0$ is non-zero then Maass' theorem implies

$$A[T] = \sum_{d|e(T)} d^{\ell-1}c\left(\frac{-4\det(T)}{d^2}\right).$$
 (1)

Suppose $F = SK^*(h)$ and write $F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ))$.

(i) If $T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} \ge 0$ is non-zero then Maass' theorem implies

$$A[T] = \sum_{d|e(T)} d^{\ell-1}c\left(\frac{-4\det(T)}{d^2}\right).$$
 (1)

ション キョン キョン キョン しょう

(ii) So e(T) = 1 implies $A[T] = c (-4 \det(T))$ depends only on $\det(T)$.

Suppose $F = SK^*(h)$ and write $F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ))$.

(i) If $T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} \ge 0$ is non-zero then Maass' theorem implies

$$A[T] = \sum_{d|e(T)} d^{\ell-1}c\left(\frac{-4\det(T)}{d^2}\right).$$
 (1)

(ii) So e(T) = 1 implies $A[T] = c (-4 \det(T))$ depends only on $\det(T)$.

(iii) If e(T) > 1 and $d \mid e(T)$ then det $\binom{nm/d^2 r/(2d)}{r/(2d) 1} = \frac{\det(T)}{d^2}$.

Suppose $F = SK^*(h)$ and write $F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ))$.

(i) If $T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} \ge 0$ is non-zero then Maass' theorem implies

$$A[T] = \sum_{d|e(T)} d^{\ell-1} c\left(\frac{-4\det(T)}{d^2}\right).$$
 (1)

(ii) So e(T) = 1 implies $A[T] = c (-4 \det(T))$ depends only on $\det(T)$.

(iii) If e(T) > 1 and $d \mid e(T)$ then det $\binom{nm/d^2 r/(2d)}{r/(2d) 1} = \frac{\det(T)}{d^2}$.

(iv) Since $\binom{nm/d^2}{r/(2d)}$ is also primitive, (ii) and (iii) imply

$$A\begin{bmatrix} \binom{nm/d^2 & r/(2d)}{r/(2d)} \end{bmatrix} = c \begin{pmatrix} -4 \det(T) \\ d^2 \end{pmatrix}.$$
 (2)

・ロト・日本・モト・モト・ ヨー のへぐ

The trivial implications (a) \implies (c) & (a) \implies (b).

Suppose $F = SK^*(h)$ and write $F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ))$.

(i) If $T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} \ge 0$ is non-zero then Maass' theorem implies

$$A[T] = \sum_{d|e(T)} d^{\ell-1}c\left(\frac{-4\det(T)}{d^2}\right).$$
(1)

(ii) So e(T) = 1 implies $A[T] = c (-4 \det(T))$ depends only on $\det(T)$.

(iii) If
$$e(T) > 1$$
 and $d \mid e(T)$ then det $\binom{nm/d^2 r/(2d)}{r/(2d) 1} = \frac{\det(T)}{d^2}$.

(iv) Since $\binom{nm/d^2}{r/(2d)}$ is also primitive, (ii) and (iii) imply

$$A\left[\begin{pmatrix} nm/d^2 & r/(2d)\\ r/(2d) & 1 \end{pmatrix}\right] = c\left(\frac{-4\det(T)}{d^2}\right).$$
 (2)

(v) Substituting (2) into (1) gives the Maass relation.

・ロト・西ト・ヨト・ヨー うへぐ

• The implications (b) \implies (a) and (c) \implies (b) are non-trivial.

- The implications (b) \implies (a) and (c) \implies (b) are non-trivial.
- Their proofs rely on studying the Fourier Jacobi exapansion of *F*,

$$F\left(\left(\begin{smallmatrix}\tau & z\\ z & \tau'\end{smallmatrix}\right)\right) = \sum_{m=0}^{\infty} \phi_m(\tau, z) e^{2\pi i m \tau'}, \quad \phi_m(\tau, z) := \int_0^1 F\left(\left(\begin{smallmatrix}\tau & z\\ z & \tau'\end{smallmatrix}\right)\right) e^{-2\pi i m \tau'} d\tau'.$$

Here $\phi_m(\tau, z)$ is called a Jacobi form \approx modular form on $SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- The implications (b) \implies (a) and (c) \implies (b) are non-trivial.
- Their proofs rely on studying the Fourier Jacobi exapansion of *F*,

$$F\left(\left(\begin{smallmatrix}\tau & z\\ z & \tau'\end{smallmatrix}\right)\right) = \sum_{m=0}^{\infty} \phi_m(\tau, z) e^{2\pi i m \tau'}, \quad \phi_m(\tau, z) := \int_0^1 F\left(\left(\begin{smallmatrix}\tau & z\\ z & \tau'\end{smallmatrix}\right)\right) e^{-2\pi i m \tau'} d\tau'.$$

Here $\phi_m(\tau, z)$ is called a Jacobi form \approx modular form on $SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$

- コン・1日・1日・1日・1日・1日・

 If *F* satisfies the Maass relations, then φ₁(τ, z) naturally determines an element h ∈ M_{ℓ-1/2}(Γ₀(4)) such that F = SK*(h).

