Algebraic Modular Forms on U(2, n)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Fourier Coefficients and Algebraic Cusp Forms on U(2, n).

Finn McGlade

Joint with Anton Hilado and Pan Yan

36th Annual Workshop on Automorphic Forms Stillwater, Oklahoma

May 2024

Algebraic Modular Forms on U(2, n)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Outline

Algebraic Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

Contents

lgebraic Modular Forms on U(2, n)

Siegel Modular Forms on $\mathop{\mathrm{Sp}}_4_{\odot \odot \odot}$

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, *n*)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The Fourier Expansion of Modular Forms on $Sp_4(\mathbb{Z})$

Suppose $\ell \in \mathbb{Z}_{\geq 0}$ is even and define

$$\mathcal{H}_2 = \left\{ \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in \mathbf{M}_2(\mathbb{C}) \colon \operatorname{im}(\tau), \operatorname{im}(\tau'), \operatorname{im}(\tau) \operatorname{im}(\tau') - \operatorname{im}(z)^2 > 0 \right\}$$

Siegel Modular Forms on $\mathop{Sp}_4_{\bigcirc \odot \odot}$

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Fourier Expansion of Modular Forms on $\operatorname{Sp}_4(\mathbb{Z})$

Suppose $\ell \in \mathbb{Z}_{\geqslant 0}$ is even and define

$$\mathcal{H}_2 = \left\{ \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in M_2(\mathbb{C}) \colon \operatorname{im}(\tau), \operatorname{im}(\tau'), \operatorname{im}(\tau) \operatorname{im}(\tau') - \operatorname{im}(z)^2 > 0 \right\}.$$

Let $M_{\ell}(\Gamma_2)$ = space of weight ℓ Siegel modular forms on $\operatorname{Sp}_4(\mathbb{Z})$.

The Fourier Expansion of Modular Forms on $\operatorname{Sp}_4(\mathbb{Z})$

Suppose $\ell \in \mathbb{Z}_{\geqslant 0}$ is even and define

$$\mathcal{H}_2 = \left\{ \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in M_2(\mathbb{C}) \colon \operatorname{im}(\tau), \operatorname{im}(\tau'), \operatorname{im}(\tau) \operatorname{im}(\tau') - \operatorname{im}(z)^2 > 0 \right\}.$$

Let $M_{\ell}(\Gamma_2)$ = space of weight ℓ Siegel modular forms on $Sp_4(\mathbb{Z})$.

• $F \in M_{\ell}(\Gamma_2)$ is a holomorphic function on \mathcal{H}_2 with Fourier series

$$F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ)).$$

Here T ranges over $\left\{ \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} : n, r, m \in \mathbb{Z}, n, m, 4nm - r^2 \ge 0 \right\}$.

・ロマ・山下・山田・山田・

The Fourier Expansion of Modular Forms on $Sp_4(\mathbb{Z})$

Suppose $\ell \in \mathbb{Z}_{\geqslant 0}$ is even and define

$$\mathcal{H}_2 = \left\{ \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in M_2(\mathbb{C}) \colon \operatorname{im}(\tau), \operatorname{im}(\tau'), \operatorname{im}(\tau') - \operatorname{im}(z)^2 > 0 \right\}.$$

Let $M_{\ell}(\Gamma_2)$ = space of weight ℓ Siegel modular forms on $\operatorname{Sp}_4(\mathbb{Z})$.

• $F \in M_{\ell}(\Gamma_2)$ is a holomorphic function on \mathcal{H}_2 with Fourier series

$$F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ)).$$

Here *T* ranges over $\left\{ \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} : n, r, m \in \mathbb{Z}, n, m, 4nm - r^2 \ge 0 \right\}$.

• Say that *F* is algebraic if $A[T] \in \mathbb{Q}$ for all $T \ge 0$.

・ロト・日本・ キャー キャー ひゃく

The Fourier Expansion of Modular Forms on $Sp_4(\mathbb{Z})$

Suppose $\ell \in \mathbb{Z}_{\geqslant 0}$ is even and define

$$\mathcal{H}_2 = \left\{ \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in M_2(\mathbb{C}) \colon \operatorname{im}(\tau), \operatorname{im}(\tau'), \operatorname{im}(\tau) \operatorname{im}(\tau') - \operatorname{im}(z)^2 > 0 \right\}$$

Let $M_{\ell}(\Gamma_2)$ = space of weight ℓ Siegel modular forms on $\operatorname{Sp}_4(\mathbb{Z})$.

