MATH 20D Spring 2023 Lecture 23.

Impulse Response Functions and Systems of Differential Equations.

Announcements

- Homework 7 is due tomorrow at 10 pm .

Announcements

- Homework 7 is due tomorrow at 10 pm .
- Homework 8 is available and due next Saturday at 10pm. No late submissions will be accepted.

Announcements

- Homework 7 is due tomorrow at 10 pm .
- Homework 8 is available and due next Saturday at 10pm. No late submissions will be accepted.
- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.

Announcements

- Homework 7 is due tomorrow at 10 pm .
- Homework 8 is available and due next Saturday at 10pm. No late submissions will be accepted.
- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Midterm 2 grades are available, regrade request window closing Friday June 2nd at 11:59pm.

Outline

(1) Impulse Response Functions
(2) System of Linear Differential Equations

Contents

(1) Impulse Response Functions

(2) System of Linear Differential Equations

Last Time

- The Dirac delta "function" $\delta(t)=\lim _{\varepsilon \rightarrow 0^{+}} \mathcal{F}_{\varepsilon}(t)$ where

$$
\mathcal{F}_{\varepsilon}(t)= \begin{cases}1 / \varepsilon, & 0<t<\varepsilon \\ 0, & t>\varepsilon\end{cases}
$$

Last Time

- The Dirac delta "function" $\delta(t)=\lim _{\varepsilon \rightarrow 0^{+}} \mathcal{F}_{\varepsilon}(t)$ where

$$
\mathcal{F}_{\varepsilon}(t)= \begin{cases}1 / \varepsilon, & 0<t<\varepsilon \\ 0, & t>\varepsilon .\end{cases}
$$

Key Property

If $a \geqslant 0$ is constant and $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous at $x=a$ then

$$
\int_{0}^{\infty} f(t) \delta(t-a) d t=f(a) .
$$

Last Time

- The Dirac delta "function" $\delta(t)=\lim _{\varepsilon \rightarrow 0^{+}} \mathcal{F}_{\varepsilon}(t)$ where

$$
\mathcal{F}_{\varepsilon}(t)= \begin{cases}1 / \varepsilon, & 0<t<\varepsilon \\ 0, & t>\varepsilon .\end{cases}
$$

Key Property

If $a \geqslant 0$ is constant and $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous at $x=a$ then

$$
\int_{0}^{\infty} f(t) \delta(t-a) d t=f(a) .
$$

In particular $\mathscr{L}\{\delta(t-a)\}(s)=e^{-a s}$.

- Under \mathscr{L} the initial value problem

$$
y^{\prime}(t)=\delta(t-a), \quad y(0)=0
$$

transform into the algebraic equation $s \mathscr{L}\{y(t)\}(s)=e^{-a s}$.

Last Time

- The Dirac delta "function" $\delta(t)=\lim _{\varepsilon \rightarrow 0^{+}} \mathcal{F}_{\varepsilon}(t)$ where

$$
\mathcal{F}_{\varepsilon}(t)= \begin{cases}1 / \varepsilon, & 0<t<\varepsilon \\ 0, & t>\varepsilon .\end{cases}
$$

Key Property

If $a \geqslant 0$ is constant and $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous at $x=a$ then

$$
\int_{0}^{\infty} f(t) \delta(t-a) d t=f(a) .
$$

In particular $\mathscr{L}\{\delta(t-a)\}(s)=e^{-a s}$.

- Under \mathscr{L} the initial value problem

$$
y^{\prime}(t)=\delta(t-a), \quad y(0)=0
$$

transform into the algebraic equation $s \mathscr{L}\{y(t)\}(s)=e^{-a s}$.

- Hence $y(t)=\mathscr{L}^{-1}\left\{e^{-a s} / s\right\}(t)=u(t-a)$ solves the IVP above.

Impulse Response Function

Definition

Given a differential equation

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t)
$$

the impulse response function is the solution to the initial value problem

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=\delta(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Impulse Response Function

Definition

Given a differential equation

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t)
$$

the impulse response function is the solution to the initial value problem

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=\delta(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

- For a mass-spring equation

$$
m y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=g(t)
$$

the impulse response function describes the motion of the mass when it struck by a hammer while at rest at the spring's equilibrium.

Impulse Response Function

Definition

Given a differential equation

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t)
$$

the impulse response function is the solution to the initial value problem

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=\delta(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

- For a mass-spring equation

$$
m y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=g(t)
$$

the impulse response function describes the motion of the mass when it struck by a hammer while at rest at the spring's equilibrium.

