MATH 20C
 WINTER 2020
 SECTION D00 (MANNERS)

Homework - week 4

Due by 2359 (11:59 PM) on Sunday February 2. Hand in via Gradescope.
For problem 0, credit is awarded for any honest response, not for the amount of work undertaken.
For problems 1 and 2, you must give a fully written-out solution showing all your working and justification. Stating the correct answer, by itself, will earn no credit.
0. Do the following textbook problems. Do not turn them in, but provide a list here of those for which you wrote down solutions.
$\S 2.2: 1,2,3,15$
(1 points)

1. In each case below, compute the limit, or explain why it does not exist.
(a)

$$
\lim _{(x, y) \rightarrow(1,1)} \frac{(x-1)^{3}}{(x-1)^{2}+(y-1)^{2}}
$$

(b)

$$
\lim _{(x, y) \rightarrow(1,0)} \frac{e^{x y}-1}{y}
$$

[Note $(1,0)$, not $(0,0)$. Hint: what is $\lim _{t \rightarrow 0} \frac{e^{t}-1}{t}$ in single-variable world?]
(c)

$$
\lim _{(x, y) \rightarrow(1,1)}\left(x^{2}+y^{2}\right) \frac{\sin \left(\frac{(x-1)^{3}}{(x-1)^{2}+(y-1)^{2}}\right)}{\frac{(x-1)^{3}}{(x-1)^{2}+(y-1)^{2}}} .
$$

(12 points)
2. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)= \begin{cases}x & : x y \geq 0 \\ 0 & : x y<0\end{cases}
$$

For which points $(x, y) \in \mathbb{R}^{2}$ is $f(x, y)$ continuous? Briefly justify your answer. [A good 3D graph sketch would suffice.]