• $F \in M_{\ell}(\Gamma_2)$ is a holomorphic function on \mathcal{H}_2 with Fourier series

$$F(Z) = \sum_{T \ge 0} A[T] \exp(2\pi i \operatorname{tr}(TZ)).$$

Here *T* ranges over $\left\{ \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} : n, r, m \in \mathbb{Z}, n, m, 4nm - r^2 \ge 0 \right\}$.

• Say that *F* is algebraic if $A[T] \in \mathbb{Q}$ for all $T \ge 0$.

Theorem (Shimura 75')

The space $M_{\ell}(\Gamma_2)$ admits a **basis** consisting of algebraic forms.

Siegel Modular Forms on $\mathop{\mathrm{Sp}}_4$ oo \bullet

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, *n*)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Siegel Modular Forms Semi-Classically

• Sp_4 acts **transitively** on \mathcal{H}_2 and iI_2 has stabilizer

$$K = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} : AB^{t} = BA^{t}, AA^{t} + BB^{t} = I_{2} \right\}.$$

Siegel Modular Forms on Sp_4 000

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Siegel Modular Forms Semi-Classically

• Sp_4 acts **transitively** on \mathcal{H}_2 and iI_2 has stabilizer

$$K = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} : AB^t = BA^t, AA^t + BB^t = I_2 \right\}.$$

• Given an **arbitrary** function $F: \mathcal{H}_2 = \operatorname{Sp}_4/K \to \mathbb{C}$ define

$$\varphi_F$$
: Sp₄ $\to \mathbb{C}$, $\varphi_F(g) = j(g,i)^{-\ell} F(g \cdot iI_2)$

where $j(\begin{pmatrix} A & B \\ C & D \end{pmatrix}, i) = \det(Ci + D)$.

Siegel Modular Forms on $\mathop{Sp}_4_{\bigcirc \bigcirc \bullet}$

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

Siegel Modular Forms Semi-Classically

• Sp_4 acts transitively on \mathcal{H}_2 and iI_2 has stabilizer

$$K = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} : AB^t = BA^t, AA^t + BB^t = I_2 \right\}.$$

• Given an **arbitrary** function $F: \mathcal{H}_2 = \operatorname{Sp}_4/K \to \mathbb{C}$ define

$$\varphi_F \colon \operatorname{Sp}_4 \to \mathbb{C}, \qquad \varphi_F(g) = j(g,i)^{-\ell} F(g \cdot iI_2)$$

where $j(\begin{pmatrix} A & B \\ C & D \end{pmatrix}, i) = \det(Ci + D)$.

F ∈ *M*_ℓ(Γ₂) ⇐⇒ φ_F is smooth, moderate growth and satisfies:
 (i) If γ ∈ Γ₂, g ∈ Sp₄, and k ∈ K then

 $\varphi_F(\gamma g) = \varphi_F(g)$ and $\varphi_F(gk) = j(k,i)^{-\ell}\varphi_F(g).$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Siegel Modular Forms on $\mathop{Sp}_4_{\bigcirc \bigcirc \bullet}$

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

Siegel Modular Forms Semi-Classically

• Sp_4 acts transitively on \mathcal{H}_2 and iI_2 has stabilizer

$$K = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} : AB^t = BA^t, AA^t + BB^t = I_2 \right\}.$$

• Given an **arbitrary** function $F: \mathcal{H}_2 = \operatorname{Sp}_4/K \to \mathbb{C}$ define

$$\varphi_F \colon \operatorname{Sp}_4 \to \mathbb{C}, \qquad \varphi_F(g) = j(g,i)^{-\ell} F(g \cdot iI_2)$$

where $j(\begin{pmatrix} A & B \\ C & D \end{pmatrix}, i) = \det(Ci + D)$.

F ∈ *M*_ℓ(Γ₂) ⇐⇒ φ_F is smooth, moderate growth and satisfies:
 (i) If γ ∈ Γ₂, g ∈ Sp₄, and k ∈ K then

 $\varphi_F(\gamma g) = \varphi_F(g)$ and $\varphi_F(gk) = j(k,i)^{-\ell}\varphi_F(g).$

(ii) φ_F satisfies a **Cauchy Riemann** type equation $D\varphi_F \equiv 0$.

