MATH 20C
 WINTER 2020
 SECTION D00 (MANNERS)

Homework - week 3

Due by 2359 (11:59 PM) on Sunday January 26. Hand in via Gradescope.
For problem 0, credit is awarded for any honest response, not for the amount of work undertaken.
For problems 1, 2 and 3, you must give a fully written-out solution showing all your working and justification. Stating the correct answer, by itself, will earn no credit.
0. Do the following textbook problems. Do not turn them in, but provide a list here of those for which you wrote down solutions.

$$
\S 1.3: 3,5,11,15,21,31
$$

§2.1: 3, 7, 13, 25
(1 points)

1. The lines

$$
\{(3+t, 2-t, 1-2 t): t \in \mathbb{R}\}, \quad\{(5+t, 7-t, 9-2 t): t \in \mathbb{R}\}
$$

are parallel. Find the equation of the plane that contains both of them, in the form $a x+b y+c z=d$.
(6 points)
2. Consider the planes

$$
x+y+z=1, \quad 2 x-y+z=1
$$

(a) Write down the perpendicular directions to these two planes.
(b) Show that $(0,0,1)$ lies on both planes.
(c) Find a parametric equation for the line where these two planes intersect.
(6 points)
3. Consider function $f(x, y)=x^{2}+y^{2}-2 x y$ and the 3D graph $z=x^{2}+y^{2}-2 x y$.
(a) Sketch the level sets $f(x, y)=c$ for $c=0,1,2,3$ on the same axes.
(b) Sketch the section of this graph for $y=0$ (i.e., the slice in the $x z$-plane).
(c) Sketch the 3D graph.

