MATH 20C
 WINTER 2020 SECTION D00 (MANNERS)

Homework - week 8

Due by 2359 (11:59 PM) on Sunday March 1. Hand in via Gradescope.
For problem 0 , credit is awarded for any honest response, not for the amount of work undertaken.
For problems 1, 2 and 3, you must give a fully written-out solution showing all your working and justification. Stating the correct answer, by itself, will earn no credit.
0. Do the following textbook problems. Do not turn them in, but provide a list here of those for which you wrote down solutions.
§3.4: 1,3,5,7.
(1 points)

1. Find the maximum and minum values of the function $f(x, y)=x+0.9 y$ on the curve

$$
C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-y^{3}+y^{4}=0\right\}
$$

You may assume without proof that C, shown below, is closed and bounded.

[Hint: you may use that the equation $16 z^{3}-24 z^{2}+(12.24) z-(3.24)=0$ has a single solution at $z=0.9$.]
(6 points)
2. Consider the function

$$
f(x, y)=x^{2}+x y+y^{2}
$$

(a) Using the method of Lagrange Multipliers, find the maximum and minimum values of f on the unit circle $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$.
(b) Using your answer to (a), find the maximum and minimum values of f on the unit disc $\{(x, y) \in$ $\left.\mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$.

$$
\text { (} 6 \text { points) }
$$

3. If x, y, z are three real numbers such that $x^{4}+y^{4}+z^{4}=243$, what is the largest possible value of $x y z$? Justify your answer.