Algebraic Modular Forms on U(2, n)

Contents

lgebraic Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, *n*)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Modular Forms on U(2, n).

Let
$$n \in \mathbb{Z}_{\geq 1}$$
, $J = \operatorname{diag}(1, -1, \cdots, -1) \in M_n(\mathbb{C})$, and

$$U(2, n) = \left\{ g \in \operatorname{GL}_{n+2}(\mathbb{C}) \colon {}^t\overline{g} \begin{pmatrix} 0 & 0 & 1 \\ 0 & J & 0 \\ 1 & 0 & 0 \end{pmatrix} g = \begin{pmatrix} 0 & 0 & 1 \\ 0 & J & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\}.$$

Modular Forms on U(2, n) $0 \oplus 00$ Algebraic Modular Forms on U(2, n)

Modular Forms on U(2, n).

Let
$$n \in \mathbb{Z}_{\geq 1}$$
, $J = \operatorname{diag}(1, -1, \cdots, -1) \in M_n(\mathbb{C})$, and

$$U(2, n) = \left\{ g \in \operatorname{GL}_{n+2}(\mathbb{C}) \colon {}^t\overline{g} \begin{pmatrix} 0 & 0 & 1 \\ 0 & J & 0 \\ 1 & 0 & 0 \end{pmatrix} g = \begin{pmatrix} 0 & 0 & 1 \\ 0 & J & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\}.$$

Let $K = U(2) \times U(n) \leq U(2, n)$ be a maximal compact subgroup and let $\mathbb{V} = (\operatorname{Sym}^2 \mathbb{C}^2 \otimes_{\mathbb{C}} \det_{U(2)}^{-1}) \boxtimes (\operatorname{Trivial})_{U(n)}.$ Modular Forms on U(2, n) $0 \oplus 00$ Algebraic Modular Forms on U(2, n)

Modular Forms on U(2, n).

Let
$$n \in \mathbb{Z}_{\geq 1}$$
, $J = \operatorname{diag}(1, -1, \cdots, -1) \in M_n(\mathbb{C})$, and

$$U(2, n) = \left\{ g \in \operatorname{GL}_{n+2}(\mathbb{C}) \colon {}^t\overline{g} \begin{pmatrix} 0 & 0 & 1 \\ 0 & J & 0 \\ 1 & 0 & 0 \end{pmatrix} g = \begin{pmatrix} 0 & 0 & 1 \\ 0 & J & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\}.$$

Let $K = U(2) \times U(n) \leq U(2, n)$ be a maximal compact subgroup and let $\mathbb{V} = (\operatorname{Sym}^2 \mathbb{C}^2 \otimes_{\mathbb{C}} \det_{U(2)}^{-1}) \boxtimes (\operatorname{Trivial})_{U(n)}.$

Definition

Let $\ell \in \mathbb{Z}_{\geq 1}$ and fix an arithmetic subgroup $\Gamma \leq U(2, n)$.

Modular Forms on U(2, n) $0 \oplus 00$ Algebraic Modular Forms on U(2, n)

Modular Forms on U(2, n).

Let
$$n \in \mathbb{Z}_{\geq 1}$$
, $J = \operatorname{diag}(1, -1, \cdots, -1) \in M_n(\mathbb{C})$, and

$$U(2, n) = \left\{ g \in \operatorname{GL}_{n+2}(\mathbb{C}) \colon {}^t\overline{g} \begin{pmatrix} 0 & 0 & 1 \\ 0 & J & 0 \\ 1 & 0 & 0 \end{pmatrix} g = \begin{pmatrix} 0 & 0 & 1 \\ 0 & J & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\}.$$

Let $K = U(2) \times U(n) \leq U(2, n)$ be a maximal compact subgroup and let $\mathbb{V} = (\operatorname{Sym}^2 \mathbb{C}^2 \otimes_{\mathbb{C}} \det_{U(2)}^{-1}) \boxtimes (\operatorname{Trivial})_{U(n)}.$

Definition

Let $\ell \in \mathbb{Z}_{\geq 1}$ and fix an arithmetic subgroup $\Gamma \leq U(2, n)$. Write $\mathcal{M}_{\ell}(\Gamma)$ to denote the space of **smooth**, **moderate** growth functions

$$\Phi \colon \mathrm{U}(2,n) \to \mathrm{Sym}^{\ell} \mathbb{V}$$
 such that

(i) If $\gamma \in \Gamma$, $g \in U(2, n)$, and $k \in K$ then

 $\Phi(\gamma g) = \Phi(g)$ and $\Phi(gk) = k^{-1}\Phi_F(g)$.

