MATH 20C
 WINTER 2020
 SECTION D00 (MANNERS)

Homework - week 5

Due by 2359 (11:59 PM) on Sunday February 9. Hand in via Gradescope.
For problem 0, credit is awarded for any honest response, not for the amount of work undertaken.
For problems 1, 2 and 3 , you must give a fully written-out solution showing all your working and justification. Stating the correct answer, by itself, will earn no credit.
0. Do the following textbook problems. Do not turn them in, but provide a list here of those for which you wrote down solutions.

$$
\S 2.3: 1,3,7,9
$$

§2.4: 1,3 .

1. Consider the function $f(x, y, z)=\frac{x y z}{x^{2}+y^{2}+z^{2}}$.
(a) Compute the gradient vector $\nabla f(a, b, c)$ at a general point $(a, b, c) \in \mathbb{R}^{3}$.
(b) Without using a calculator, compute the value of $f(2,-2,-1)$, and then estimate the value of $f(2.0002,-1.9999,-1.0003)$ to four decimal places.
2. Let $f(x, y)=x^{2}+2 y^{3}$. Find the equation of the tangent plane to the graph $z=f(x, y)$ at the point $(x, y, z)=(1,1,3)$.

$$
(6 \text { points })
$$

3. Consider the curve $\vec{c}(t)=(\sin (2 t), \sin (t))$.
(a) Compute the velocity $\vec{c}^{\prime}(t)$ of the curve for a general parameter t.
(b) Without using a calculator, compute the value $\vec{c}(0)$, and estimate the value of $\vec{c}(0.0001)$ to four decimal places. [For the purposes of evalutaing $\sin (t)$ and $\sin (2 t), t$ is assumed to be in radians.]
(6 points)
