MATH 202A

APPLIED ALGEBRA I

FALL 2019

Homework week 9

Due by the beginning of class on Monday 2nd December (hand in via Gradescope).

1. Let V, W be finite-dimensional vector spaces. Prove that the map

$$
\begin{aligned}
\mathcal{L}(V, W) & \rightarrow \mathcal{L}(W, V)^{*} \\
\phi & \mapsto(\psi \mapsto \operatorname{tr}(\phi \circ \psi)=\operatorname{tr}(\psi \circ \phi))
\end{aligned}
$$

is an isomorphism.
[So, a matrix norm on $\mathcal{L}(V, W)$ has a corresponding dual norm on $\mathcal{L}(W, V)$, etc..]
2. Consider $V=\mathbb{C}^{n}, W=\mathbb{C}^{m}$. For a linear map $\phi: V \rightarrow W$ represented my an $m \times n$ matrix A, prove that:-
(a) $\|\phi\|_{\ell^{1} \rightarrow \ell^{1}}=\max _{j=1}^{n} \sum_{i=1}^{m}\left|A_{i j}\right|$;
(b) $\|\phi\|_{\ell^{\infty} \rightarrow \ell^{\infty}}=\max _{i=1}^{m} \sum_{j=1}^{n}\left|A_{i j}\right|$;
(c) $\|\phi\|_{\ell^{1} \rightarrow \ell^{\infty}}=\|A\|_{v, \infty}$;
(d) $\|\phi\|_{\ell^{\infty} \rightarrow \ell^{1}}=\|A\|_{v, 1}$.
3. Let U, V, W be inner product spaces, and let $\phi \in \mathcal{L}(U, V)$. Define

$$
\begin{aligned}
\Phi: \mathcal{L}(V, W) & \rightarrow \mathcal{L}(U, W) \\
\psi & \mapsto \psi \circ \phi
\end{aligned}
$$

Prove that the operator norm $\|\Phi\|_{\operatorname{Frob}(\mathcal{L}(V, W)) \rightarrow \operatorname{Frob}(\mathcal{L}(U, W))}$ with respect to the Frobenius norms on $\mathcal{L}(V, W)$ and $\mathcal{L}(U, W)$, is exactly the operator norm $\|\phi\|_{U \rightarrow V}$.
4. Let V be a finite-dimensional inner product space.
(a) Prove that if $\phi, \psi \in \mathcal{L}(V, V)$ are both self-adjoint then $\langle\phi, \psi\rangle_{\text {Frob }}$ is real.

Given $v \in V$, let $\theta_{v} \in \mathcal{L}(V, V)$ denote the linear map $u \mapsto\langle u, v\rangle v$. Consider the subset $\mathcal{C} \subseteq \mathcal{L}(V, V)$ given by

$$
\mathcal{C}=\left\{\sum_{i=1}^{m} a_{i} \theta_{v_{i}}: m \geq 0, v_{1}, \ldots, v_{m} \in V, a_{1}, \ldots, a_{m} \geq 0\right\}
$$

i.e., the set of non-negative sums of elements θ_{v}.
(b) Let $\phi \in \mathcal{L}(V, V)$ be self-adjoint. Prove that the following are equivalent:-
(i) ϕ is non-negative definite;
(ii) $\phi \in \mathcal{C}$;
(iii) for all $\psi \in \mathcal{C}$ we have $\langle\phi, \psi\rangle_{\text {Frob }} \geq 0$.
[If you wish, you can say that "the non-negative definite cone \mathcal{C} is self-dual".]