(ii) Φ satisfies a **specific** *K*-invariant differential equation $D\Phi \equiv 0$.

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Some History of Modular Forms on U(2, n)

• 1995: Koseki-Oda established uniqueness of Whittaker models when n = 1 and calculated the local archimedean L-factors for the standard L-functions of elements in $\mathcal{M}_{\ell}(\Gamma)$.

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 1995: Koseki-Oda established uniqueness of Whittaker models when n = 1 and calculated the local archimedean L-factors for the standard L-functions of elements in $\mathcal{M}_{\ell}(\Gamma)$.
- 1996: Gross-Wallach constructed the local Archimedean analogues of *M_ℓ*(Γ) known as quaternionic representations of the groups U(2, n), Sp(n, 1), SO(4, n + 2), G₂, F₄, E₆, E₇, and E₈.

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

- 1995: Koseki-Oda established uniqueness of Whittaker models when n = 1 and calculated the local archimedean L-factors for the standard L-functions of elements in $\mathcal{M}_{\ell}(\Gamma)$.
- 1996: Gross-Wallach constructed the local Archimedean analogues of *M_ℓ*(Γ) known as quaternionic representations of the groups U(2, n), Sp(n, 1), SO(4, n + 2), G₂, F₄, E₆, E₇, and E₈.
- 2002: Gan-Gross-Savin introduced global theory of modular forms on G₂. Studied Fourier coefficients of modular forms on G₂ through the connection to cubic rings. Subsequent developments due to Weissman (04'), A. Pollack (20',21',23'), and Leslie-Pollack (23')

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

- 1995: Koseki-Oda established uniqueness of Whittaker models when n = 1 and calculated the local archimedean L-factors for the standard L-functions of elements in $\mathcal{M}_{\ell}(\Gamma)$.
- 1996: Gross-Wallach constructed the local Archimedean analogues of *M*_ℓ(Γ) known as quaternionic representations of the groups U(2, n), Sp(n, 1), SO(4, n + 2), G₂, F₄, E₆, E₇, and E₈.
- 2002: Gan-Gross-Savin introduced global theory of modular forms on G₂. Studied Fourier coefficients of modular forms on G₂ through the connection to cubic rings. Subsequent developments due to Weissman (04'), A. Pollack (20',21',23'), and Leslie-Pollack (23')
- 2003: Wallach established uniqueness of non-degenerate generalized Whittaker models for quaternionic discrete series representations in all Dynkin types. Subsequently, A. Pollack (20') removed the assumption of non-degeneracy and discrete series for all Dynkin types excluding types A and C.

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

- 1995: Koseki-Oda established uniqueness of Whittaker models when n = 1 and calculated the local archimedean L-factors for the standard L-functions of elements in $\mathcal{M}_{\ell}(\Gamma)$.
- 1996: Gross-Wallach constructed the local Archimedean analogues of *M_ℓ*(Γ) known as quaternionic representations of the groups U(2, n), Sp(n, 1), SO(4, n + 2), G₂, F₄, E₆, E₇, and E₈.
- 2002: Gan-Gross-Savin introduced global theory of modular forms on G₂. Studied Fourier coefficients of modular forms on G₂ through the connection to cubic rings. Subsequent developments due to Weissman (04'), A. Pollack (20',21',23'), and Leslie-Pollack (23')
- 2003: Wallach established uniqueness of non-degenerate generalized Whittaker models for quaternionic discrete series representations in all Dynkin types. Subsequently, A. Pollack (20') removed the assumption of non-degeneracy and discrete series for all Dynkin types excluding types A and C.
- 2024: B. Hu progress towards Deligne's Conjecture for the adjoint L-function of Modular forms on U(2, 1).

Algebraic Modular Forms on U(2, *n*)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The Fourier Expansion of Modular Forms on U(2, n)

Let
$$N = \left\{ \begin{pmatrix} 1 & * & * \\ \mathbf{0} & I_n & * \\ 0 & \mathbf{0} & 1 \end{pmatrix} \right\}$$
 and $Z = \left\{ \begin{pmatrix} 1 & \mathbf{0} & * \\ \mathbf{0} & I_n & \mathbf{0} \\ 0 & \mathbf{0} & 1 \end{pmatrix} \right\}$ be the center of N .