Example

Determine the impulse response function associated to the differential equation

$$
y^{\prime \prime}-6 y^{\prime}+13 y=g(t)
$$

Contents

(1) Impulse Response Functions

(2) System of Linear Differential Equations

Systems of Linear ODE's

- In applications it is common to have more than one unknown.

Systems of Linear ODE's

- In applications it is common to have more than one unknown.
- If these unknowns satisfy some (linear) ODE's, then we have a system of differential equations.

Systems of Linear ODE's

- In applications it is common to have more than one unknown.
- If these unknowns satisfy some (linear) ODE's, then we have a system of differential equations.

Example

Two tanks, each holding 24 liters of a brine solutions, are interconnected by pipes as shown below. Fresh water solution water is pumped into the tanks at a rate of $6 \mathrm{~L} / \mathrm{min}$, and fluid is drained out of the system at the same rate

If $x(t)$ denotes the amount of salt in tank A at time t and $y(t)$ denotes the amount of salt in tank B at time t, then

$$
\begin{aligned}
x^{\prime}(t) & =-x(t) / 3+y(t) / 12 \\
y^{\prime}(t) & =x(t) / 3-y(t) / 3
\end{aligned}
$$

Vector Valued Unknowns

- As we will see, it is convenient to recast the system of differential equation

$$
\begin{aligned}
x^{\prime}(t) & =-x(t) / 3+y(t) / 12 \\
y^{\prime}(t) & =x(t) / 3-y(t) / 3
\end{aligned}
$$

as a single first order matrix differential equation

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}
-1 / 3 & 1 / 12 \\
1 / 3 & -1 / 3
\end{array}\right) \mathbf{x}(t)
$$

where the unknown $\mathbf{x}(t)=\binom{x(t)}{y(t)}$ is a vector valued function.

- This trick can also be used to transform higher order equations into first order systems of equations with vector valued unknowns.

Example

Express the higher order differential below as an equation of the form $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ where $\mathbf{x}(t)$ is a vector valued function and A is matrix.
(a) $y^{\prime \prime}+4 y=0$
(b) $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$

Normal Forms

- Our usual way of writing a general second order linear ODE is as

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t) . \tag{1}
\end{equation*}
$$

- If $\mathbf{x}(t)=\binom{y(t)}{y^{\prime}(t)}$ then $\mathbf{x}^{\prime}(t)=\binom{y^{\prime}(t)}{y^{\prime \prime}(t)}$.

Normal Forms

- Our usual way of writing a general second order linear ODE is as

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t) . \tag{1}
\end{equation*}
$$

- If $\mathbf{x}(t)=\binom{y(t)}{y^{\prime}(t)}$ then $\mathbf{x}^{\prime}(t)=\binom{y^{\prime}(t)}{y^{\prime \prime}(t)}$.Since

$$
y^{\prime \prime}(t)=-q(t) y^{\prime}(t)-p(t) y(t)+g(t)
$$

equation (1) can be re-expressed as

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}
0 & 1 \\
-q(t) & -p(t)
\end{array}\right) \mathbf{x}(t)+\binom{0}{g(t)} .
$$

Normal Forms

- Our usual way of writing a general second order linear ODE is as

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t) \tag{1}
\end{equation*}
$$

- If $\mathbf{x}(t)=\binom{y(t)}{y^{\prime}(t)}$ then $\mathbf{x}^{\prime}(t)=\binom{y^{\prime}(t)}{y^{\prime \prime}(t)}$.Since

$$
y^{\prime \prime}(t)=-q(t) y^{\prime}(t)-p(t) y(t)+g(t)
$$

equation (1) can be re-expressed as

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}
0 & 1 \\
-q(t) & -p(t)
\end{array}\right) \mathbf{x}(t)+\binom{0}{g(t)} .
$$

Definition

We say that a matrix differential equation is in normal form if is expressed as

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{f}(t)
$$

where $A(t)$ is a matrix valued function and $\mathbf{f}(t)$ is a vector valued function.

More Examples

Example

Rewrite the system of differential equations below as a first order matrix differential equation in normal form

$$
\begin{aligned}
x^{\prime}(t) & =\cos (t) x(t)-\sin (t) y(t)+e^{t} \\
y^{\prime}(t) & =\sin (t) x(t)+\cos (t) y(t)-t e^{-2 t}
\end{aligned}
$$