- The implications (b) \implies (a) and (c) \implies (b) are non-trivial.
- Their proofs rely on studying the Fourier Jacobi exapansion of *F*,

$$F\left(\left(\begin{smallmatrix}\tau & z\\ z & \tau'\end{smallmatrix}\right)\right) = \sum_{m=0}^{\infty} \phi_m(\tau, z) e^{2\pi i m \tau'}, \quad \phi_m(\tau, z) := \int_0^1 F\left(\left(\begin{smallmatrix}\tau & z\\ z & \tau'\end{smallmatrix}\right)\right) e^{-2\pi i m \tau'} d\tau'.$$

Here $\phi_m(\tau, z)$ is called a Jacobi form \approx modular form on $SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$

- If *F* satisfies the Maass relations, then φ₁(τ, z) naturally determines an element h ∈ M_{ℓ-1/2}(Γ₀(4)) such that F = SK*(h).
- Additionally for the implication (c) \implies (b) one must show:

- The implications (b) \implies (a) and (c) \implies (b) are non-trivial.
- Their proofs rely on studying the Fourier Jacobi exapansion of *F*,

$$F\left(\left(\begin{smallmatrix}\tau & z\\ z & \tau'\end{smallmatrix}\right)\right) = \sum_{m=0}^{\infty} \phi_m(\tau, z) e^{2\pi i m \tau'}, \quad \phi_m(\tau, z) := \int_0^1 F\left(\left(\begin{smallmatrix}\tau & z\\ z & \tau'\end{smallmatrix}\right)\right) e^{-2\pi i m \tau'} d\tau'.$$

Here $\phi_m(\tau, z)$ is called a Jacobi form \approx modular form on $SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$

- If *F* satisfies the Maass relations, then φ₁(τ, z) naturally determines an element h ∈ M_{ℓ-1/2}(Γ₀(4)) such that F = SK*(h).
- Additionally for the implication (c) \implies (b) one must show:

Theorem (Zagier 1980)

If $F \in M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ satisfies A[T] = 0 for all T primitive. Then F = 0.

- The implications (b) \implies (a) and (c) \implies (b) are non-trivial.
- Their proofs rely on studying the Fourier Jacobi exapansion of *F*,

$$F\left(\left(\begin{smallmatrix}\tau & z\\ z & \tau'\end{smallmatrix}\right)\right) = \sum_{m=0}^{\infty} \phi_m(\tau, z) e^{2\pi i m \tau'}, \quad \phi_m(\tau, z) := \int_0^1 F\left(\left(\begin{smallmatrix}\tau & z\\ z & \tau'\end{smallmatrix}\right)\right) e^{-2\pi i m \tau'} d\tau'.$$

Here $\phi_m(\tau, z)$ is called a Jacobi form \approx modular form on $SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$

- If *F* satisfies the Maass relations, then φ₁(τ, z) naturally determines an element h ∈ M_{ℓ-1/2}(Γ₀(4)) such that F = SK*(h).
- Additionally for the implication (c) \implies (b) one must show:

Theorem (Zagier 1980)

If $F \in M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ satisfies A[T] = 0 for all T primitive. Then F = 0.

• This is proven by analyzing the leading order term in the Taylor expansion of each ϕ_m about z = 0.

- The implications (b) \implies (a) and (c) \implies (b) are non-trivial.
- Their proofs rely on studying the Fourier Jacobi exapansion of *F*,

$$F\left(\left(\begin{smallmatrix}\tau & z\\ z & \tau'\end{smallmatrix}\right)\right) = \sum_{m=0}^{\infty} \phi_m(\tau, z) e^{2\pi i m \tau'}, \quad \phi_m(\tau, z) := \int_0^1 F\left(\left(\begin{smallmatrix}\tau & z\\ z & \tau'\end{smallmatrix}\right)\right) e^{-2\pi i m \tau'} d\tau'.$$

Here $\phi_m(\tau, z)$ is called a Jacobi form \approx modular form on $SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$

- If *F* satisfies the Maass relations, then φ₁(τ, z) naturally determines an element h ∈ M_{ℓ-1/2}(Γ₀(4)) such that F = SK*(h).
- Additionally for the implication (c) \implies (b) one must show:

Theorem (Zagier 1980)

If $F \in M_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ satisfies A[T] = 0 for all T primitive. Then F = 0.

- This is proven by analyzing the leading order term in the Taylor expansion of each ϕ_m about z = 0.
- These Taylor coefficients turn out to be modular forms on $SL_2(\mathbb{Z})$.

Contents

2 A Maass Spezialschar For Modular Forms on Sp_4

Modular Forms on SO₈

4 A Maass Spezialschar For Modular Forms on SO₈

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Let $\mathbb{H} = \mathbb{R}\langle 1, i, j, k \rangle$ and set $V = \mathbb{H} \oplus \mathbb{H}$ equipped with the quadratic form

$$Q((q_1,q_2)) = \|q_1\|^2 - \|q_2\|^2.$$
 $(q_1,q_2 \in \mathbb{H})$

(ロト (個) (E) (E) (E) (9)

Let $\mathbb{H} = \mathbb{R}\langle 1, i, j, k \rangle$ and set $V = \mathbb{H} \oplus \mathbb{H}$ equipped with the quadratic form

$$Q((q_1, q_2)) = ||q_1||^2 - ||q_2||^2.$$
 $(q_1, q_2 \in \mathbb{H})$

Define

$$SO_8 = \{g \in SL(V) : Q(g \cdot (q_1, q_2)) = Q((q_1, q_2))\} \\ = \{g \in SL_8 : {}^tgJg = J\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Here J is the 8-by-8 symmetric matrix with ones on the antidiagonal.