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, *n*)

▲□▶▲□▶▲□▶▲□▶ ■ のへで

The Fourier Expansion of Modular Forms on U(2, n)

Let
$$N = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & l_n & * \\ 0 & 0 & 1 \end{pmatrix} \right\}$$
 and $Z = \left\{ \begin{pmatrix} 1 & 0 & * \\ 0 & l_n & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$ be the center of N .

Given $\Phi \in \mathcal{M}_{\ell}(\Gamma)$, the **constant term** of Φ along Z = [N, N] is

$$\Phi_{Z}(g) = \int_{(\Gamma \cap Z) \setminus Z} \Phi(zg) dg. \qquad (g \in \mathrm{U}(2, n))$$

Algebraic Modular Forms on U(2, n)

The Fourier Expansion of Modular Forms on U(2, n)

Let
$$N = \left\{ \begin{pmatrix} 1 & * & * \\ \mathbf{0} & I_n & * \\ 0 & \mathbf{0} & 1 \end{pmatrix} \right\}$$
 and $Z = \left\{ \begin{pmatrix} 1 & \mathbf{0} & * \\ \mathbf{0} & I_n & \mathbf{0} \\ 0 & \mathbf{0} & 1 \end{pmatrix} \right\}$ be the center of N .

Given $\Phi \in \mathcal{M}_{\ell}(\Gamma)$, the constant term of Φ along Z = [N, N] is

$$\Phi_Z(g) = \int_{(\Gamma \cap Z) \setminus Z} \Phi(zg) dg.$$
 $(g \in \mathrm{U}(2, n))$

Theorem (Koseki, Oda when n=1 (95'), Hilado, M, Yan (24'))

There exists a unique explicit family of special functions

$$\{\mathcal{W}_{\mathbf{v}} \colon \mathrm{U}(2,n) \to \mathrm{Sym}^{\ell} \, \mathbb{V} \colon \mathbf{v} \in \mathbb{C}^{n} \text{ such that } {}^{t} \overline{\mathbf{v}} J \mathbf{v} > 0\}$$

such that if $\Phi \in S_{\ell}(\Gamma)$ then Φ_Z Fourier expands in characters of N/Z as

$$\Phi_{Z}(g) = \sum_{\mathbf{v} \in \Lambda: \ '\bar{\mathbf{v}}J\mathbf{v} > 0} A_{\Phi}[\mathbf{v}] \mathcal{W}_{\mathbf{v}}(g). \qquad (g \in \mathrm{U}(2, n))$$

Here $\Lambda \subseteq \mathbb{C}^n$ is a lattice and $A_{\Phi}[\mathbf{v}] \in \mathbb{C}$ is a **Fourier Coefficient**.

Algebraic Modular Forms on U(2, n)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Contents

Algebraic Modular Forms on U(2, n)

Siegel Modular Forms on $Sp_4 \\ \texttt{OOO}$

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

Let $\Gamma \leq U(2, n)$ be an arithmetic subgroup and $\ell \in \mathbb{Z}_{\geq 1}$.

Algebraic Modular Forms on U(2, n) $0 \bullet 0000$

Algebraic Modular Forms on U(2, n)

Let $\Gamma \leq U(2, n)$ be an arithmetic subgroup and $\ell \in \mathbb{Z}_{\geq 1}$.

Definition Let $\Phi \in S_{\ell}(\Gamma)$ with Fourier Expansion $\Phi_Z(g) = \sum_{\mathbf{v} \in \Lambda: \ \ \ \overline{\mathbf{v}} J \mathbf{v} > 0} A_{\Phi}[\mathbf{v}] \mathcal{W}_{\mathbf{v}}(g).$

Say that Φ is algebraic if $\Phi_Z \neq 0$ and $A_{\Phi}[\mathbf{v}] \in \overline{\mathbb{Q}}$ for all $\mathbf{v} \in \Lambda$.

・ロト・西ト・ヨト・ヨー シック

Algebraic Modular Forms on U(2, n)

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Algebraic Modular Forms on U(2, n)

Let $\Gamma \leq U(2, n)$ be an arithmetic subgroup and $\ell \in \mathbb{Z}_{\geq 1}$.

