Exceptional Algebra and G_{2}-modular forms. SWANTAG

Finn McGlade

UCSD

The Cayley Octonions.

The Cayley Octonions $\mathbb{O}=\mathbb{Q}$-span $\left\{1, e_{1}, e_{2}, \ldots\right\}$ with unit 1 and multiplication

$$
e_{i}^{2}=\left(e_{i} e_{i+1}\right) e_{i+3}=e_{i}\left(e_{i+1} e_{i+3}\right)=-1 \quad \text { and } \quad e_{i}=e_{i+7} .
$$

Intepret the identity $\left(e_{i} e_{i+1}\right) e_{i+3}=e_{i}\left(e_{i+1} e_{i+3}\right)=-1$ as saying

$$
\mathbf{i j}=-\mathbf{j} \mathbf{i}=\mathbf{k}, \quad \mathbf{j} \mathbf{k}=-\mathbf{k} \mathbf{j}=\mathbf{i}, \quad \mathbf{k} \mathbf{i}=-\mathbf{i} \mathbf{k}=\mathbf{j}
$$

where $e_{i}=\mathbf{i}, e_{i+1}=\mathbf{j}$, and $e_{i+3}=\mathbf{k}$.
If $a_{0}, a_{1}, \ldots, a_{7} \in \mathbb{Q}, \alpha=a_{0}+a_{1} e_{1}+\cdots+a_{7} e_{7}$, define

$$
N(\alpha)=a_{0}^{2}+a_{1}^{2}+\cdots+a_{7}^{2} \quad \text { and } \quad \operatorname{tr}(\alpha)=2 a_{0} .
$$

Every $\alpha \in \mathbb{O}-\mathbb{Q}$ has a quadratic minimal polynomial

$$
X^{2}-\operatorname{tr}(\alpha) X+N(\alpha) \in \mathbb{Q}[X] .
$$

(1) is structurally similar to a quadratic imaginary extension L / \mathbb{Q}. We pursue this analogy with a view to studying arithmetic in \mathbb{O}. Specifically, we'll see how modular forms can be used to count solutions to diophantine equations in \mathbb{O}.

The Coxeter Order R.

Let R denote the \mathbb{Z}-lattice in \mathbb{O} spanned by 1 , the e_{i} 's and the elements
$\frac{1}{2}\left(1+e_{1}+e_{2}+e_{4}\right), \quad \frac{1}{2}\left(1+e_{1}+e_{5}+e_{6}\right), \quad \frac{1}{2}\left(1+e_{1}+e_{3}+e_{7}\right), \quad \frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)$.
Then R is one of seven maximal orders in \mathbb{O} containing

$$
\mathbb{Z} \text {-span }\left\{1, e_{1}, \ldots, e_{7}\right\} .
$$

In particular, R is a subring of \mathbb{O} consisting of integral elements.

Remark

Consider $\mathbb{Q}(\sqrt{-3}) / \mathbb{Q}$. Then $\mathbb{Z}\left[\frac{-1+\sqrt{-3}}{2}\right]$ is the unique maximal order in $\mathbb{Q}(\sqrt{-3})$. $\mathbb{Z}\left[\frac{-1+\sqrt{-3}}{2}\right]$ admits a Euclidean division algorithm, unlike $\mathbb{Z}[\sqrt{-3}]$.

Question (Diophantine Equations over R.)

Let $D<0$ be a fundamental discriminant and $f_{D}(X)=X^{2}-D X+\frac{D^{2}-D}{4} \in \mathbb{Z}[X]$. How many solutions does $f(X)$ have in R ?