Let $\mathbb{H} = \mathbb{R}\langle 1, i, j, k \rangle$ and set $V = \mathbb{H} \oplus \mathbb{H}$ equipped with the quadratic form

$$Q((q_1, q_2)) = ||q_1||^2 - ||q_2||^2.$$
 $(q_1, q_2 \in \mathbb{H})$

Define

$$SO_8 = \{g \in SL(V) \colon Q(g \cdot (q_1, q_2)) = Q((q_1, q_2))\} \\ = \{g \in SL_8 \colon {}^tgJg = J\}$$

Here J is the 8-by-8 symmetric matrix with ones on the antidiagonal.

• Let $SO_8(\mathbb{Z}) = SO_8 \cap SL_8(\mathbb{Z})$.

Let $\mathbb{H} = \mathbb{R}\langle 1, i, j, k \rangle$ and set $V = \mathbb{H} \oplus \mathbb{H}$ equipped with the quadratic form

$$Q((q_1, q_2)) = ||q_1||^2 - ||q_2||^2.$$
 $(q_1, q_2 \in \mathbb{H})$

Define

$$SO_8 = \{g \in SL(V) : Q(g \cdot (q_1, q_2)) = Q((q_1, q_2))\} \\ = \{g \in SL_8 : {}^tgJg = J\}$$

Here *J* is the 8-by-8 symmetric matrix with ones on the antidiagonal.

- Let $SO_8(\mathbb{Z}) = SO_8 \cap SL_8(\mathbb{Z})$.
- Let $K \leq SO_8$ be the stabilizer of the decomposition $V = \mathbb{H} \oplus \mathbb{H}$.

Let $\mathbb{H} = \mathbb{R}\langle 1, i, j, k \rangle$ and set $V = \mathbb{H} \oplus \mathbb{H}$ equipped with the quadratic form

$$Q((q_1, q_2)) = ||q_1||^2 - ||q_2||^2.$$
 $(q_1, q_2 \in \mathbb{H})$

Define

$$SO_8 = \{g \in SL(V) \colon Q(g \cdot (q_1, q_2)) = Q((q_1, q_2))\} \\ = \{g \in SL_8 \colon {}^tgJg = J\}$$

Here J is the 8-by-8 symmetric matrix with ones on the antidiagonal.

- Let $SO_8(\mathbb{Z}) = SO_8 \cap SL_8(\mathbb{Z})$.
- Let $K \leq SO_8$ be the stabilizer of the decomposition $V = \mathbb{H} \oplus \mathbb{H}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Then $K^0 \simeq SO(\mathbb{H}) \times SO(\mathbb{H})$.

Let $\mathbb{H} = \mathbb{R}\langle 1, i, j, k \rangle$ and set $V = \mathbb{H} \oplus \mathbb{H}$ equipped with the quadratic form

$$Q((q_1, q_2)) = ||q_1||^2 - ||q_2||^2.$$
 $(q_1, q_2 \in \mathbb{H})$

Define

$$SO_8 = \{g \in SL(V) \colon Q(g \cdot (q_1, q_2)) = Q((q_1, q_2))\} \\ = \{g \in SL_8 \colon {}^tgJg = J\}$$

Here J is the 8-by-8 symmetric matrix with ones on the antidiagonal.

- Let $SO_8(\mathbb{Z}) = SO_8 \cap SL_8(\mathbb{Z})$.
- Let $K \leq SO_8$ be the stabilizer of the decomposition $V = \mathbb{H} \oplus \mathbb{H}$.
- Then $K^0 \simeq SO(\mathbb{H}) \times SO(\mathbb{H})$.
- SO₈ / K^0 has no invariant complex structure. No central $\mathbb{C}^1 \leq K^0$!

Let $\mathbb{H} = \mathbb{R}\langle 1, i, j, k \rangle$ and set $V = \mathbb{H} \oplus \mathbb{H}$ equipped with the quadratic form

$$Q((q_1, q_2)) = ||q_1||^2 - ||q_2||^2.$$
 $(q_1, q_2 \in \mathbb{H})$

Define

$$SO_8 = \{g \in SL(V) \colon Q(g \cdot (q_1, q_2)) = Q((q_1, q_2))\} \\ = \{g \in SL_8 \colon {}^tgJg = J\}$$

Here J is the 8-by-8 symmetric matrix with ones on the antidiagonal.

- Let $SO_8(\mathbb{Z}) = SO_8 \cap SL_8(\mathbb{Z})$.
- Let $K \leq SO_8$ be the stabilizer of the decomposition $V = \mathbb{H} \oplus \mathbb{H}$.
- Then $K^0 \simeq SO(\mathbb{H}) \times SO(\mathbb{H})$.

• SO_8/K^0 has no invariant complex structure. No central $\mathbb{C}^1 \leq K^0$! Consider the embedding

$$\rho \colon \mathbb{H}^1 \hookrightarrow K^0 \subseteq \mathrm{SO}_8, \qquad (\rho(g) \cdot (q_1, q_2) = (gq_1, q_2)).$$

(日)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)

Then $\mathbb{H}^1 \leq K^0$ will substitute for the lack of a central $\mathbb{C}^1 \subseteq K^0$.