Definition Let $\Phi \in S_{\ell}(\Gamma)$ with Fourier Expansion

$$\Phi_Z(g) = \sum_{\mathbf{v}\in\Lambda: \, {}^{\prime}\bar{\mathbf{v}}J\mathbf{v}>0} A_{\Phi}[\mathbf{v}] \mathcal{W}_{\mathbf{v}}(g).$$

Say that Φ is algebraic if $\Phi_Z \neq 0$ and $A_{\Phi}[\mathbf{v}] \in \overline{\mathbb{Q}}$ for all $\mathbf{v} \in \Lambda$.

The space of hypercusp forms on Γ is

$$\mathcal{S}_{\ell}^{0}(\Gamma) = \{ \Phi \in \mathcal{S}_{\ell}(\Gamma) \colon \Phi_{Z} \equiv 0 \}$$

Algebraic Modular Forms on U(2, n) $0 \bullet 0000$

Algebraic Modular Forms on U(2, n)

Let $\Gamma \leq U(2, n)$ be an arithmetic subgroup and $\ell \in \mathbb{Z}_{\geq 1}$.

Definition Let $\Phi \in S_{\ell}(\Gamma)$ with Fourier Expansion

$$\Phi_Z(g) = \sum_{\mathbf{v}\in\Lambda: \, {}^{\prime}\bar{\mathbf{v}}J\mathbf{v}>0} A_{\Phi}[\mathbf{v}] \mathcal{W}_{\mathbf{v}}(g).$$

Say that Φ is algebraic if $\Phi_Z \neq 0$ and $A_{\Phi}[\mathbf{v}] \in \overline{\mathbb{Q}}$ for all $\mathbf{v} \in \Lambda$.

The space of hypercusp forms on Γ is

$$\mathcal{S}_{\ell}^{0}(\Gamma) = \{ \Phi \in \mathcal{S}_{\ell}(\Gamma) \colon \Phi_{Z} \equiv 0 \}$$

Conjecture (after A. Pollack)

The space $S^0_{\ell}(\Gamma)^{\perp}$ admits a basis consisting of algebraic forms.

Algebraic Modular Forms on U(2, n) $0 \bullet 0000$

Algebraic Modular Forms on U(2, n)

Let $\Gamma \leq U(2, n)$ be an arithmetic subgroup and $\ell \in \mathbb{Z}_{\geq 1}$.

Definition Let $\Phi \in S_{\ell}(\Gamma)$ with Fourier Expansion

$$\Phi_{Z}(g) = \sum_{\mathbf{v} \in \Lambda : \, {}^{\prime} \overline{\mathbf{v}} J \mathbf{v} > 0} A_{\Phi}[\mathbf{v}] \mathcal{W}_{\mathbf{v}}(g).$$

Say that Φ is algebraic if $\Phi_Z \neq 0$ and $A_{\Phi}[\mathbf{v}] \in \overline{\mathbb{Q}}$ for all $\mathbf{v} \in \Lambda$.

The space of hypercusp forms on Γ is

$$\mathcal{S}_{\ell}^{0}(\Gamma) = \{ \Phi \in \mathcal{S}_{\ell}(\Gamma) \colon \Phi_{Z} \equiv 0 \}$$

Conjecture (after A. Pollack)

The space $S^0_{\ell}(\Gamma)^{\perp}$ admits a basis consisting of algebraic forms.

For modular forms on G_2 of weight $\ell \in 2\mathbb{Z}_{>3}$ this is a result of Pollack (23')

Algebraic Modular Forms on U(2, n)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

The Saito Kurokawa Lifting

Given
$$Z = \begin{pmatrix} \xi & z \\ z & \xi' \end{pmatrix} \in \mathcal{H}_2$$
 and $\tau \in \mathcal{H}_1 \subseteq \mathbb{C}$ in the upper half plane, let

$$\Omega_{\ell}(Z, \tau) = \sum_{N>0} N^{3/2-\ell} w_{N,\ell}(Z) e^{2\pi i N \tau}.$$
where $w_{N,\ell}(Z) = \sum_{\substack{(a,b,c,d,e) \in \mathbb{Z}^5 \\ 4bd-c^2-4ae=N}} \frac{1}{(a(\xi\xi'-z^2)+b\xi+cz+d\xi'+e)^{\ell}}.$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