Quadratic Octonion Equations I

Let $D<0$ be a fundamental discriminant and $f_{D}(X)=X^{2}-D X+\frac{D^{2}-D}{4}$

$$
N_{D}=\#\left\{\alpha \in R: f_{D}(\alpha)=0\right\}
$$

Proposition (Elkies-Gross)

There exists a modular form g of weight $7 / 2$ such that if

$$
g(z)=\sum_{n \geq 0} a_{n} e^{2 \pi i n z}, \quad \text { denotes the Fourier expansion of } g
$$

then $a_{|D|}=N_{D}$ for all fundamental discriminants $D<0$.
Let $g(z)=\sum a_{n} e^{2 \pi i n z}$ be the θ-series of the lattice

$$
\Lambda=\{\lambda \in \mathbb{Z}+2 R: \operatorname{Tr}(\lambda)=0\} .
$$

So $a_{n}=\#\{\lambda \in \Lambda: N(\lambda)=n\}$ and if $D<0$ is a fundamental discriminant then

$$
\left\{\alpha \in R: f_{D}(\alpha)=0\right\} \xrightarrow{\sim}\{\lambda \in \Lambda: N(\lambda)=-D\}, \quad \alpha \mapsto 2 \alpha-D .
$$

Quadratic Octonion Equations II

Let $g(z)=\sum a_{n} q^{n}$ be the θ-series of the lattice Λ. So $g(z)$ is a modular form and

$$
a_{|D|}=N_{D}
$$

for all fundamental discriminants $D<0$. Using "known facts" about the space of modular forms of weight $7 / 2$ one has

$$
a_{|D|}=-252 \cdot L\left(\varepsilon_{D},-2\right)
$$

where $L\left(\varepsilon_{D}, s\right)=\sum_{n \geq 0} \frac{\varepsilon_{D}(n)}{n^{s}}$ is a Dirichlet L-function associated to $\mathbb{Q}(\sqrt{D})$.
The computation of N_{D} is reduced to a tractable problem in analytic number theory about estimating the value $L\left(\varepsilon_{D},-2\right)$.

$$
\Rightarrow 3 \cdot|D|^{5 / 2} \leq N_{D} \leq 5 \cdot|D|^{5 / 2}
$$

There are exact value expressions for $L\left(\varepsilon_{D},-2\right)$ which can be used to compute

D	-3	-4	-7	-8	-11	-15	-19	-20	-23	-24
N_{D}	56	126	576	756	1512	4032	5544	7560	12096	11592

Modular Forms for SL_{2}

$$
\text { Let } G=\mathrm{SL}_{2}(\mathbb{R}), K=\left\{\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right): \theta \in \mathbb{R}\right\} \text {, and } \Gamma=\mathrm{SL}_{2}(\mathbb{Z}) \text {. }
$$

Definition

Suppose $k \in \mathbb{Z}_{\geq 0}$, a modular form of weight k is a function

$$
\phi: \Gamma \backslash G \rightarrow \mathbb{C}
$$

such that:
(a) If $\theta \in \mathbb{R}$ and $\bar{g} \in \Gamma \backslash G$ then $\phi\left(\bar{g}\left(\begin{array}{cc}\cos \theta & \left.\begin{array}{c}\sin \theta \\ -\sin \theta \\ \cos \theta\end{array}\right)\end{array}\right)=e^{-i \theta k} \phi(\bar{g})\right.$.
(b) The function $G \rightarrow G \times \mathbb{C}, g \mapsto(g, \phi(\bar{g}))$ descends to a Γ-invariant holomorphic section of moderate growth of the line bundle

$$
G \times_{K} \mathbb{C} \rightarrow G / K
$$

where $G \times{ }_{K} \mathbb{C}=G \times \mathbb{C} /\left\langle(g, z) \simeq\left(g\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right), e^{-i \theta k} z\right): \theta \in \mathbb{R}\right\rangle$. Note that $G / K \simeq\{z: \operatorname{im}(z)>0\}$ is a complex manifold.

This definition directly generalizes to semi-simple real Lie groups provided G / K has Γ-invariant complex structure.