Recall $K \leq SO_8$ is a maximal compact subgroup.

Recall $K \leq SO_8$ is a maximal compact subgroup.

The identity component K^0 has a natural representation $\mathbb{V} \simeq \operatorname{Sym}^2 \mathbb{C}^2$ on the complexification of $\operatorname{Lie}(\mathbb{H}^1) \trianglelefteq \operatorname{Lie}(K^0)$.

Recall $K \leq SO_8$ is a maximal compact subgroup.

The identity component K^0 has a natural representation $\mathbb{V} \simeq \operatorname{Sym}^2 \mathbb{C}^2$ on the complexification of $\operatorname{Lie}(\mathbb{H}^1) \trianglelefteq \operatorname{Lie}(K^0)$.

Definition

Let $M_{\ell}(SO_8(\mathbb{Z}))$ denote the space of functions

 $\Phi \colon \operatorname{SO}_8 \to \operatorname{Sym}^{\ell}(\mathbb{V})$

such that Φ is smooth, of moderate growth and satisfies

Recall $K \leq SO_8$ is a maximal compact subgroup.

The identity component K^0 has a natural representation $\mathbb{V} \simeq \operatorname{Sym}^2 \mathbb{C}^2$ on the complexification of $\operatorname{Lie}(\mathbb{H}^1) \trianglelefteq \operatorname{Lie}(K^0)$.

Definition

Let $M_{\ell}(SO_8(\mathbb{Z}))$ denote the space of functions

 $\Phi \colon \operatorname{SO}_8 \to \operatorname{Sym}^{\ell}(\mathbb{V})$

such that Φ is smooth, of moderate growth and satisfies

• If $\gamma \in SO_8(\mathbb{Z})$ and $g \in G$ then $\Phi(\gamma g) = \Phi(g)$.

Recall $K \leq SO_8$ is a maximal compact subgroup.

The identity component K^0 has a natural representation $\mathbb{V} \simeq \operatorname{Sym}^2 \mathbb{C}^2$ on the complexification of $\operatorname{Lie}(\mathbb{H}^1) \trianglelefteq \operatorname{Lie}(K^0)$.

Definition

Let $M_{\ell}(SO_8(\mathbb{Z}))$ denote the space of functions

$$\Phi \colon \operatorname{SO}_8 \to \operatorname{Sym}^{\ell}(\mathbb{V})$$

such that Φ is smooth, of moderate growth and satisfies

- If $\gamma \in SO_8(\mathbb{Z})$ and $g \in G$ then $\Phi(\gamma g) = \Phi(g)$.
- If $k \in K^0$ and $g \in G$ then $\Phi(gk) = k^{-1}\Phi(g)$.

Recall $K \leq SO_8$ is a maximal compact subgroup.

The identity component K^0 has a natural representation $\mathbb{V} \simeq \operatorname{Sym}^2 \mathbb{C}^2$ on the complexification of $\operatorname{Lie}(\mathbb{H}^1) \trianglelefteq \operatorname{Lie}(K^0)$.

Definition

Let $M_{\ell}(SO_8(\mathbb{Z}))$ denote the space of functions

$$\Phi \colon \operatorname{SO}_8 \to \operatorname{Sym}^{\ell}(\mathbb{V})$$

such that Φ is smooth, of moderate growth and satisfies

- If $\gamma \in SO_8(\mathbb{Z})$ and $g \in G$ then $\Phi(\gamma g) = \Phi(g)$.
- If $k \in K^0$ and $g \in G$ then $\Phi(gk) = k^{-1}\Phi(g)$.
- The function Φ satisfies a specific differential equation $D\Phi \equiv 0$.

Recall $K \leq SO_8$ is a maximal compact subgroup.

The identity component K^0 has a natural representation $\mathbb{V} \simeq \operatorname{Sym}^2 \mathbb{C}^2$ on the complexification of $\operatorname{Lie}(\mathbb{H}^1) \trianglelefteq \operatorname{Lie}(K^0)$.

Definition

Let $M_{\ell}(SO_8(\mathbb{Z}))$ denote the space of functions

$$\Phi \colon \operatorname{SO}_8 \to \operatorname{Sym}^{\ell}(\mathbb{V})$$

such that Φ is smooth, of moderate growth and satisfies

- If $\gamma \in SO_8(\mathbb{Z})$ and $g \in G$ then $\Phi(\gamma g) = \Phi(g)$.
- If $k \in K^0$ and $g \in G$ then $\Phi(gk) = k^{-1}\Phi(g)$.
- The function Φ satisfies a specific differential equation $D\Phi \equiv 0$.

The above generalizes to an arbitrary semi-simple real Lie group *G* provided the maximal compact $K \leq G$ contains a normal copy of \mathbb{H}^1 .

The Fourier Expansion of Modular Forms on SO₈

• $P \leq SO_8$ parabolic stabilizing an isotropic two plane in *V*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Fourier Expansion of Modular Forms on SO₈

- $P \leq SO_8$ parabolic stabilizing an isotropic two plane in V.
- Write *N* for the unipotent radical of *P*.

The Fourier Expansion of Modular Forms on SO₈

- $P \leq SO_8$ parabolic stabilizing an isotropic two plane in V.
- Write *N* for the unipotent radical of *P*.