The Saito Kurokawa Lifting

Given
$$Z = \begin{pmatrix} \xi & z \\ z & \xi' \end{pmatrix} \in \mathcal{H}_2$$
 and $\tau \in \mathcal{H}_1 \subseteq \mathbb{C}$ in the upper half plane, let

$$\Omega_{\ell}(Z, \tau) = \sum_{N>0} N^{3/2-\ell} w_{N,\ell}(Z) e^{2\pi i N \tau}.$$
where $w_{N,\ell}(Z) = \sum_{\substack{(a,b,c,d,e) \in \mathbb{Z}^5 \\ 4bd - c^2 - 4ae = N}} \frac{1}{(a(\xi\xi' - z^2) + b\xi + cz + d\xi' + e)^{\ell}}.$

• Using the theory of theta series attached to lattices, Kudla proves

$$\Omega_{\ell}(\cdot, \tau) \in M_{\ell}(\Gamma_2)$$
 and $\Omega_{\ell}(Z, \cdot) \in S_{\ell-1/2}(\Gamma_0(4)).$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Saito Kurokawa Lifting

Given
$$Z = \begin{pmatrix} \xi & z \\ z & \xi' \end{pmatrix} \in \mathcal{H}_2$$
 and $\tau \in \mathcal{H}_1 \subseteq \mathbb{C}$ in the upper half plane, let

$$\Omega_{\ell}(Z, \tau) = \sum_{N>0} N^{3/2-\ell} w_{N,\ell}(Z) e^{2\pi i N \tau}.$$
where $w_{N,\ell}(Z) = \sum_{\substack{(a,b,c,d,e) \in \mathbb{Z}^5 \\ 4bd-c^2-4ae=N}} \frac{1}{(a(\xi\xi'-z^2)+b\xi+cz+d\xi'+e)^{\ell}}.$

Using the theory of theta series attached to lattices, Kudla proves

$$\Omega_{\ell}(\cdot, \tau) \in M_{\ell}(\Gamma_2)$$
 and $\Omega_{\ell}(Z, \cdot) \in S_{\ell-1/2}(\Gamma_0(4)).$

• Define the Saito-Kurokawa Lift SK*: $S^+_{\ell-1/2}(\Gamma_0(4)) \to M_{\ell}(\Gamma_2)$ as

$$h \mapsto \mathrm{SK}^*(h)(Z) := \int_{\Gamma_0(4) \setminus \mathcal{H}_1} h(u + iv) \Omega_\ell(Z, u - iv) v^{\ell - 1/2} \frac{dudv}{v^2}.$$

Algebraic Modular Forms on U(2, n)

Rationality of the Saito Kurokawa Lift

Theorem (Andrianov, Maass, Zagier 77'-80')

Fix $h \in S^+_{\ell-1/2}(\Gamma_0(4))$ with Fourier series $h(z) = \sum_{n=0}^{\infty} c(n)e^{2\pi i n z}$.

Algebraic Modular Forms on U(2, n)

Rationality of the Saito Kurokawa Lift

Theorem (Andrianov, Maass, Zagier 77'-80')

Fix $h \in S^+_{\ell-1/2}(\Gamma_0(4))$ with Fourier series $h(z) = \sum_{n=0}^{\infty} c(n)e^{2\pi i n z}$. For $T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} > 0$, let

$$A[T] = \sum_{d \mid \gcd(n,r,m)} d^{\ell-1} c\left(\frac{4 \det(T)}{d^2}\right).$$

Algebraic Modular Forms on U(2, n)

Rationality of the Saito Kurokawa Lift

Theorem (Andrianov, Maass, Zagier 77'-80')

Fix $h \in S^+_{\ell-1/2}(\Gamma_0(4))$ with Fourier series $h(z) = \sum_{n=0}^{\infty} c(n)e^{2\pi i n z}$. For $T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} > 0$, let

$$A[T] = \sum_{d|\gcd(n,r,m)} d^{\ell-1} c\left(\frac{4\det(T)}{d^2}\right).$$

Then $SK^*(h)$ is **non-zero** with Fourier expansion

$$SK^*(h)(Z) = \sum_{T>0} A[T] \exp(2\pi i tr(TZ)).$$

・ロト・日本・日本・日本・日本・日本

Algebraic Modular Forms on U(2, n)

Rationality of the Saito Kurokawa Lift

Theorem (Andrianov, Maass, Zagier 77'-80')

