MATH 20D Spring 2023 Lecture 4. Implicit Solutions and Separable ODE's.

Outline

(1) Implicit Solutions

(2) Separation of Variables

Announcements

- Office hours begin this week!

Announcements

- Office hours begin this week!
- HW 1 is due tommorrow at 10pm via Gradescope. Please get in touch with me if you do not have access to both the MATLAB and the homework gradescope.

Announcements

- Office hours begin this week!
- HW 1 is due tommorrow at 10pm via Gradescope. Please get in touch with me if you do not have access to both the MATLAB and the homework gradescope.
(a) Parts (e), (f), and (g) of the last question on HW 1 will not be graded.

Announcements

- Office hours begin this week!
- HW 1 is due tommorrow at 10pm via Gradescope. Please get in touch with me if you do not have access to both the MATLAB and the homework gradescope.
(a) Parts (e), (f), and (g) of the last question on HW 1 will not be graded.
(b) The material from slides 10 \& 11 of Lecture 3 will not be assessed, neither will the method of isoclines.

Announcements

- Office hours begin this week!
- HW 1 is due tommorrow at 10pm via Gradescope. Please get in touch with me if you do not have access to both the MATLAB and the homework gradescope.
(a) Parts (e), (f), and (g) of the last question on HW 1 will not be graded.
(b) The material from slides 10 \& 11 of Lecture 3 will not be assessed, neither will the method of isoclines.
(c) The late due date for HW is 10pm Friday

Announcements

- Office hours begin this week!
- HW 1 is due tommorrow at 10pm via Gradescope. Please get in touch with me if you do not have access to both the MATLAB and the homework gradescope.
(a) Parts (e), (f), and (g) of the last question on HW 1 will not be graded.
(b) The material from slides 10 \& 11 of Lecture 3 will not be assessed, neither will the method of isoclines.
(c) The late due date for HW is 10pm Friday
- The first MATLAB assignment is due this Friday at 11:59pm.

Announcements

- Office hours begin this week!
- HW 1 is due tommorrow at 10pm via Gradescope. Please get in touch with me if you do not have access to both the MATLAB and the homework gradescope.
(a) Parts (e), (f), and (g) of the last question on HW 1 will not be graded.
(b) The material from slides 10 \& 11 of Lecture 3 will not be assessed, neither will the method of isoclines.
(c) The late due date for HW is 10pm Friday
- The first MATLAB assignment is due this Friday at 11:59pm.
- You must fill out the Commencement of Academic Activity Survey which is available via the Quizzes tab in Canvas. Please do this is as soon as possible, but no later than Friday this week.

Contents

(1) Implicit Solutions

(2) Separation of Variables

Implicit Solutions

Definition

Let $I \subseteq \mathbb{R}$ be a domain and consider an n-th order ODE

$$
\begin{equation*}
F\left(t, y(t), \ldots, y^{(n)}(t)\right)=0, \quad(t \in I) . \tag{1}
\end{equation*}
$$

An explicit solution to (1) on I is a function $\phi: I \rightarrow \mathbb{R}$ such that if $t \in I$ then

$$
F\left(t, \phi(t), \ldots, \phi^{(n)}(t)\right)=0 .
$$

Implicit Solutions

Definition

Let $I \subseteq \mathbb{R}$ be a domain and consider an n-th order ODE

$$
\begin{equation*}
F\left(t, y(t), \ldots, y^{(n)}(t)\right)=0, \quad(t \in I) \tag{1}
\end{equation*}
$$

An explicit solution to (1) on I is a function $\phi: I \rightarrow \mathbb{R}$ such that if $t \in I$ then

$$
F\left(t, \phi(t), \ldots, \phi^{(n)}(t)\right)=0 .
$$

An implicit solution to (1) on I is an equation

$$
G(x, y)=0 \quad(x \in I)
$$

defining one or more explicit solutions to (1) on I.

Implicit Solutions

Definition

Let $I \subseteq \mathbb{R}$ be a domain and consider an n-th order ODE

$$
\begin{equation*}
F\left(t, y(t), \ldots, y^{(n)}(t)\right)=0, \quad(t \in I) \tag{1}
\end{equation*}
$$

An explicit solution to (1) on I is a function $\phi: I \rightarrow \mathbb{R}$ such that if $t \in I$ then

$$
F\left(t, \phi(t), \ldots, \phi^{(n)}(t)\right)=0 .
$$

An implicit solution to (1) on I is an equation

$$
G(x, y)=0 \quad(x \in I)
$$

defining one or more explicit solutions to (1) on I.
The equation $x^{2}+y^{2}=R^{2}$ defines two explicit solutions to the ODE

$$
\frac{d y}{d x}=\frac{-x}{y}
$$

on the interval $I=(-R, R)$.

More implicit solutions

Example

Let $C \in \mathbb{R}$ be constant. Show that the relation

$$
\begin{equation*}
\log |y|-\log |1-y|=x+C \tag{2}
\end{equation*}
$$

defines an implicit solution to the ODE

$$
\frac{d y}{d x}=y(1-y) .
$$

You may assume (2) defines y implicitly as a function of x.

More implicit solutions

Example

Let $C \in \mathbb{R}$ be constant. Show that the relation

$$
\begin{equation*}
\log |y|-\log |1-y|=x+C \tag{2}
\end{equation*}
$$

defines an implicit solution to the ODE

$$
\frac{d y}{d x}=y(1-y) .
$$

You may assume (2) defines y implicitly as a function of x.