Theorem (Wallach 2003, Pollack 2020)

Let $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$, Z = [N, N], and define $\Phi_Z(g) := \int_{Z(\mathbb{Z})\setminus Z} \Phi(zg) dz$.

The Fourier Expansion of Modular Forms on SO₈

- $P \leq SO_8$ parabolic stabilizing an isotropic two plane in V.
- Write *N* for the unipotent radical of *P*.

Theorem (Wallach 2003, Pollack 2020)

Let $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$, Z = [N, N], and define $\Phi_Z(g) := \int_{Z(\mathbb{Z})\setminus Z} \Phi(zg) dz$. Then $\Phi_Z(g)$ Fourier expands along $N^{ab}(\mathbb{Z})\setminus N^{ab}$ as

$$\Phi_Z(g) = \sum_{\substack{[T_1, T_2] \in \mathsf{M}_2(\mathbb{Z}) \bigoplus \mathsf{M}_2(\mathbb{Z})\\ \text{such that } \varrho[T_1, T_2] > 0}} \Lambda[T_1, T_2] \mathcal{W}_{[T_1, T_2]}(g).$$

• $Q(T_1, T_2)$ is the binary quadratic form

$$Q[T_1, T_2] = \det(xT_1 - yT_2).$$

*W*_[T1,T2](g): SO₈ → Sym^ℓ(V) is an explicit special function which depends only on ℓ, [T1, T2], and the choice of K.

Contents

2 A Maass Spezialschar For Modular Forms on Sp_4

 \bigcirc Modular Forms on SO₈

 ${f 4}$ A Maass Spezialschar For Modular Forms on ${
m SO}_8$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

For modular forms on $SO_8(\mathbb{Z})$, we have a version of Maass' 79 Theorem.

Theorem (Pollack 2021)

• Let $\ell \in \mathbb{Z}_{\geq 18}$ and suppose $F \in S_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ has Fourier expansion

$$F(Z) = \sum_{T>0} A[T] \exp(2\pi i \operatorname{tr}(ZT)).$$

For modular forms on $SO_8(\mathbb{Z})$, we have a version of Maass' 79 Theorem.

Theorem (Pollack 2021)

• Let $\ell \in \mathbb{Z}_{\geq 18}$ and suppose $F \in S_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ has Fourier expansion

$$F(Z) = \sum_{T>0} A[T] \exp(2\pi i \operatorname{tr}(ZT)).$$

• For each $[T_1, T_2] \in M_2(\mathbb{Z}) \oplus M_2(\mathbb{Z})$ satisfying $Q[T_1, T_2] > 0$, let

$$\Lambda[T_1, T_2] = \sum_{\substack{\gamma \in \operatorname{GL}_2(\mathbb{Z}) \setminus \operatorname{M}_2(\mathbb{Z})^{\det \neq 0} \text{ s.t} \\ [T_1, T_2]\gamma^{-1} \in \operatorname{M}_2(\mathbb{Z}) \oplus \operatorname{M}_2(\mathbb{Z})}} |\det(\gamma)|^{\ell-1} A[Q[T_1, T_2]\gamma^{-1}].$$

For modular forms on $SO_8(\mathbb{Z})$, we have a version of Maass' 79 Theorem.

Theorem (Pollack 2021)

• Let $\ell \in \mathbb{Z}_{\geq 18}$ and suppose $F \in S_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ has Fourier expansion

$$F(Z) = \sum_{T>0} A[T] \exp(2\pi i \operatorname{tr}(ZT)).$$

• For each $[T_1, T_2] \in M_2(\mathbb{Z}) \oplus M_2(\mathbb{Z})$ satisfying $Q[T_1, T_2] > 0$, let

$$\Lambda[T_1, T_2] = \sum_{\substack{\gamma \in \operatorname{GL}_2(\mathbb{Z}) \setminus M_2(\mathbb{Z})^{\det \neq 0} \text{ s.t} \\ [T_1, T_2]\gamma^{-1} \in M_2(\mathbb{Z}) \oplus M_2(\mathbb{Z})}} |\det(\gamma)|^{\ell-1} A[Q[T_1, T_2]\gamma^{-1}].$$

The number $\Lambda[T_1, T_2]$ are the Fourier coefficients of a unique element

 $\theta^*(F) \in S_\ell(\mathrm{SO}_8(\mathbb{Z})).$

シック・ 川 ・ 川 ・ ・ 川 ・ ・ 目・ ・ ・ 日・

For modular forms on $SO_8(\mathbb{Z})$, we have a version of Maass' 79 Theorem.