Fix $h \in S^+_{\ell-1/2}(\Gamma_0(4))$ with Fourier series $h(z) = \sum_{n=0}^{\infty} c(n)e^{2\pi i n z}$. For $T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} > 0$, let

$$A[T] = \sum_{d \mid \gcd(n,r,m)} d^{\ell-1} c\left(\frac{4 \det(T)}{d^2}\right).$$

Then $SK^*(h)$ is **non-zero** with Fourier expansion

$$\mathrm{SK}^*(h)(Z) = \sum_{T>0} A[T] \exp(2\pi i \mathrm{tr}(TZ)).$$

In particular, the mapping SK^{*}: $S^+_{\ell-\frac{1}{2}}(\Gamma_0(4)) \hookrightarrow S_{\ell}(\Gamma_2)$ is defined over \mathbb{Q} .

Siegel Modular Forms on $Sp_4 \\ \texttt{OOO}$

Modular Forms on U(2, n)

Algebraic Modular Forms on U(2, n)

Algebraic Theta Lifts on U(2, n)

Let U(1,1) =
$$\left\{ \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} h : z \in \mathbb{C}^1, g \in \mathrm{SL}_2(\mathbb{R}) \right\}.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Algebraic Modular Forms on U(2, n)

Algebraic Theta Lifts on U(2, n)

Let
$$\mathrm{U}(1,1) = \left\{ \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} h \colon z \in \mathbb{C}^1, g \in \mathrm{SL}_2(\mathbb{R}) \right\}.$$

Theorem (Hilado, M, Yan 2024)

Let $\ell \ge n$ and $f: U(1,1) \to \mathbb{C}$ be a weight $2\ell - n + 2$ holomorphic modular form of central character $\begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \mapsto z^{n+2}$ and level $\Gamma' \le U(1,1)$.

Algebraic Modular Forms on U(2, n)

Algebraic Theta Lifts on U(2, n)

Let U(1,1) =
$$\left\{ \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} h : z \in \mathbb{C}^1, g \in \mathrm{SL}_2(\mathbb{R}) \right\}.$$

Theorem (Hilado, M, Yan 2024)

Let $\ell \ge n$ and $f: U(1,1) \to \mathbb{C}$ be a weight $2\ell - n + 2$ holomorphic modular form of central character $\begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \mapsto z^{n+2}$ and level $\Gamma' \le U(1,1)$.

(i) There exists an arithmetic subgroup $\Gamma \leq U(2, n)$ and an integral kernel

$$\Omega: \mathrm{U}(1,1) \times \mathrm{U}(2,n) \to \mathrm{Sym}^{\ell} \, \mathbb{V}$$

such that $\theta^*(f)(g) := \int_{\Gamma' \setminus \mathrm{U}(1,1)} \Omega(g,h) \overline{f(h)} dh$ lies in $\mathcal{S}_{\ell}(\Gamma)$.

Algebraic Modular Forms on U(2, n)

Algebraic Theta Lifts on U(2, n)

Let
$$\mathrm{U}(1,1) = \left\{ \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} h \colon z \in \mathbb{C}^1, g \in \mathrm{SL}_2(\mathbb{R}) \right\}.$$

Theorem (Hilado, M, Yan 2024)

Let $\ell \ge n$ and $f: U(1,1) \to \mathbb{C}$ be a weight $2\ell - n + 2$ holomorphic modular form of central character $\begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \mapsto z^{n+2}$ and level $\Gamma' \le U(1,1)$.

(i) There exists an arithmetic subgroup $\Gamma \leq U(2, n)$ and an integral kernel

$$\Omega: \mathrm{U}(1,1) \times \mathrm{U}(2,n) \to \mathrm{Sym}^{\ell} \, \mathbb{V}$$

such that $\theta^*(f)(g) := \int_{\Gamma' \setminus \mathrm{U}(1,1)} \Omega(g,h) \overline{f(h)} dh$ lies in $\mathcal{S}_{\ell}(\Gamma)$.

(ii) If Γ'\H₁ is non-compact and the Fourier coefficients of *f* lie in an algebraic extension E/Q then θ*(f) is algebraic and

 $A_{\theta^*(f)}[\mathbf{v}] \in E(\mu_{\infty}) \quad \forall \mathbf{v} \in \Lambda.$

Algebraic Modular Forms on U(2, n)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Thank you for listening