The Split Octonions Θ

Let $\mathbb{H}=\mathbb{R}\langle 1, \mathbf{i}, \mathbf{j}, \mathbf{k}\rangle$ denote the ring with product

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i j} \mathbf{k}=-1 .
$$

Write $(a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k})^{*}=a-b \mathbf{i}-c \mathbf{j}-d \mathbf{k}$. The split octonion algebra is $\Theta:=\mathbb{H} \oplus \mathbb{H}$,

$$
\begin{equation*}
\text { with product }\left(q_{1}, q_{2}\right) \cdot\left(p_{1}, p_{2}\right)=\left(q_{1} p_{1}+p_{2}^{*} q_{2}, p_{2} q_{1}+q_{2} p_{1}^{*}\right) \tag{0.1}
\end{equation*}
$$

where $q_{1}, q_{2}, p_{1}, p_{2} \in \mathbb{H}$.
Write $\mathbb{H}^{1}=\left\{q \in \mathbb{H}: q q^{*}=1\right\}$, we obtain an action

$$
\rho: \mathbb{H}^{1} \times \mathbb{H}^{1} \rightarrow \mathrm{GL}(\Theta), \quad \rho(g, h)(q, p)=\left(g q g^{-1}, h q g^{-1}\right)
$$

preserving the product (0.1).

Definition (Definition of G_{2})

Define

$$
\mathrm{G}_{2}(\mathbb{R})=\{g \in \mathrm{GL}(\Theta): \text { if } x, y \in \Theta \text { then } g \cdot(x y)=g(x) \cdot g(y)\} .
$$

Let $K \simeq \mathrm{SU}(2) \times \mathrm{SU}(2) / \mu_{2}$ denote the image of ρ in $\mathrm{G}_{2}(\mathbb{R})$.

Modular Forms for G_{2}

$$
\text { Let } G=\mathrm{G}_{2}(\mathbb{R}), K=\mathrm{SU}(2) \times \mathrm{SU}(2) / \mu_{2} \text {, and } \Gamma=\mathrm{G}_{2}(\mathbb{Z}) \text {. }
$$

Definition

Suppose $\ell \in \mathbb{Z}_{\geq 0}$, a G_{2}-modular form of weight ℓ is a function

$$
\phi: \Gamma \backslash G \rightarrow \operatorname{Sym}^{2 \ell}\left(\mathbb{C}^{2}\right) \quad \text { such that }
$$

(a) If $\left(k_{1}, k_{2}\right) \in K$ and $\bar{g} \in \Gamma \backslash G$ then $\phi\left(\bar{g} \cdot\left(k_{1}, k_{2}\right)\right)=k_{1}^{-1} \phi(\bar{g})$.
(b) The function $G \rightarrow G \times \operatorname{Sym}^{2 \ell}\left(\mathbb{C}^{2}\right), g \mapsto(g, \phi(\bar{g}))$ descends to a Γ-invariant smooth section of moderate growth of the vector bundle

$$
G \times K \operatorname{Sym}^{2 \ell}\left(\mathbb{C}^{2}\right) \rightarrow G / K
$$

where $G \times_{K} \operatorname{Sym}^{2 \ell}\left(\mathbb{C}^{2}\right)=G \times \operatorname{Sym}^{2 \ell}\left(\mathbb{C}^{2}\right) /\langle(g, v) \simeq(g k, k \cdot v): k \in K\rangle$ satisfying an analogue of the Cauchy Riemann Equations.

A commutative associative ring A is called cubic if $A \simeq \mathbb{Z}^{3}$ as a \mathbb{Z}-module.
Gan-Gross-Savin have defined Fourier coefficients $c_{\varphi, A}$ for a G_{2}-modular form φ such that the Fourier coefficients of φ are indexed by isomorphisms classes of cubic rings.

Hermitian Matrices over \mathbb{O}

Consider the set of Hermitian 3-by-3 matrices over \mathbb{O},

$$
\mathcal{H}_{3}(\mathbb{O})=\left\{\left(\begin{array}{ccc}
\xi_{1} & c_{3} & \bar{c}_{2} \\
c_{3} & \xi_{2} & c_{1} \\
c_{2} & \bar{c}_{1} & \xi_{3}
\end{array}\right): c_{1}, c_{2}, c_{3} \in \mathbb{O}, \xi_{1}, \xi_{2}, \xi_{3} \in \mathbb{Q}\right\} .
$$