Theorem (Pollack 2021)

• Let $\ell \in \mathbb{Z}_{\geq 18}$ and suppose $F \in S_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ has Fourier expansion

$$F(Z) = \sum_{T>0} A[T] \exp(2\pi i \operatorname{tr}(ZT)).$$

• For each $[T_1, T_2] \in M_2(\mathbb{Z}) \oplus M_2(\mathbb{Z})$ satisfying $Q[T_1, T_2] > 0$, let

$$\Lambda[T_1, T_2] = \sum_{\substack{\gamma \in \operatorname{GL}_2(\mathbb{Z}) \setminus \operatorname{M}_2(\mathbb{Z})^{\det \neq 0} \text{ s.t} \\ [T_1, T_2]\gamma^{-1} \in \operatorname{M}_2(\mathbb{Z}) \oplus \operatorname{M}_2(\mathbb{Z})}} |\det(\gamma)|^{\ell-1} A[Q[T_1, T_2]\gamma^{-1}].$$

The number $\Lambda[T_1, T_2]$ are the Fourier coefficients of a unique element

 $\theta^*(F) \in S_\ell(\mathrm{SO}_8(\mathbb{Z})).$

Say $[T_1, T_2] \in M_2(\mathbb{Z}) \oplus M_2(\mathbb{Z})$ is primitive if $\forall \ \gamma \in M_2(\mathbb{Z})^{\det \neq 0}$,

 $[T_1, T_2]\gamma^{-1} \in \mathrm{M}_2(\mathbb{Z}) \oplus \mathrm{M}_2(\mathbb{Z}) \iff \gamma \in \mathrm{GL}_2(\mathbb{Z}).$

Theorem (Johnson-Leung, M, Negrini, Pollack, & Roy)

Suppose $\ell \in \mathbb{Z}_{\geq 18}$ and $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$ with Fourier Expansion

$$\Phi_{Z}(g) = \sum_{\substack{[T_1, T_2] \in M_2(\mathbb{Z}) \bigoplus M_2(\mathbb{Z}) \\ \text{such that } Q[T_1, T_2] > 0}} \Lambda[T_1, T_2] \mathcal{W}_{[T_1, T_2]}(g)$$

Theorem (Johnson-Leung, M, Negrini, Pollack, & Roy)

Suppose $\ell \in \mathbb{Z}_{\geq 18}$ and $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$ with Fourier Expansion

$$\Phi_{Z}(g) = \sum_{\substack{[T_1, T_2] \in M_2(\mathbb{Z}) \oplus M_2(\mathbb{Z})\\ \text{such that } O[T_1, T_2] > 0}} \Lambda[T_1, T_2] \mathcal{W}_{[T_1, T_2]}(g)$$

The following are equivalent.

Theorem (Johnson-Leung, M, Negrini, Pollack, & Roy)

Suppose $\ell \in \mathbb{Z}_{\geq 18}$ and $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$ with Fourier Expansion

$$\Phi_{Z}(g) = \sum_{\substack{[T_{1}, T_{2}] \in M_{2}(\mathbb{Z}) \oplus M_{2}(\mathbb{Z}) \\ \text{such that } Q[T_{1}, T_{2}] > 0}} \Lambda[T_{1}, T_{2}] \mathcal{W}_{[T_{1}, T_{2}]}(g)$$

The following are equivalent.

(a) There exists $F \in S_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ such that $\Phi = \theta(F)^*$.

Theorem (Johnson-Leung, M, Negrini, Pollack, & Roy)

Suppose $\ell \in \mathbb{Z}_{\geq 18}$ and $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$ with Fourier Expansion

$$\Phi_{Z}(g) = \sum_{\substack{[T_1, T_2] \in M_2(\mathbb{Z}) \bigoplus M_2(\mathbb{Z}) \\ \text{such that } Q[T_1, T_2] > 0}} \Lambda[T_1, T_2] \mathcal{W}_{[T_1, T_2]}(g)$$

The following are equivalent.

(a) There exists F ∈ S_ℓ(Sp₄(ℤ)) such that Φ = θ(F)*.
(b) If [T₁, T₂] ∈ M₂(ℤ) ⊕ M₂(ℤ) satisfies Q[T₁, T₂] > 0 then

$$\Lambda[T_1, T_2] = \sum_{\substack{\gamma \in \operatorname{GL}_2(\mathbb{Z}) \setminus \operatorname{M}_2(\mathbb{Z})^{\det \neq 0} \text{ s.t} \\ [T_1, T_2]\gamma^{-1} \in \operatorname{M}_2(\mathbb{Z}) \oplus \operatorname{M}_2(\mathbb{Z})}} |\det(\gamma)|^{\ell-1} \Lambda[T_1, T_2]\overline{\gamma^{-1}}$$

Here $[T_1, T_2]\gamma^{-1} \in M_2(\mathbb{Z}) \oplus M_2(\mathbb{Z})$ is a specific primitive element (determined by $[T_1, T_2]\gamma^{-1}$) satisfying $Q[T_1, T_2]\gamma^{-1} = Q[T_1, T_2]\gamma^{-1}$.

イロト イポト イヨト イヨト

Fourier Jacobi Expansion of Modular Forms on SO₈

As in the classical example, the implication (b) \implies (a) relies on developing a Fourier-Jacobi expansion for modular forms on SO₈.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Fourier Jacobi Expansion of Modular Forms on SO₈

As in the classical example, the implication (b) \implies (a) relies on developing a Fourier-Jacobi expansion for modular forms on SO₈.

• $Q \leq SO_8$ parabolic stabilizing an isotropic line in V.

As in the classical example, the implication (b) \implies (a) relies on developing a Fourier-Jacobi expansion for modular forms on SO₈.

- $Q \leq SO_8$ parabolic stabilizing an isotropic line in *V*.
- Q = LU with $L \simeq GL_1 \times SO_6$ and U a split quadratic space of dim 6.

As in the classical example, the implication (b) \implies (a) relies on developing a Fourier-Jacobi expansion for modular forms on SO₈.

