MATH 202A APPLIED ALGEBRA I FALL 2019

Homework week 9

Due by the beginning of class on Monday 2nd December (hand in via Gradescope).

1. Let V, W be finite-dimensional vector spaces. Prove that the map

$$\mathcal{L}(V,W) \to \mathcal{L}(W,V)^*$$
$$\phi \mapsto (\psi \mapsto \operatorname{tr}(\phi \circ \psi) = \operatorname{tr}(\psi \circ \phi))$$

is an isomorphism.

[So, a matrix norm on $\mathcal{L}(V, W)$ has a corresponding dual norm on $\mathcal{L}(W, V)$, etc..]

- **2.** Consider $V = \mathbb{C}^n$, $W = \mathbb{C}^m$. For a linear map $\phi: V \to W$ represented my an $m \times n$ matrix A, prove that:—
 - (a) $\|\phi\|_{\ell^1 \to \ell^1} = \max_{j=1}^n \sum_{i=1}^m |A_{ij}|;$
 - **(b)** $\|\phi\|_{\ell^{\infty} \to \ell^{\infty}} = \max_{i=1}^{m} \sum_{j=1}^{n} |A_{ij}|;$
 - (c) $\|\phi\|_{\ell^1 \to \ell^\infty} = \|A\|_{v,\infty};$
 - (d) $\|\phi\|_{\ell^{\infty} \to \ell^{1}} = \|A\|_{v,1}.$

3. Let U, V, W be inner product spaces, and let $\phi \in \mathcal{L}(U, V)$. Define

$$\Phi \colon \mathcal{L}(V, W) \to \mathcal{L}(U, W)$$
$$\psi \mapsto \psi \circ \phi.$$

Prove that the operator norm $\|\Phi\|_{\operatorname{Frob}(\mathcal{L}(V,W))\to\operatorname{Frob}(\mathcal{L}(U,W))}$ with respect to the Frobenius norms on $\mathcal{L}(V,W)$ and $\mathcal{L}(U,W)$, is exactly the operator norm $\|\phi\|_{U\to V}$.

- 4. Let V be a finite-dimensional inner product space.
 - (a) Prove that if $\phi, \psi \in \mathcal{L}(V, V)$ are both self-adjoint then $\langle \phi, \psi \rangle_{\text{Frob}}$ is real.

Given $v \in V$, let $\theta_v \in \mathcal{L}(V, V)$ denote the linear map $u \mapsto \langle u, v \rangle v$. Consider the subset $\mathcal{C} \subseteq \mathcal{L}(V, V)$ given by

$$\mathcal{C} = \left\{ \sum_{i=1}^{m} a_i \theta_{v_i} \colon m \ge 0, \ v_1, \dots, v_m \in V, \ a_1, \dots, a_m \ge 0 \right\};$$

i.e., the set of non-negative sums of elements θ_v .

- (b) Let $\phi \in \mathcal{L}(V, V)$ be self-adjoint. Prove that the following are equivalent:—
 - (i) ϕ is non-negative definite;
 - (ii) $\phi \in C$;
 - (iii) for all $\psi \in \mathcal{C}$ we have $\langle \phi, \psi \rangle_{\text{Frob}} \geq 0$.
 - [If you wish, you can say that "the non-negative definite cone C is self-dual".]