- Recall that last time we discussed the logistics equation

$$
\frac{d P}{d t}=r P\left(1-\frac{P}{K}\right)
$$

where r and K are constants.

More implicit solutions

Example

Let $C \in \mathbb{R}$ be constant. Show that the relation

$$
\begin{equation*}
\log |y|-\log |1-y|=x+C \tag{2}
\end{equation*}
$$

defines an implicit solution to the ODE

$$
\frac{d y}{d x}=y(1-y) .
$$

You may assume (2) defines y implicitly as a function of x.

- Recall that last time we discussed the logistics equation

$$
\frac{d P}{d t}=r P\left(1-\frac{P}{K}\right)
$$

where r and K are constants.

- The example above is the special case when $r=K=1$.

Contents

(1) Implicit Solutions

(2) Separation of Variables

Separable Equations

Question

Given an n-th order ODE

$$
\begin{equation*}
F\left(t, y(t), y^{\prime}(t), \ldots, y^{(n-1)}(t)\right)=0 \tag{3}
\end{equation*}
$$

is there a method for constructing an implicit solution to (3)?

Separable Equations

Question

Given an n-th order ODE

$$
\begin{equation*}
F\left(t, y(t), y^{\prime}(t), \ldots, y^{(n-1)}(t)\right)=0 \tag{3}
\end{equation*}
$$

is there a method for constructing an implicit solution to (3)?

- The answer to the question is yes so long as we work with separable ODE's.

Separable Equations

Question

Given an n-th order ODE

$$
\begin{equation*}
F\left(t, y(t), y^{\prime}(t), \ldots, y^{(n-1)}(t)\right)=0 \tag{3}
\end{equation*}
$$

is there a method for constructing an implicit solution to (3)?

- The answer to the question is yes so long as we work with separable ODE's.

Definition

We say that a first order ODE is separable if it can be factorized into the form

$$
\frac{d y}{d x}=g(x) \cdot p(y)
$$

where g and p are functions of x and y respectively.

Separable Equations

Question

Given an n-th order ODE

$$
\begin{equation*}
F\left(t, y(t), y^{\prime}(t), \ldots, y^{(n-1)}(t)\right)=0 \tag{3}
\end{equation*}
$$

is there a method for constructing an implicit solution to (3)?

- The answer to the question is yes so long as we work with separable ODE's.

Definition

We say that a first order ODE is separable if it can be factorized into the form

$$
\frac{d y}{d x}=g(x) \cdot p(y)
$$

where g and p are functions of x and y respectively.

- $\frac{d y}{d x}=x y$ is separable but $\frac{d y}{d x}=1+x y$ is not separable.

Separation of Variables

Example

Using the method of separation of variables, solve the IVP

$$
\frac{d y}{d x}=-x y
$$

subject to the initial condition (a) $y(0)=0$ and (b) $y(0)=1$

Separation of Variables

Example

Using the method of separation of variables, solve the IVP

$$
\frac{d y}{d x}=-x y
$$

subject to the initial condition (a) $y(0)=0$ and (b) $y(0)=1$
Step 1: Consider potential constant solutions arising from

$$
p(y)=0 .
$$

Separation of Variables

Example

Using the method of separation of variables, solve the IVP

$$
\frac{d y}{d x}=-x y
$$

subject to the initial condition (a) $y(0)=0$ and (b) $y(0)=1$
Step 1: Consider potential constant solutions arising from

$$
p(y)=0 .
$$

Step 2: Rearrange to the form $\frac{d y}{p(y)}=g(x) d x$ and apply \int to both sides.

Separation of Variables

Example

Using the method of separation of variables, solve the IVP

$$
\frac{d y}{d x}=-x y
$$

subject to the initial condition (a) $y(0)=0$ and (b) $y(0)=1$
Step 1: Consider potential constant solutions arising from

$$
p(y)=0 .
$$

Step 2: Rearrange to the form $\frac{d y}{p(y)}=g(x) d x$ and apply \int to both sides. The result of steps $1 \& 2$ is an implicit solution to the ODE of the form

$$
H(y)=G(x)+C
$$

where $C=H\left(y_{0}\right)-G\left(x_{0}\right), H^{\prime}(y)=1 / p(y)$, and $G^{\prime}(x)=g(x)$.

Separation of Variables

Example

Using the method of separation of variables, solve the IVP

$$
\frac{d y}{d x}=-x y
$$

subject to the initial condition (a) $y(0)=0$ and (b) $y(0)=1$
Step 1: Consider potential constant solutions arising from

$$
p(y)=0 .
$$

Step 2: Rearrange to the form $\frac{d y}{p(y)}=g(x) d x$ and apply \int to both sides. The result of steps $1 \& 2$ is an implicit solution to the ODE of the form

$$
H(y)=G(x)+C
$$

where $C=H\left(y_{0}\right)-G\left(x_{0}\right), H^{\prime}(y)=1 / p(y)$, and $G^{\prime}(x)=g(x)$.
Step 3: If possible, simplify the implicit solution to obtain an explicit solution.

More practice

Example

Using the method of separation of variables, solve the IVP

$$
\frac{d y}{d t}=y(1-y)
$$

subject to the initial condition (a) $y(0)=1$, (b) $y(0)=1 / 2$, and (c) $y(0)=2$.