- $Q \leq SO_8$ parabolic stabilizing an isotropic line in *V*.
- Q = LU with $L \simeq GL_1 \times SO_6$ and U a split quadratic space of dim 6.
- $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$ Fourier expands along $U(\mathbb{Z}) \setminus U$ as

$$\Phi(g) = \sum_{y \in U(\mathbb{Z}) \colon (y,y) > 0} \mathrm{FJ}(y)(g),$$

where $\operatorname{FJ}(y)(g) = \int_{U(\mathbb{Z})\setminus U} \Phi(ug) e^{-2\pi i \langle y, u \rangle} du$.

As in the classical example, the implication (b) \implies (a) relies on developing a Fourier-Jacobi expansion for modular forms on SO₈.

- $Q \leq SO_8$ parabolic stabilizing an isotropic line in V.
- Q = LU with $L \simeq GL_1 \times SO_6$ and U a split quadratic space of dim 6.
- $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$ Fourier expands along $U(\mathbb{Z}) \setminus U$ as

$$\Phi(g) = \sum_{y \in U(\mathbb{Z}): (y,y) > 0} \mathrm{FJ}(y)(g),$$

where $FJ(y)(g) = \int_{U(\mathbb{Z})\setminus U} \Phi(ug) e^{-2\pi i \langle y, u \rangle} du$.

• FJ(y) restricts to an automorphic form on $Stab_{SO_6}(y) \simeq PGSp_4 \leq L$.

As in the classical example, the implication (b) \implies (a) relies on developing a Fourier-Jacobi expansion for modular forms on SO₈.

- $Q \leq SO_8$ parabolic stabilizing an isotropic line in *V*.
- Q = LU with $L \simeq GL_1 \times SO_6$ and U a split quadratic space of dim 6.
- $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$ Fourier expands along $U(\mathbb{Z}) \setminus U$ as

$$\Phi(g) = \sum_{y \in U(\mathbb{Z}): (y,y) > 0} \mathrm{FJ}(y)(g),$$

where $FJ(y)(g) = \int_{U(\mathbb{Z})\setminus U} \Phi(ug) e^{-2\pi i \langle y, u \rangle} du$.

- FJ(y) restricts to an automorphic form on $Stab_{SO_6}(y) \simeq PGSp_4 \leq L$.
- One can explicate the Fourier expansion of FJ(y)|_{PGSp4} along the Siegel unipotent radical in PGSp4.

As in the classical example, the implication (b) \implies (a) relies on developing a Fourier-Jacobi expansion for modular forms on SO₈.

- $Q \leq SO_8$ parabolic stabilizing an isotropic line in *V*.
- Q = LU with $L \simeq GL_1 \times SO_6$ and U a split quadratic space of dim 6.
- $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$ Fourier expands along $U(\mathbb{Z}) \setminus U$ as

$$\Phi(g) = \sum_{y \in U(\mathbb{Z}): (y,y) > 0} \mathrm{FJ}(y)(g),$$

where $\mathrm{FJ}(y)(g) = \int_{U(\mathbb{Z})\setminus U} \Phi(ug) e^{-2\pi i \langle y,u \rangle} du.$

- FJ(y) restricts to an automorphic form on $Stab_{SO_6}(y) \simeq PGSp_4 \leq L$.
- One can explicate the Fourier expansion of FJ(y)|_{PGSp4} along the Siegel unipotent radical in PGSp4.
- From this analysis one proves that FJ(y) naturally determines a scalar valued holomorphic modular form on PGSp₄.

First Fourier Jacobi-Coefficients

For a specific $y \in U$ satisfying $\langle y, y \rangle = 2$, the proceeding discussion gives:

First Fourier Jacobi-Coefficients

For a specific $y \in U$ satisfying $\langle y, y \rangle = 2$, the proceeding discussion gives:

Theorem (Johnson-Leung, M, Negrini, Pollack, & Roy) Suppose $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$ with Fourier Expansion $\Phi_Z(g) = \sum_{i=1}^{n}$ $\Lambda[T_1, T_2] \mathcal{W}_{[T_1, T_2]}(g)$ $[T_1, T_2] \in M_2(\mathbb{Z}) \oplus M_2(\mathbb{Z})$ such that $O[T_1, T_2] > 0$ There exists a $F \in S_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ such that if $T = \binom{n-r/2}{r/2} > 0$ then the T-th Fourier coefficient of F satisfies $A[T] = \Lambda \left[\begin{pmatrix} n & 0 \\ r & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ m & 0 \end{pmatrix} \right]$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶

First Fourier Jacobi-Coefficients

For a specific $y \in U$ satisfying $\langle y, y \rangle = 2$, the proceeding discussion gives:

Theorem (Johnson-Leung, M, Negrini, Pollack, & Roy) Suppose $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$ with Fourier Expansion $\Phi_Z(g) = \sum_{i=1}^{n}$ $\Lambda[T_1,T_2]\mathcal{W}_{[T_1,T_2]}(g)$ $[T_1, T_2] \in M_2(\mathbb{Z}) \oplus M_2(\mathbb{Z})$ such that $O[T_1, T_2] > 0$ There exists a $F \in S_{\ell}(\operatorname{Sp}_4(\mathbb{Z}))$ such that if $T = \binom{n-r/2}{r/2} > 0$ then the T-th Fourier coefficient of F satisfies $A[T] = \Lambda \left[\begin{pmatrix} n & 0 \\ r & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ m & 0 \end{pmatrix} \right]$

 A similar statement holds for general y, however, unlike in the classical case, the level of FJ(y) may deepens as ⟨y, y⟩ → ∞.