If $x, y \in \mathcal{H}_{3}(\mathbb{O})$, define $x \circ$, $y:=\frac{1}{2}(x \cdot y+y \cdot x)$, where $x \cdot y$ denotes the matrix product of x and y. Then

$$
(x \circ, x) \circ,(x \circ, y)=x \circ,((x \circ, x) \circ, y) \quad \forall x, y \in \mathcal{H}_{3}(\mathbb{O}) .
$$

An element $\alpha \in \mathcal{H}(\mathbb{O})$ satisfies a Cayley-Hamilton equation

$$
X^{3}-\operatorname{tr}(\alpha) X^{2}-\left(\frac{1}{2} \operatorname{tr}\left(\alpha^{2}\right)-\frac{1}{2} \operatorname{tr}(\alpha)^{2}\right) X-\operatorname{det}(\alpha) \cdot I
$$

where $\operatorname{tr}\left(\begin{array}{ccc}\xi_{1} & c_{3} & \bar{c}_{2} \\ \bar{c}_{3} & \xi_{2} & c_{1} \\ c_{2} & c_{1} & \xi_{3}\end{array}\right)=\xi_{1}+\xi_{2}+\xi_{3}$ and

$$
\operatorname{det}\left(\begin{array}{lll}
\xi_{1} & c_{3} & \bar{c}_{2} \\
c_{3} & \xi_{2} & c_{1} \\
c_{2} & c_{1} & \xi_{3}
\end{array}\right)=\xi_{1} \xi_{2} \xi_{3}+\operatorname{tr}\left(\left(c_{1} c_{2}\right) c_{3}\right)-\xi_{1} N\left(c_{1}\right)-\xi_{2} N\left(c_{2}\right)-\xi_{3} N\left(c_{3}\right)
$$

is a cubic norm on $\mathcal{H}_{3}(\mathbb{O})$.

The Integral Structure $\mathcal{H}_{3}(R)$

Consider the lattice

$$
\mathcal{H}_{3}(R)=\left\{\left(\begin{array}{ccc}
\xi_{1} & c_{3} & \bar{c}_{2} \\
c_{3} & \xi_{2} & c_{1} \\
c_{2} & c_{1} & \xi_{3}
\end{array}\right): c_{1}, c_{2}, c_{3} \in R, \xi_{1}, \xi_{2}, \xi_{3} \in \mathbb{Z}\right\},
$$

The cubic norm det: $\mathcal{H}_{3}(\mathbb{O}) \rightarrow \mathbb{Q}$ is integer valued on $\mathcal{H}_{3}(R)$. Let A be the ring of integers in a cubic extension of \mathbb{Q} with norm \mathbb{N}. There is an analogy between

$$
\left(\mathcal{H}_{3}(R), \operatorname{det}, I\right) \quad \text { and } \quad(A, \mathbb{N}, 1) .
$$

Define

$$
N_{A}=\#\left\{\text { ring homorphisms } f: A \hookrightarrow \mathcal{H}_{3}(R)\right\} .
$$

Theorem (Gan-Gross-Savin)

There exists a G_{2}-modular form θ of weight 4 such that if A is the ring of integers in a cubic extension L / \mathbb{Q}, and c_{A} is the Fourier coefficient of θ indexed by A, then

$$
N_{A}=c_{\theta, A} .
$$

In particular, the quantity c_{A} is an integer.

Thank You!

THANK YOU SO MUCH!!!!

References I

围 Noam Elkies and Benedict H. Gross.
Embeddings into the integral octonions.
Number Special Issue, pages 147-158. 1997.
Olga Taussky-Todd: in memoriam.
Benedict H. Gross and Wee Teck Gan.
Commutative subrings of certain non-associative rings.
Math. Ann., 314(2):265-283, 1999.
(Wee Teck Gan, Benedict Gross, and Gordan Savin.
Fourier coefficients of modular forms on G_{2}.
Duke Math. J., 115(1):105-169, 2002.
Tonny A. Springer and Ferdinand D. Veldkamp.
Octonions, Jordan algebras and exceptional groups.
Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2000.