Suppose $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$.

Suppose $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$.

 Based on the analogy with the classical Spezialschar, one may have expected to see an equivalence in our main theorem of the form

Suppose $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$.

• Based on the analogy with the classical Spezialschar, one may have expected to see an equivalence in our main theorem of the form

(a) There exists $F \in S_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ such that $\Phi = \theta^*(F)$.

Suppose $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$.

- Based on the analogy with the classical Spezialschar, one may have expected to see an equivalence in our main theorem of the form
 - (a) There exists $F \in S_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ such that $\Phi = \theta^*(F)$.
 - (c) If $[T_1, T_2]$, $[T'_1, T'_2]$ are primitive then

$$Q[T_1, T_2] = Q[T'_1, T'_2] \implies \Lambda[T_1, T_2] = \Lambda[T'_1, T'_2].$$

Suppose $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$.

- Based on the analogy with the classical Spezialschar, one may have expected to see an equivalence in our main theorem of the form
 - (a) There exists $F \in S_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ such that $\Phi = \theta^*(F)$.
 - (c) If $[T_1, T_2]$, $[T'_1, T'_2]$ are primitive then

$$Q[T_1, T_2] = Q[T'_1, T'_2] \implies \Lambda[T_1, T_2] = \Lambda[T'_1, T'_2].$$

 This would follow from an analogue to Zagier 1980 theorem, namely that Φ is determined by its primitive Fourier coefficient.

Suppose $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$.

- Based on the analogy with the classical Spezialschar, one may have expected to see an equivalence in our main theorem of the form
 - (a) There exists $F \in S_{\ell}(\mathrm{Sp}_4(\mathbb{Z}))$ such that $\Phi = \theta^*(F)$.
 - (c) If $[T_1, T_2]$, $[T'_1, T'_2]$ are primitive then

$$Q[T_1, T_2] = Q[T'_1, T'_2] \implies \Lambda[T_1, T_2] = \Lambda[T'_1, T'_2].$$

- This would follow from an analogue to Zagier 1980 theorem, namely that Φ is determined by its primitive Fourier coefficient.
- Zagier's theorem has served as a trove of new results e.g. Saha (2013) has shown that *F* ∈ S_ℓ(Sp₄(ℤ)) is determined by the *A*[*T*]'s corresponding to discrimants of imaginary quadratic fields.

Suppose $\Phi \in S_{\ell}(SO_8(\mathbb{Z}))$.

- Based on the analogy with the classical Spezialschar, one may have expected to see an equivalence in our main theorem of the form
 - (a) There exists $F \in S_{\ell}(\operatorname{Sp}_{4}(\mathbb{Z}))$ such that $\Phi = \theta^{*}(F)$.
 - (c) If $[T_1, T_2]$, $[T'_1, T'_2]$ are primitive then

$$Q[T_1, T_2] = Q[T'_1, T'_2] \implies \Lambda[T_1, T_2] = \Lambda[T'_1, T'_2].$$

- This would follow from an analogue to Zagier 1980 theorem, namely that Φ is determined by its primitive Fourier coefficient.
- Zagier's theorem has served as a trove of new results e.g. Saha (2013) has shown that $F \in S_{\ell}(\operatorname{Sp}_{4}(\mathbb{Z}))$ is determined by the A[T]'s corresponding to discrimants of imaginary guadratic fields.
- One could speculate about similar statement for modular forms on $SO_8(\mathbb{Z})$. Work of Bhargava and Weissman predicts connections between Fourier coefficients of modular forms on $SO_8(\mathbb{Z})$ and the fine structure of ideal class groups of imaginary quadratic fields. ▲白▶ ▲御▶ ▲臣▶ ▲臣▶ 二臣 - のへで

References I

Anatolii N. Andrianov.

Modular descent and the Saito-Kurokawa conjecture. *Invent. Math.*, 53(3):267–280, 1979.

🔋 Hans Maass.

Über eine Spezialschar von Modulformen zweiten Grades. *Invent. Math.*, 52(1):95–104, 1979.

Hans Maass.

Über eine Spezialschar von Modulformen zweiten Grades. II. *Invent. Math.*, 53(3):249–253, 1979.

Hans Maass.

Über eine Spezialschar von Modulformen zweiten Grades. III. *Invent. Math.*, 53(3):255–265, 1979.

References II

Aaron Pollack.

The Fourier expansion of modular forms on quaternionic exceptional groups.

Duke Math. J., 169(7):1209–1280, 2020.

i /

Aaron Pollack.

A quaternionic Saito-Kurokawa lift and cusp forms on G_2 .

Algebra Number Theory, 15(5):1213–1244, 2021.

Nolan R. Wallach.

Generalized Whittaker vectors for holomorphic and quaternionic representations.

Comment. Math. Helv., 78(2):266-307, 2003.

References III

D. Zagier.

Sur la conjecture de Saito-Kurokawa (d'après H. Maass). In Seminar on Number Theory, Paris 1979–80, volume 12 of Progr. Math., pages 371–394. Birkhäuser, Boston, MA, 1981.

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Thank you for listening

